CHAPTER 1l

MONTE CARLO METHOD

The Monte Carlo method was developed by von Neumann, Ulam, and Metropolis
at the end of Second World War to study the diffusion of neutrons in fissionahle
material. The name " Monte Carlo *, chosen hecause of the extensive use of random
numbers in the calculations, was coined by Metropolis in 1947 and used in the title of a
paper describing the early work [19].

A common goal of the Monte Carlo computer simulations is to study the
microscopic properties of the solution, such as structural and energetical properties,
based on the knowledge of potential functions; e.g. to study how a solute influences the
solvent structure or how a solute is solvated by solvent molecules in the solution. Such
informations are very difficult to obtain from spectroscopic measurements in dilute
solutions.

In this chapter, the general Monte Carlo method and the Metropolis version will
be presented together with some important characteristics of the simulation.

3.1 General Monte Carlo Method

Monte Carlo calculations are based on pair potential functions, implementing the
assumption that only two hody forces are considered, i.e. the total configurational
energy, E(v) 5of the system can be written thus as a sum of pairwise interaction energies
between the individual particles Ejj(v) of the system,

E(v) = XX E,(V) (3.1)

I< ]

where visa configurational coordinate of the particles in the system.
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The average of any quantity of interest (F) of the system, consisted of N particles
inavolume V at a constant temperature T, can be written as

(F) = e eeieien IR (3.2)

where dv is a volume element in three dimensional phase space and k denotes
Boltzman constant. |f the starting configuration is generated randomly in three
dimensional space, integration over many orders of magnitude would be needed for the
integral exp(-E(v)/kT) , shown in eq.(3.2). This is the main principle of the general
Monte Carlo method, which is however, not practicable.

3.2 Metropolis Monte Carlo Method

The Monte Carlo method introduced by Metropolis et al. [19] is a sampling
algorithm based on the idea of " importance sampling A finite number M of possible
configurations are not generated randomly but they are chosen according to a
probability P(v). Then eq.(3.2) will be approximated [27] by the sum

The simplest and most natural possibility of the "Metropolis Monte Carlo method'
Is to choose a specific value of P(v) asa Boltzmann factor

P(v) = exp(-E(v)/kT) (3.4)



Then eq.(3.3) can be reduced to a simple form of

F = - |IF. (35)

where Fj s the value of the property F of the system after the ith configurational
change according to the following method.

The initial configuration of N particles in a volume V is generated radomly or
taken from a lattice structure of the system. Then a new configuration is obtained by
performing a random displacement of one of the particles. The configurational energy
according to eq.(3.1) for both the new (E'(v)) and the old (E(v)) systems are calculated
and compared. If AE = [E'(v)) - (E(v)] < 0, the move would bring the system to a state
of lower energy. In that case we allow the move and put the particle to this new
position. If AE >0, the move will be allowed with the probability exp(-AE/KT) i.e., a
random number 1 between 0 and 1 will be taken and if exp(-AE/KT) > 1, the
particle will be moved to the new position, if exp(-AE/KT) < 1, the old configuration is
retained (see Fig.3.1).
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Figure 3.1 The calculating steps of Monte Carlo simulations.
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3.3 Characteristic of the Monte Carlo Simulations

3.3.1 Periodic Boundary Conditions

The problem of surface effects can be overcome by implementing periodic
boundary conditions. The cubic box is replicated throughout space to form an infinite
lattice. In the simulation, as a molecule moves in the original box, its per
jodic image in each of the neighbouring boxes moves in exactly the same way. Thus, as
amolecule leaves the central box, one of its images will enter through the opposite face.
There are no walls at the boundary of the central box, and no surface molecules. This
box simply forms a convenient axis system for measuring the coordinates of the N
molecules. A two-dimentional version of such a periodic system is shown in Fig.3.2,
The duplicate boxes are labelled A, B, C, etc. As particle 1 moves through a boundary,
its images, 1A, Ig , etc. (where the subscript specifies in which box the image lies)
move across their corresponding boundaries. The number density in the central box
(and hence in the entire system) is conserved.

A side length of the cubic box, L, can be calculated as

3 2 NpMy
L O et (3.6)
0.602D

where m is the number of species certained in the system,
Np is the number of particle of species p,
Mp is the ionic or atomic weight of species p, and
D s the experimental density of solution at temperature T and pressure p.
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Figure 3.2 A two-dimensional periodic system.
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3.3.2 Minimal Image Convention

The heart of Monte Carlo programs involves the calculation of the potential
energy of a particular configuration. To calculate the potential energy involving
molecule 1, one assumes pairwise additivity. The interactions between molecule 1 and
every other molecules i in the simulation box must be included. There are N-I terms in
this sum. However, in principle the interactions between 1 and images iA, ig 5 etc. lying
in the surrounding boxes must be included as well. This is an infinite number of terms,
and of course it is impossible to calculate in practicle. For a short-range potential energy
function, an approximation may be used to restrict this summation. Consider molecule
t, lying at the center of a region which has the same size and shape as the basic
simulation box (Fig.3.3), it interacts with all the molecules whose centers located within
this region, that is with the closest periodic images of the other N-I molecules. This is
called the "minimal image convention" for example, in Fig.3.3, molecule 1 interacts
with molecules 2, £, 4E and 5¢ . This technique, which is a natural consequence of
the periodic boundary condition, was first used in simulations by Metropolis et al.



Figure 3.3 The minimal image convention in a two-dimensional system.

3.3.3 Spherical Cut-off

In the minimal image convention, the calculation of the potential energy due to
pairwise-additive interactions of N particles involves Vi N(N-I) terms. A further
approximation significantly improves this situation. The largest contribution to the
potential comes from neighbours close to the molecule of interest and for short-range
interactions, a spherical cutoff can be applied. This means that the pair potential V(1)
is set to zero for r > r0, where rc is the cutoff, distance. The dashed circle in
Fig.3.3 represents this cutoff, and in this case molecules 2, 5¢ and 4E contribute to
the interaction with 1, since their centers lie inside the cutoff, whereas molecule 3E
does not contribute. In a cubic simulation box of side L , The number of neighbours

explicitly considered is reduced by a factor of approximately 47rrs /3L3 , and this may

be a substantial saving. The introduction of a spherical cutoff could be a perturbation,
and the cutoff distance should be sufficiently large to ensure that this perturbation is
very small.
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The cutoff distance must be no greater than Vi L for consistency with the

minimal image convention, and it is applicable only to rapidly decreasing potential
terms, e.g. 1/ri2 or exponential terms.

3.4 Radial Distribution Function (RDF) and its Integration

The radial distribution  function gives information concerning the
configurationally averaged deviation of the local environment of a particle from the
value characteristic of bulk density. This function can be calculated as :

< N(r)
8N S pdnr? dr (3.7)

where N(r) is the average number of particles in a spherical shell of width dr at a
radial distance r from the central particle, and p s the number density of the pair of
the particles in the cubic volume V.

The average number of particles K within a sphere of a given radius can be
determined by :

K = Py J g(r) 4rr? dr (3.8)

where pb is the number density of one kind of the particle containing in the cubic
volume V. For example, the number density of the particle b around the particle a
can be determined by :

number of the particle b

y (39)
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