CHAPTER I

QUANTUM CHEMICAL CALCULATIONS

The commonly used molecular quantum chemical methods are classified as "non-
empirical and semi-empirical” types. Semi-empirical methods use a simpler
Hamiltonian and use parameters whose values are adjusted to fit experimental data or
the results of empirical one. In contrast, the non-empirical calculation uses the full
Hartree-Fock Hamiltonian and does not use experimental data other than the values of
the fundamental physical constants. A Hartree-Fock calculation seeks the
antisymmetrized product of one-electron functions, ® 1that minimizes jo*HO dx |
where H is the Hamiltonian operator.

Ab initio method received popularity in the past decade because of the availability
of high speed digital computers and the development of theoretical and computational
methods. The main factor determining the accuracy of the ab initio calculations is the
size and type of the hasis set used.

2.1 Ab Initio Molecular Orbital Theory

Any physically observable molecular property can be calculated quantum
mechanically if the corresponding Schrodinger equation

HP = E'P (2.1)
can be solved. According to this equation, total energy is obtained by
E= (PHP) (2.2)

where Sf is the normalized total wave function of the system.



The principle of the ab initio approach is based on the following steps :

(a) define an approximate Hamiltonian operator for the system,

(b)  select trial mathematical function \F(ql,92,03,...) where qi,q2,03,... are
finitely variable parameters,

(c) minimize the total energy, with respect to variation of the parameters until
the change of energy is lower than a given limit (e.g. 10'5 Hartree).

More details of the above consecutive steps will be briefly summarized as the following.

2.1.1 The Molecular Hamiltonian Operator
If we are interested in molecular systems, the total Hamiltonian operator of the

system will be given as sum of all possible Coulombic energy operators and kinetic
energy operators of the electrons and nuclei of the form,
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where

A and B are nuclear centers, and i and j represent electrons. MA is the ratio of the
mass of nucleus A to the mass of an electron, r and Z are the distances and the atomic
number, respectively. The first term, the kinetic energy of the nuclei, can be neglected
according to the Bom-Oppenheimer approximation for a fixed molecular geometry,
since nuclei are much heavier than electrons and their motions are expected to be much
slower. The last term, the repulsion between the nuclei, becomes a constant in this case
and can be put apart. Consequently, only the remaining terms should be considered
within the Hartree-Fock approximation.



The Hamiltonian operator is, then, reduced to
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Hcore, frequently denotes as H, is a one-electronic Hamiltonian operator, and the total
electronic Hamiltonian is composed of the one-electron operators for all electrons.

2.1.2 The Hartree-Fock Wave Function

a) Independent Electron Model

The typical approximation to construct the many-electron wave function, T', is the
Independent Particle Approximation, based on a factorization into one-electron spin
orbitals, being themselves products of a spatial orbital and a spin function. The most
convenient way to represent a trial wave function for a 2n-electron closed shell system
IS to use a single-determinanted wave function, also called a Slater determinant [22]
given in eq. (2.5), in order to satisfy the antisymmetry principle.

¥ = Y1  1Q¥2 2 -n¥n- () (2.9)

The spin orbitals JA and /§ correspond to \|/j(j)a(j) and \|/j(j)P(j), where a(j) and
P(j) denote by spin functions for the jth electron.

This approximation automatically leads to a split-up of the Hamiltonian into a
sum of one-electron operators (Fock Operator) F



H = 21«} = 'ZHC + ZZ(zJj-KJ.) (2.6

i< j

where is the core Hamiltonian and Jj and Kj are Coulomb and Exchange
operators, respectively.

b) Molecular Orbitals and the Linear Combination of Atomic Orbitals (LCAQ)
Approximation

To construct molecular orbitals (\/j) for electrons in a molecular system, a linear
combination of atomic orbitals (basis functions) is used.

Vi 7 Eciu o (2.7)
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where 0 are the atomic orbitals, and Cj* are the molecular orbital expansion

coefficients, whose variation allows to minimize the energy. The orbitals used in the
linear combination are called basis orbitals or basis functions. The optimal values of the

coefficients ciM are determined by means of the variation principle (3E/8c. =0).

2.1.3 Minimization of the Total Energy (Self-Consistent Field Procedure)

Minimization of the total energy is done by varying the value of the coefficients,
C. ,ineq. (2.7). The procedure starts with the use of an initial guess of ¢'s to calculate

the first matrix of the total energy, E. The elements of the matrix E are

V = VHV+IT V Pa[(HN)-pMiva)]
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The matrix of the elements of the core Hamiltonian, Hoore 5contains the elements
for the core-electron Hamiltonian, Hc5for electrons moving in the field of nuclei :

 COre ¢v(i)> (29)

The elements of the density matrix Py and the two-electron integrals, (ji\\Xa)

and (ptA|v<7), are given by

po= 2 cliCu (for closed shell system) (2.10)
|
(MvAct) = j<1>°|</|(1)0v(1)-2L"(2)0ct(2) ¢Tj dx2 (2.11)
and
(IA)T) = 30 0%(1)0;(DA-0*(2)0ff(2) T1 T2 (2.12)

Create the first matrix of the Fock operator, F using the first guess of ¢'s. The elements
of the matrix F are :

Fo= Hure+ | rM[( )-hMIva)] (219
Acl

From the first approximation of the Fock operator matrix F, a second
approximation of C can be obtained by solving the Roothaan-Hall equation.

FC = SCE (2.14)

where

Sy~ ($plnv) (219)
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Fock matrix

C  Coefficient matrix
Overlap matrix

E  Eigenvalue matrix.

Since the coefficient matrix is contained in the Fock matrix, the equation cannot
be solved straight forward. A new total energy matrix, E, can be calculated from
eq.(2.8), using a second approximation of the coefficient matrix, C. An iterative
procedure is required which is the so-called " SCF (Self-Consistent Field) "
procedure. The process is carried out iteratively until the total electronic energy of the
system remains unchanged within given limits, usually 10'5 Hartree.

2.2 Basis Functions

In all molecular quantum mechanical methods one has to choose, at the beginning
of the calculation, the basis set. The use of an adequate basis set is an essential
requirement for a success of the calculation. The quality of the molecular orbitals is also
related to the quality of the basis set used.

The early STO (Slater Type Orbital) basis functions, introduced by Slater [23], is
based on approximations of hydrogen-like atomic orbitals according to empirical rules.
They were mostly used for the calculations of small molecules. Although the advantage
of using a few functions of STO satisfies us for its simplicity and more accurate
representation of atomic orbitals, the integrations of the functions are very time-
consuming. The typical form of STO is denoted by the expression ;

510 = NrMexpKr) YIm(0,0) (2.16)

where G and Y] 1L are the Slater orbital exponent, principle quantum number and the
angular part of the wave function, respectively. N is the normalization constant.

An alternative to the STOs is the use of GTO (Gaussian Type Orbital) basis sets
[24], which are defined as



JGTI0 = N exp(-ar2) Yim(0,0) (2.17)

where a is the Gaussian orhital exponent.

The GTO functions are more suitable and mostly used nowadays. The integration
of such functions is easier and can be performed simply. However, due to the different
shape of the GTO, for the region near the nucleus, a combination of GTOs with
different exponents is required to obtain equivalent results. Contraction is applied to
avoid a too large size of the combination hasis set.

According to the series of minimal basis sets termed " STO-IVG " consists of
expansions of STOs in terms of N Gaussian functions. One starts with a minimal basis
set of one STO per AO, with the STO orbital exponents (Q fixed at values found to
work well in calculations on small molecules. Each STO is then approximated as a
linear combination of N Gaussian functions, where the coefficients in the linear
combination and the Gaussian orbital exponents are chosen to give the best least square
fit to the STO. Most commonly, N = 3, giving a set of contraction of GTOs called
"STO-3G". Since a linear combination of three Gaussians is only an approximation to
an STO, the STO-3G basis set gives results not quite as good as a minimal basis set
STO calculation.

Another type of atomic orbital is the GLO (Gaussian Lobe Orbital) [25,26] which
is the simplest form of basis functions. Its form is

(oo = Nexp(-ar2 (2.18)

The angular part is omitted. Instead, GLOs are combined together to reproduce
the conventional orbital shapes.



2.3 Basis Set Superposition Error fBSSEI

In calculation of the interaction energy for complex systems, the basis set
employed should be sufficiently large and correctly express the multipole moments and
the polarizability of the systems. In the case that insufficient basis set are used, an
artificial basis set improvement will take place in the supersystem, leading to an error
which is known as " basis set superposition error “. In a system consisting of two
molecules A and B which have the basis set {a} and {(3}, respectively, the error occurs
when the basis set {(3} contaminates {a} in computing the energy of A or conversely,
when {a} contaminates {(3} in computing the energy of B. This causes the interaction
energy of the supersystem to be overestimated.

A method proposed by Boys and Bemardi [18] was carried out to estimate this
error - the counterpoise (CP) method. The method is based on the determination of the
subsystem energies using the same basis set as for the determination of the supersystem
energy and can be presented as follows. Firstly, one computes the supermolecule AB
with basis sets {a} and {[3} yielding an energy E(AB). Secondly, one computes the
energy of A with both {a} and {(3} obtaining an energy E'(A). The operation is
repeated for B computed with {(3} and {a} yielding the energy E'(B). The counterpoise
correction, Ae, can be defined as

Ae = [E(A)-E(A)]+[E(B)-E'B)] (2.19)
where BSSE =  Ae

where E(A) and E(B) are simply the computations of A with {a} alone and of B with
{[3} alone, respectively. And the counterpoise corrected interaction energy is

AECP = AE + Ae (2.20)

where AE s the interaction energy calculated from truncated basis set. It should be
mentioned, however, that this correction gives the upper limit of a possible BSSE and
hence cannot be regarded as absolutely correct value for the real BSSE occuring in a
specific supermolecule system.



	CHAPTER II QUANTUM CHEMICAL CALCULATIONS
	2.1 Ab Initio Molecular Orbital Theory
	2.2 Basis Functions
	2.3 Basis Set Superposition Error (BSSE)


