MECHANISM OF ORE FLOTATION

Mr. Panomkorn Kwakhong

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma and Case Western Reserve University 1998

1990

ISBN 974-638-492-9

--- 120770 I 28378751

Thesis Title	: Mechanism of Ore Flotation
Ву	: Mr. Panomkorn Kwakhong
Program	: Petrochemical Technology
Thesis Advisors	: Prof. Jeffery H. Harwell
	Dr. Sumaeth Chavadej

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University. in partial fulfillment of the requirements for the Degree of Master of Science.

Director of the College (Prof. Somehai Osuwan)

Thesis Committee

(Prof. Jeffery H. Harwell)

Sommeth Churdes

(Dr. Sumaeth Chavadej)

(Dr.Thirasak Rirksomboon)

ABSTRACT

##961015 : PETROCHEMICAL TECHNOLOGY PROGRAM

KEY WORDS: Ore Flotation Mechanism/Quartz/Aggregation

Panomkorn Kwakhong : Mechanism of Ore Flotation. Thesis Advisors : Prof. Jeffery H. Harwell and Dr. Sumaeth Chavadej, 76 pp. ISBN 974-638-492-9

The objective of this work was to verify partially a proposed mechanism of ore flotation. The hypothesis is that in region II of the adsorption isotherm, the flotation system yields maximum separation efficiency consequent with attaining a maximum size of aggregate formation. Hydrophobic patches on the quartz are exposed when bubbles collide with the aggregate, partially rearranges the particles. In this study, the ground quartz used had an average particle size of 28.3 μ m and a specific surface area of 4.21 m²/g. The cationic surfactant used was DTAB (dodecyltrimetylammonuim bromide) which was added to a slurry containing 50 ± 0.005 g quartz/l. DTAB concentration was prepared in the range 0.1 to 100,000 µmol/l. The pH of quartz/DTAB solutions was kept at 6.2 ± 0.05 . All experiments were carried out at room temperature. For flotation, the air flow rate was varied at 5.7, 6.5 and 8.4 ml/s. It was found that flotation efficiency increased with an increase in air flow rate only up to a point. It was observed that the maximum flotation efficiency and the maximum size of quartz aggregate formation clearly coincided in region II of the adsorption isotherm, which agrees very well with the proposed hypothesis. No attempt was made in this study to determine if rearrangement of aggregate particles occur when bubble and aggregate collide.

บทคัดย่อ

พนมกร ขวาของ : การศึกษากลไกของการลอยแร่ (Mechanism of Ore Flotation) อ. ที่ปรึกษา : ศ. เจฟเฟอรี เอช ฮาร์เวล (Prof. Jeffery H. Harwell) และ คร. สุเมธ ชวเคช 76 หน้า ISBN 974-638-492-9

วัตถุประสงค์ของการศึกษานี้ เพื่อพิสูจน์สมมติฐานกลไกการลอยแร่บางส่วน โดยสมมติ ฐานที่เสนอคือ ในขอบเขตที่2 ของกระบวนการดูดซับสารลดแรงตึงผิวบนผิวของอนุภาคแร่ ระบบ การลอยจะให้ประสิทธิภาพการแยกอนุภาคแร่สูงที่สุด ซึ่งเป็นผลเนื่องมาจากการรวมตัวกันของ อนุภาคแร่ที่มีขนาดใหญ่ที่สุด ในการศึกษานี้อนุภาคแร่ที่ใช้เป็นแร่ควอทต์บดมีขนาดโดยเฉลี่ย 28.29 ไมโครเมตร และมีพื้นที่ผิวจำเพาะเฉลี่ย 4.207 ตารางเมตร/กรัมควอทต์ สารลดแรงดึงผิวที่ใช้ เป็นสารลดแรงดึงผิวชนิดประจุบวกคือ โดเดคซิลไตรเมทิลแอมโมเนียมโบรไมด์ หรือ ดีแทบ (DTAB) สารลดแรงตึงผิวถูกเติมเข้าไปในระบบที่มีปริมาณควอทต์ 50 ± 0.005 กรัม/ลิตร ให้มี ความเข้มข้นของสารละลายในช่วงระหว่าง 0.1 และ 100,000 ไมโครโมล/ลิตร ความเป็นกรด-ค่าง (pH) ของสารละลายถูกควบคุมคงที่ที่ 6.2 ± 0.05 การทดลองทั้งหมดดำเนินที่ที่อุณหภูมิห้อง ใน การทดลองการลอยนี้ ปริมาณอากาศจะถูกควบคุมที่ 5.7, 6.5 และ 8.4 มิลลิลิตร/วินาที จากผลการ ทดลองพบว่าประสิทธิภาพของการลอยเพิ่มขึ้นด้วยการเพิ่มขึ้นของปริมาณอากาศที่เข้าสู่ระบบ และ ที่น่าสนใจอย่างยิ่งคือ ปริมาณการกำจัดควอทต์สูงสุดและขนาดที่ใหญ่ที่สุดของอนุภาคแร่เกิดขึ้นชัด เจนที่ขอบเขตที่2 ของกระบวนการดูดซับซึ่งเป็นไปตามสมมติฐานที่เสนตไว้

ACKNOWLEDGEMENTS

No significant work can be a success without the participation of the number of individuals and organizations.

Out of a sense of gratefulness, the author would like to express his deepest gratitude to Prof. Jeffery H. Harwell and Dr. Sumaeth Chavadej for their kindness, helpful guidance, creative discussions and constant encouragement throughout his graduate work.

Unforgettable thanks are forwarded to all professors who taught him and helped to establish the knowledge used in this work through their courses. The author is also indebted greatly to the teachers and all of the staff of the Petroleum and Petrochemical College who contributed in various degrees to the success of his thesis. The author sincerely thanks his unforgettable friends for giving him so lively and enjoyable an experience during these two years of study.

The author would like to extend special thanks to the Surathip Group Company Limited for a scholarship during his graduate studies.

The author would like to thank to the National Center for Genetic Engineering, especially Dr. Kriangkrai Learttadsanee and Mr. Amnuay Jintasirikul, for use of the LSM 410.

Finally, the author would like to express his whole-hearted gratitude to his parents for their endless love and encouragement, and their measureless support.

LIST OF TABLES

PAGE

Title Page	i
Abstract	iii
Thai Abstract	iv
Acknowledgements	v
List of Tables	viii
List of Figure	ix

CHAPTER

I	INTRODUCTION	1
п	LITERATURE SURVEY	
	2.1 Quartz	5
	2.2 Nature of Surfactants	6
	2.3 Critical Micelle Concentration	8
	2.4 Surfactant Adsorption Isotherm	11
	2.5 Wetting Phenomena and Contact Angle	14
	2.6 Foam	15
	2.7 Previous Works	17

III EXPERMENTAL SECTION

3.1 Materials	20
3.1.1 Preparation of Quartz	20
3.1.2 Surfactant	21

	3.1.2 Quartz Suspension Solution	21
	3.2 Experimental Procedures	22
	3.2.1 CMC Determination	22
	3.2.2 Adsorption Isotherm Experiment	22
	3.2.3 Electrophoretic Mobility Measurement	23
	3.2.4 Flotation Experiments	24
	3.2.5 Measurement of Aggregate Size	26
IV	RESULTS AND DISCUSSION	
	4.1 CMC of DTAB	28
	4.2 Adsorption Isotherm of DTAB on Quartz	29
	4.3 Electrophoretic Mobility	32
	4.4 Flotation	35
	4.4.1 Effect of Surfactant Concentration	35
	4.4.2 Effect of Air Flowrate	38
	4.5 Size of Quartz Aggregates	39
V	CONCLUSIONS	
	5.1 Conclusions	48
	5.2 Recommendation	49
	REFERENCES	50
	APPENDICES	53
	CURRICULUM VITAE	76

LIST OF TABLES

TABLE

PAGE

.

A.1	Particle size analysis of quartz by Mastersizer X Ver 2.15	54
A.2	Surface area of quartz by BET measurement	54
A.3	The surface tension for finding the CMC of DTAB	55
A.4	The adsorption isotherm for finding time to equilibrium	55
A.5	The adsorption density for finding the adsorption isotherm	56
A.6	The electrophoretic mobility data by the Zeta Meter Ver.	57
	3.0	
A.7	Flotation result s	58
A.8	The aggregation size measurement results by LSM410	59
A.9	Amount of quartz per particle aggregates from Figure 4.7-	60
	4.12	
A.10	Commutative aggregate size distribution percentage of	61
	quartz particle aggregated	

LIST OF FIGURES

FIGURE		PAGE
2.1	Mechanism for the origin of the electrical charge at the	6
	quartz surface in aqueous solution.	
2.2	Structure of micelle formation.	9
2.3	Physical properties of an aqueous solution in the	10
	neighborhood of the critical micelle concentration of	
	sodium dodecylsulfonate (Rosen, 1989 : p. 110).	
2.4	Relationship between surface tension and bulk phase	10
	cocentration of surfactant.	
2.5	Schematic diagram of typical adsorption isotherm for the	12
	reverse orientation model.	
2.6	Schematic representation of the equilibrium contact	15
	between an air bubble and a solid immersed in a liquid.	
2.7	Plateau border at point of meeting of three bubble.	16
3.1	Flotation cell used in this experimental study.	25
4.1	Relationship between surface tension and bulk	28
	concentration of DTAB solution at pH 6.2 \pm 0.05, and	
	under room temperature (26 °C).	
4.2	Relationship between adsorption density of DTAB and	30
	time at the initial concentration of DTAB for 1.0 and 100	
	μ mol/l, pH 6.2 ± 0.05 at room temperature (26 ± 1.0).	
4.3	Adsorption isotherm of DTAB on quartz at 6.2 ± 0.05 at	31
	room temperature (26 ± 1.0) .	

4.4	Relationship between quartz particle zeta potential and	34
	equilibrium concentration of DTAB.	
4.5	Comparison between adsorption isotherm and the	36
	flotation efficiency at air flow rate 5.7 ml/s.	
4.6	Relationship between flotation efficiency or percent	37
	quartz floated at different air flow rates versus DTAB	
	concentrations.	
4.7	The smallest size aggregates of quartz particles without	40
	surfactant.	
4.8	Aggregates of quartz particles at DTAB concentration of	40
	1.0 µmol/l initial concentration.	
4.9	Aggregates of quartz particles at DTAB concentration of	41
	100 μmol/l initial concentration.	
4.10	Aggregates of quartz particles at DTAB concentration of	41
	5,000 µmol/l initial concentration.	
4.11	Aggregates of quartz particles at DTAB concentration of	42
	10,000 μmol/l initial concentration.	
4.12	Aggregates of quartz particles at DTAB concentration of	42
	100,000 µmol/l initial concentration.	
4.13	Commutative aggregate size distribution.	43
4.14	Correlation between the adsorption isotherm and average	44
	size of quartz aggregates at different DTAB	
	concentrations.	
4.15	Correlation between adsorption isotherm and maximum	45
	size of quartz aggregates at different DTAB	
	concentrations.	

B.1	Aggregates of quartz particles without surfactant (area	62
	l).	
B.2	Aggregates of quartz particles without surfactant (area	62
	2).	
B.3	Aggregates of quartz particles at DTAB concentration of	63
	0.1 µmol/l initial concentration (area 1).	
B.4	Aggregates of quartz particles at DTAB concentration of	63
	0.1 μmol/l initial concentration (area 2).	
B.5	Aggregates of quartz particles at DTAB concentration of	64
	0.5 µmol/l initial concentration (area 1).	
B.6	Aggregates of quartz particles at DTAB concentration of	64
	0.5 µmol/l initial concentration (area 2).	
B.7	Aggregates of quartz particles at DTAB concentration of	65
	1.0 µmol/l initial concentration (area 1).	
B.8	Aggregates of quartz particles at DTAB concentration of	65
	1.0 µmol/l initial concentration (area 2).	
B.9	Aggregates of quartz particles at DTAB concentration of	66
	5.0 µmol/l initial concentration (area 1).	
B.10	Aggregates of quartz particles at DTAB concentration of	66
	5.0 µmol/l initial concentration (area 2).	
B.11	Aggregates of quartz particles at DTAB concentration of	67
	10 µmol/l initial concentration (area 1).	
B.12	Aggregates of quartz particles at DTAB concentration of	67
	10 μmol/l initial concentration (area 2).	
B.13	Aggregates of quartz particles at DTAB concentration of	68
	50 µmol/l initial concentration (area 1).	

FIGURE

B.14	Aggregates of quartz particles at DTAB concentration of	68
	50 µmol/l initial concentration (area 2).	
B.15	Aggregates of quartz particles at DTAB concentration of	69
	100 µmol/l initial concentration (area 1).	
B.16	Aggregates of quartz particles at DTAB concentration of	69
	100 µmol/l initial concentration (area 2).	
B.17	Aggregates of quartz particles at DTAB concentration of	70
	500 µmol/l initial concentration (area 1).	
B.18	Aggregates of quartz particles at DTAB concentration of	70
	500 μmol/l initial concentration (area 2).	
B.19	Aggregates of quartz particles at DTAB concentration of	71
	1,000 µmol/l initial concentration (area 1).	
B.20	Aggregates of quartz particles at DTAB concentration of	71
	1,000 µmol/l initial concentration (area 2).	
B.21	Aggregates of quartz particles at DTAB concentration of	72
	5,000 μ mol/l initial concentration (area 1).	
B.22	Aggregates of quartz particles at DTAB concentration of	72
	5,000 µmol/l initial concentration (area 2).	
B.23	Aggregates of quartz particles at DTAB concentration of	73
	10,000 µmol/l initial concentration (area 1).	
B.24	Aggregates of quartz particles at DTAB concentration of	73
	10,000 µmol/l initial concentration (area 2).	
B.25	Aggregates of quartz particles at DTAB concentration of	74
	50,000 μ mol/l initial concentration (area 1).	
B.26	Aggregates of quartz particles at DTAB concentration of	74
	50,000 µmol/l initial concentration (area 2).	

B.27	Aggregates of quartz particles at DTAB concentration of	75
	100,000 µmol/l initial concentration (area 1).	
B.28	Aggregates of quartz particles at DTAB concentration of	75
	100,000 μmol/l initial concentration (area 2).	

÷.