
Chapter VI

C onclusions

6 .1 Summary of R esu lts

The r e s u lt s of the e n t ir e p ro jec t can be summarized as
fo llo w s :

1. A com plete AWK-to-C tr a n s la t io n system was s u c c e s s fu l ly
developed on the Unix System V R elease 4 environment. The tr a n s la to r
reco g n izes the new v ersio n of the AWK language as d efin ed in Aho,
Kernighan, and Weinberger (1988).

2. A t e s t s u it e conta in ing more than 240 AWK programs was
con stru cted to t e s t the tr a n sla tio n system e x te n s iv e ly . A ll the bugs
found during the t e s t have been fix e d .

3. A performance measurement s u ite con ta in in g ten
r e p r e sen ta tiv e AWK programs se le c te d from the t e s t s u it e was
con stru cted to measure the execution tim es of the tr a n s la to r
generated programs. This execution tim es were then compared with
th ose of the r e sp e c tiv e AWK programs running by the Unix AWK
in te r p r e te r nawk. The r e s u lt s show th at in most c a s e s , the
tra n sla to r -g en era ted program runs fa s te r than i t s nawk-processed
cou n terp art. The speed improvements vary w idely but the average over
the ten r e p r e sen ta tiv e programs is 32%. 4

4. In order to f a c i l i t a t e the development p ro cess , n early
a l l s ta g e s of softw are development c y c le have been la r g e ly automated
u sin g the Unix f i l e updating program make. This in c lu d es gen erating
and com piling the source programs, b u ild in g the tr a n s la to r and the
l ib r a r y , t e s t in g the system , measuring the performance, packaging the

42

source code for d is t r ib u t io n , and in ta i l in g the whole softw are
package in to the system .

6 .2 S uggestions for Further Development

There are two major areas in which the AWK-to-C tr a n s la t io n
system could be fu rth er developed and improved to make i t more
u se fu l: the performance of the generated program, and p o r ta b i l i t y .

6 .2 .1 Performance of the Generated Program

Although the performance measurement s u it e has shown th at
most of the tra n sla to r-g en era ted programs run fa s te r than th e ir
in terp reted cou n terp a rts , the average speed improvement of 32% is
hardly s a t is fa c to r y . Moreover, Table 5 .1 a lso shows th at the speed
improvements vary w id ely among the ten rep resen ta tiv e programs,
ranging from -13% to 135%. This could make any AWK programmer
r e lu c ta n t to use the tra n sla to r as a replacem ent for the e x is t in g AWK
in te r p r e te r .

T herefore, further development should be done to improve the
generated program's performance, or a t le a s t to make the speed
improvement more c o n s is te n t and more uniform. Time p r o f i l in g of the
generated program should be performed to analyse the execu tion
behavior of program to see where the performance b o ttlen eck s are and
how they could be dealed with to make the program run fa s te r .

The fa c t th at the speed improvements among the ten
re p r e sen ta tiv e programs vary g re a tly could serve as a good c lu e for
p in p o in tin g the performance b ottlen eck s as w e ll . For example, Table
5 .1 shows th at the t e s t program walk has the speed improvement value
of -13% w hile the program h i s t has the value of 135%. Hence, the AWK
code of both programs could be examined to find out which AWK
language c o n stru cts are tra n sla ted in to the c code th a t performs w ell
and which c o n stru cts are not.

43

Some d esign adjustm ents could probably improve the
performance as w e l l . One p o ss ib le ta r g e t area i s in f i e ld s p l i t t in g .
The current d esign of f i e ld s p l i t t in g mechanism used in the generated
program i s such th a t every input l in e i s always s p l i t t e d in to f i e ld s
reg a rd less of whether the program a c tu a lly a ccesse s any f ie ld or n ot.
Since f i e ld s p l i t t in g has to be done on every l in e read, th is could
take a good deal o f execu tion time e s p e c ia l ly i f the input l in e s are
very long and composed of a large number of f i e l d s . For example, i f
each input l in e i s s p l i t t e d in to 100 f i e ld s but the program make use
of only the second f i e ld in i t s a ctio n code, then the time spent on
s p l i t t in g the l in e from the th ird f i e ld upto the hundredth f i e ld w i l l
be t o t a l ly w asted, and i f the program has to read 10,000 input l in e s ,
the wasted time could be tremendous. T herefore, the im plementation of
f i e ld s p l i t t in g mechanism could be redesigned so th a t whether the
f i e ld should be s p l i t t e d and how far in the l in e the s p l i t t in g should
go i s decided dynam ically , depending on demand.

Another area th at a d if fe r e n t design could improve the
performance i s the storage a llo c a t io n /d e a llo c a t io n mechanism. The
current d esign i s such th at an a llo c a te d o b ject w i l l be d ea llo ca ted
im m ediately a f te r i t s lo g ic a l l if e t im e has ended. Thus, some
execu tio n time could be saved i f the o b ject to be d ea llo ca ted is
marked as such and then the actu a l d ea llo c a t io n a ctio n i s postponed
u n t i l the run-tim e organ ization has exhausted i t s a llo c a ta b le sp ace ,
thereby tr ig g e r in g the so -c a lle d garbage c o l le c t io n p rocess.

6 .2 .2 P o r ta b il i ty

C urrently , the tr a n s la to r , the run-tim e lib r a r y , and the
tra n sla to r -g en era ted programs are portable only among the Unix
Systems th a t have an ANSI c compiler and the ANSI c standard lib r a r y
a v a ila b le . Further development should be done to improve p o r ta b i l i t y
so th a t the softw are could be ported to the Unix system th at has on ly
the s o -c a l le d tr a d it io n a l K&R c implementation a v a ila b le , and a lso to
other w id ely used operating system s such as MSDOS or VMS as w e ll .

	Chapter VI Conclusions
	6.1 Summary of Results
	6.2 Suggestions for Further Development

