
CHAPTER II

Q U A N T U M  C H EM IC A L C A LC U LA TIO N S

T he com m only  used  m olecu lar quantum  chem ical m ethods are c lassified  as "non- 
em pirica l an d  sem i-em pirica l"  types. Sem i-em pirical m ethods use  a sim pler 
H am ilton ian  and use param eters w hose values are adjusted to fit experim ental data or 
the results o f  em pirical one. In contrast, the non-em pirical calculation  uses the full 
H artree-F ock  H am ilton ian  and does not use experim ental data o ther than the values o f  
the fundam ental physical constants. A  H artree-Fock calculation  seeks the 
antisym m etrized product o f  one-electron functions, ® 1 that m in im izes jo^H O  dx , 
w here H  is the H am ilton ian  operator.

A b initio  m ethod  received  popularity  in the past decade because o f  the availability  
o f  h igh speed digital com puters and the developm ent o f  theoretical and com putational 
m ethods. T he m ain  factor determ ining the accuracy o f  the ab initio  calculations is the 
size and type o f  the basis set used.

2.1 Ab Initio  M olecular O rbital Theory

A ny physically  observable m olecular property  can be calcu lated  quantum  
m echanically  i f  the corresponding Schrôdinger equation

H 'P  =  E 'P  (2.1)

can be solved. A ccord ing  to this equation, total energy is obtained by

E =  (VP |H |VP) (2.2)

w here Sf is the norm alized  total w ave function o f  the system.



The princip le  o f  the ab initio approach is based on the follow ing steps :
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(a) define an approxim ate H am iltonian operator for the system ,
(b) select trial m athem atical function vF (q 1,q2 ,q3 ,...) w here q i ,q 2,q3 ,... are 

fin ite ly  variab le param eters,
(c) m in im ize the total energy, w ith respect to variation  o f  the param eters until 

the change o f  energy is low er than a given lim it (e.g. 10 '5 H artree).

M ore details o f  the above consecutive steps w ill be briefly  sum m arized as the follow ing.

2.1.1 T he M olecular H am iltonian O perator

I f  w e are in terested  in m olecular system s, the total H am ilton ian  operator o f  the 
system  w ill be given as sum  o f  all possible C oulom bic energy operators and kinetic 
energy operators o f  the electrons and nuclei o f  the form ,

A  and B are nuclear centers, and i and j  represent electrons. M A is the ratio o f  the 
m ass o f  nucleus A  to the m ass o f  an electron, r and z are the distances and the atom ic 
num ber, respectively . The first term , the kinetic energy o f  the nuclei, can be neglected  
according to the B om -O ppenheim er approxim ation for a fixed m olecu lar geom etry, 
since nuclei are m uch heavier than electrons and their m otions are expected  to be m uch 
slow er. T he last term , the repulsion betw een the nuclei, becom es a constan t in this case 
and can be pu t apart. Consequently, only the rem aining term s should be considered 
w ithin the H artree-F ock  approxim ation.

(2.3)

w here

V 2
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T he H am iltonian  operator is, then, reduced to

H el =  HCore(i) +  J_  (2.4)
> < j rÿ

w here

H core( i)  =  - \  X  V f - X X  เ ^

H core, frequently  denotes as H, is a one-electronic H am iltonian operator, and the total 
electronic H am iltonian  is com posed o f the one-electron operators for all electrons.

2 .1 .2  T he H artree-F ock  W ave Function

a) Independent Electron M odel

T he typical approxim ation to construct the m any-electron w ave function, T ', is the 
Independent P artic le  Approxim ation, based on a factorization into one-electron spin 
orbitals, being them selves products o f  a spatial orbital and a spin function. T he m ost 
convenient w ay to represent a trial w ave function for a 2n-electron closed shell system  
is to use a single-determ inanted  w ave function, also called a S later determ inant [22] 
given in eq. (2.5), in order to satisfy  the antisym m etry principle.

¥ 1 พ ิ1 (2) ¥ 2 พ ิ2 พ -  ■ ■ ¥11 (2 n -  พ ิท  (2n) (2.5)

The spin orbitals 1/A and ไ/?j correspond to \|/j(j)a(j) and \|/j(j)P(j), w here a ( j)  and 
P(j) denote by spin functions for the jth  electron.

T his approxim ation autom atically  leads to a split-up o f  the H am ilton ian  into a 
sum  o f  one-electron operators (Fock Operator) F
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(2.6)

w here is the core H am iltonian and Jj and Kj are C oulom b and E xchange
operators, respectively .

b) M olecular O rbitals and the Linear Combination o f  A tom ic O rbitals (L C A O ) 
A pproxim ation

T o construct m olecular orbitals (\|/j) for electrons in a m olecular system , a linear 
com bination  o f  atom ic orbitals (basis functions) is used.

w here 0  are the atom ic orbitals, and Cj^ are the m olecular orbital expansion

coefficients, w hose variation allow s to m inim ize the energy. T he orbitals used in the 
linear com bination  are called basis orbitals or basis functions. T he optim al values o f  the
coefficien ts ciM are determ ined by m eans o f  the variation princip le (3E /8c. = 0).

2.1.3 M inim ization  o f  the T otal Energy (Self-C onsistent F ield  Procedure)

M inim ization  o f  the total energy is done by varying the value o f  the coefficients, 
c. , in eq. (2 .7). T he procedure starts w ith the use o f  an initial guess o f  c 's  to calculate 

the first m atrix  o f  the total energy, E. The elem ents o f  the m atrix  E are ะ

V  = ร  V H“v" + IT  ร  ุV PAa [(H ^)-pM lva)]

(2.7)

p v  A ct
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T he m atrix  o f  the elem ents o f  the core H am iltonian, H core 5 contains the elem ents 

fo r the core-electron H am iltonian, H c 5 for electrons m oving in the field  o f  nuclei :

H core
v ° (2.9)

T he elem ents o f  the density  m atrix pgv and the tw o-electron integrals, (ji \\X a )

and (ptA|v<7), are given by

p  =  2 cJii Cvi (for closed shell system ) (2.10)
i

(Mv|Act) = ร j  <t>* (1)0v( 1 ) - L ^ ( 2 ) 0 ct(2) c/Tj d x 2 (2.11)
M ไ 2

and

(/iA| v<7) =  J J  0*(1)0 ;1( l ) ^ - 0 * ( 2 ) 0 ff(2) ๘T1 ๔T2 (2.12)

Create the first m atrix  o f  the Fock operator, F  using the first guess o f  c 's .  T he elem ents 
o f  the m atrix  F  are :

F = H uvre + I  r Mv [ ( ฬ ^ ) - h M Iv a )]  (2.13)
Ac7

From  the first approxim ation o f  the Fock operator m atrix  F , a second 
approxim ation o f  c can be obtained by solving the R oothaan-H all equation.

F C  =  SC E (2.14)

w here
Spv ~~ ( $p  I ^v )■ (2.15)



F  ะ F ock  m atrix  
c ะ C oefficient m atrix  
ร ะ O verlap m atrix  
E  ะ E igenvalue m atrix .

Since the coefficient m atrix  is contained in the Fock m atrix , the  equation cannot 
be  solved straight forw ard. A  new  total energy m atrix , E , can be calculated  from  
eq.(2 .8), using  a second approxim ation o f  the coefficient m atrix , c. A n iterative 
procedure is required  w hich is the so-called " S C F  (S e lf-C o n sis ten t F ie ld ) " 
procedure. T he process is carried  out iteratively  until the total e lectronic energy o f  the 
system  rem ains unchanged w ithin  given lim its, usually  10 '5 H artree.
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2.2 B asis Functions

In all m olecular quantum  m echanical m ethods one has to choose, at the beginning 
o f  the calculation, the basis set. T he use o f  an adequate basis set is an essential 
requirem ent fo r a success o f  the calculation. The quality o f  the m olecu lar orbitals is also 
related  to the quality  o f  the basis set used.

T he early  STO (S later T ype O rbital) basis functions, in troduced  by  S later [23], is 
based on approxim ations o f  hydrogen-like atom ic orbitals according to em pirical rules. 
T hey  w ere m ostly  used for the calculations o f  sm all m olecules. A lthough the advantage 
o f  using a few  functions o f  STO satisfies US for its sim plicity  and m ore accurate 
representation  o f  atom ic orbitals, the integrations o f  the functions are very  tim e- 
consum ing. The typical form  o f  STO  is denoted by the expression ;

<t>STO =  N r M e x p K r )  Y l m(0 ,o )  (2.16)

w here Ç, ท and Yj 111 are the S later orbital exponent, princip le quantum  num ber and the 
angular part o f  the w ave function, respectively . N  is the norm alization  constant.

A n alternative to the STO s is the use o f  GTO (G aussian T ype O rbital) basis sets 
[24], w hich are defined as ะ
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<|)GTO =  N  ex p (-a  r2) Y im(0 ,o ) (2.17)

w here a  is the G aussian orbital exponent.

T he G TO  functions are m ore suitable and m ostly  used now adays. T he in tegration  
o f  such functions is easier and can be perform ed sim ply. H ow ever, due to the different 
shape o f  the G TO , for the region near the nucleus, a com bination  o f  G TO s w ith 
d ifferen t exponents is required  to obtain equivalent results. C ontraction  is applied  to 
avoid  a too large size o f  the com bination basis set.

A ccord ing  to the series o f  m inim al basis sets term ed " STO-iVG " consists o f 
expansions o f  STO s in term s o f  N  G aussian functions. One starts w ith  a m inim al basis 
set o f  one STO per AO, w ith the STO orbital exponents (Q  fixed at values found to 
w ork w ell in calculations on sm all m olecules. Each STO is then approxim ated  as a 
linear com bination  o f N  G aussian functions, w here the coeffic ien ts in the linear 
com bination  and the G aussian orbital exponents are chosen to give the best least square 
fit to the STO . M ost com m only, N  = 3, g iving a set o f contraction  o f  G TO s called  
"STO -3G ". Since a linear com bination o f  three G aussians is only an approxim ation  to 
an STO , the STO -3G  basis set gives results no t quite as good as a m in im al basis set 
STO  calculation.

A nother type o f atom ic orbital is the GLO (G aussian L obe O rbital) [25,26] w hich 
is the sim plest form  o f  basis functions. Its form  is

T he angular part is om itted. Instead, G LO s are com bined to gether to reproduce 
the conventional orbital shapes.

(j)GLO =  N  e x p (-a  r2) (2.18)
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2.3 B asis Set Superposition E rro r fB SSE l

In  calculation o f  the interaction energy for com plex system s, the basis set 
em ployed should be sufficiently  large and correctly  express the m ultipo le  m om ents and 
the po larizab ility  o f  the system s. In the case that insufficient basis set are used, an 
artificial basis set im provem ent w ill take p lace in the supersystem , lead ing  to an error 
w hich is know n as " basis se t superposition  error ". In a system  consisting  o f  two 
m olecules A  and B w hich have the basis set {a}  and {(3}, respectively , the error occurs 
w hen the basis set {(3} contam inates {a} in com puting the energy o f  A  or conversely, 
w hen {a}  contam inates {(3} in com puting the energy o f  B. T his causes the interaction 
energy o f  the supersystem  to be overestim ated.

A  m ethod proposed by Boys and B em ardi [18] was carried out to estim ate this 
error - the counterpoise (CP) m ethod. The m ethod is based on the determ ination  o f  the 
subsystem  energies using the sam e basis set as for the determ ination  o f  the supersystem  
energy and can be presented  as follow s. Firstly, one com putes the superm olecule AB 
w ith  basis sets {a}  and {[3} yield ing an energy E(A B). Secondly, one com putes the 
energy o f  A  with both {a}  and {(3} obtaining an energy E '(A ). T he operation is 
repeated  for B com puted w ith  {(3} and {a} y ielding the energy E '(B ). T he counterpoise 
correction, Ae , can be defined as

Ae =  [ E (A ) - E '(A ) ] + [ E(B) - E '(B) ] (2.19)

w here BSSE = Ae

w here E(A ) and E(B) are sim ply the com putations o f  A  w ith {a} alone and o f  B with 
{[3} alone, respectively. A nd the counterpoise corrected interaction energy is

AECP = AE + Ae (2.20)

w here AE is the in teraction energy calculated from  truncated basis set. It should be 
m entioned, how ever, that this correction gives the upper lim it o f  a possib le  B SSE  and 
hence cannot be  regarded as absolutely  correct value for the real B S S E  occuring  in a 
specific superm olecule system .
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