CHAPTER V CONCLUSIONS

This research has been investigated at 863-983 K on the tungsten wire in the horizontal reactor by varying the feed CO_2/CH_4 feed ratio in the range of 0.3-3.0. Furthermore, the activation energies of H₂ and CO formation were determined.

The result indicated that at 983 K H_2/CO product ratio is less than 1 at various CO₂/CH₄ feed ratios. Due to the reverse water gas shift reaction the H_2/CO product ratio decreased and water formation increased at the increased CO₂/CH₄ feed ratio. As the tungsten oxide occurred the carbon formation increased with increasing in CO₂/CH₄ feed ratio. On the other hand, the lower reaction temperature in the range of 863-983 K caused the H_2/CO product ratio greater than 1 with decreasing in H₂ and CO production rates.

The suitable condition which enhances synthesis gas selectivity and prevents oxidation of products was considered in terms of lower H_2/CO ratio, H_2 and CO selectivity, and H_2 and CO production rates. The H_2/CO selectivity reached as the ratio of CO₂/CH₄ was unity at 983 K. In addition, the direct synthesis of methanol was not feasible by using CO₂ and CH₄. Finally, the activation energies of CO formation and H_2 formation obtained from the results were 56.67 and 53.77 kJ/mol respectively.