EFFECT OF SECOND SUBSATURATED SURFACTANT SOLUTION ON CONTACT ANGLE OF SATURATED SURFACTANT SOLUTION ON PRECIPITATED SURFACTANT SURFACE

Ms. Piyada Balasuwatthi

A Thesis Submitted in Partial Fulfilment of the Requirements

For the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University

In Academic Partnership with

The University of Michigan, The University of Oklahoma,

And Case Western Reserve University

2001

ISBN 974-13-0700-4

Thesis Title : Effect of Second Subsaturated Surfactant Solution on

Contact Angle of Saturated Surfactant Solution on

Precipitated Surfactant Surface

By : Ms. Piyada Balasuwatthi

Program : Petrochemical Technology

Thesis Advisors: Prof. John F. Scamehorn

Assoc. Prof. Chintana Saiwan

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Binyalint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

(Prof. John F. Scamehorn)

John Diamehom

(Assoc. Prof. Chintana Saiwan)

(Dr. Pomthong Malakul)

ABSTRACT

4271016063: PETROCHEMICAL TECHNOLOGY PROGRAM

Piyada Balasuwatthi: Effect of Second Subsaturated Surfactant Solution on Contact Angle of Saturated Surfactant Solution on Precipitated Surfactant Surface. Thesis Advisors: Prof. John F. Scamehorn and Assoc. Prof. Chintana Saiwan, 63 pp ISBN 974-13-0700-4

Keywords: Contact Angle/ Wettability/ Surfactant Precipitate

Contact angles of a saturated surfactant solution containing a second subsaturated surfactant on the precipitate of that surfactant were measured by using the sessile-drop technique to develop a better understanding of the influence of a second subsaturated surfactant on wetting. The surfactants used in this study were calcium dodecanoate (CaC₁₂) and sodium dodecyl sulfate (NaDS). It was found that the contact angles of saturated CaC₁₂ solution containing the second subsaturated surfactant (NaDS) decreased with increasing NaDS concentrations until reaching the CMC of the surfactant mixture due to adsorption of surfactant at the solid/liquid and liquid/vapor interfaces. The results show that the second surfactant can act as an effective wetting agent in this saturated surfactant system. Application of Young's equation to contact angles showed that the solid/liquid surface tension could be as important as the liquid/vapor surface tension in reducing contact angles.

บทคัดย่อ

ปีขะคา พลสุวัตถิ์: ผลของสารลคแรงตึงผิวชนิดที่สองที่ไม่อิ่มตัวต่อมุมสัมผัสของสาร ละลาขของสารลคแรงตึงผิวที่อิ่มตัวอยู่บนผิวตะกอนของสารลคแรงตึงผิว (Effect of Second Subsaturated Surfactant Solution on Contact Angle of Saturated Surfactant Solution on Precipitated Surfactant Surface.) อ. ที่ปรึกษา : ศาสตราจารย์ จอห์น เอฟ สเคมีฮอร์น และ รองศาสตราจารย์ จินตนา สาขวรรณ์ 63 หน้า ISBN 974-13-0700-4

ในการศึกษานี้ใช้วิธีเซสไซล์-ครื่อฟเพื่อวัดมุมสัมผัสของสารละลายสารลดแรงตึงผิวอิ่ม ตัวซึ่งประกอบด้วยสารละลายสารลดแรงตึงผิวชนิดที่สองที่ไม่อิ่มตัวบนพื้นผิวตะกอนของสารลด แรงตึงผิวชนิดแรกเพื่อพัฒนาความรู้เรื่องอิทธิพลของสารละลายไม่อิ่มตัวของสารลดแรงตึงผิวชนิดที่สองต่อการเปียกโดยใช้แคลเซียมโดเดคาโนเอตและโซเดียมโดเดซิลซัลเฟตในการทดลองจากผลการทดลองพบว่ามุมสัมผัสของสารละลายอิ่มตัวของแกลเซียมโดเดคาโนเอตซึ่งมีโซเดียมโดเดซิลซัลเฟตเป็นสารละลายไม่อิ่มตัวลดลงอย่างมากเมื่อเพิ่มความเข้มข้นของโซเดียมโดเดซิลซัลเฟตจนถึงซีเอ็มซีของสารผสมของสารลดแรงตึงผิวเนื่องจากการดูดซับของสารลดแรงตึงผิวบนรอยต่อระหว่างของแข็ง/ของเหลวและของเหลว/ไอ ผลการทดลองนี้ยืนยันได้ว่าสารละลายไม่อิ่มตัวของสารลดแรงตึงผิวสามารถทำหน้าที่เป็นสารให้ความเปียกของระบบนี้ การประยุกต์สมการของยังเข้ากับมุมสัมผัสแสดงให้เห็นว่าแรงตึงผิวระหว่างของแข็ง/ของเหลวมีความสำคัญเท่าเทียมกับแรงตึงผิวระหว่างของเหลว/ไอในการลดมุมสัมผัส

ACKNOWLEDGEMENTS

This work has been a very memorable and enjoyable experience. It would not be successful without the assistance of the following people.

The first thanks go to Professor John F. Scamehorn who enrolled this interesting topic and is my US advisor. It has been a privilege to work with such a dedicated and resourceful person.

Assoc. Prof. Chintana Saiwan is my Thai-Advisor. I would like to express my deepest gratitude to her for providing useful comments, professional suggestions, and encouragement throughout the course of my work. This thesis would not be completed without her consistent help.

I would like to thank Dr. Pomthong Malakul for being the thesis committee.

Unforgettable appreciation goes forward to the Petroleum and Petrochemical College staff members for their help, especially Mr. Prasit Srikaew and Mr. Suchart Thongkum for taking the photographs.

I deeply indebted to Petroleum and Petrochemical College for giving me a great opportunity and the scholarship throughout the course of my study.

I would like to express my whole-hearted gratitude to my family for their endless love, encouragement, and measureless support.

Finally, I wish to extend my thanks to all of my friends for their friendly help, creative suggestions, and encouragement throughout this two-year study period.

TABLE OF CONTENTS

		PAGE
	Title Page	i
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowledgements	v
	Table of Contents	vi
	List of Tables	X
	List of Figures	xiv
CHAPTER		
I	INTRODUCTION	1
П	LITERATURE SURVEY	3
	2.1 Structure and Behaviour of Surfactants	3
	2.2 Definition and Classification of Contact Angle	4
	2.3 Contact Angle Measurement	6
	2.4 Wetting and Its Modification by Surfactant	7
	2.5 Factors Affecting Contact Angle and Wettability	9
	2.6 Adsorption Isotherm of Surfactant	11
	2.7 Adsorption of Surfactants at Solid/Liquid Interface	13
	2.8 Applications and Related Works	14
	2.9 Phase Boundary and Precipitation	16
ш	EXPERIMENTAL	18
	3.1 Materials	18
	3.1.1 Surfactants	18

CHAPTER			PAGE
	3 1.2	Fatty Acids	18
		Reagents	18
		Water	18
	3.2 Metho		19
	3.2.1	Preparation of Calcium Soap Precipitate	19
		• •	
	3.2.2	Saturated Solution Preparation	19
	3.2.3	Surfactant Mixture Preparation	19
	3.2.4	Solid Sample Preparation	19
	3.2.5	Contact Angle Measurement	20
	3.2.6	Surface Tension Measurement	
		(ASTM D 1331-89)	21
	3.2.7	Adsorption Measurement	22
	3.2.8	Analysis	22
IV	RESULT	S AND DISCUSSION	23
	4.1 Resul	ts	23
	4.1.1	Kinetics of Wetting	23
	4.1.2	The Contact Angle	24
	4.1.3	The Liquid/Vapor Surface Tension	24
	4.1.4	Adsorption of Subsaturated Surfactant	
		onto Precipitated Surfactant	25
	4.1.5	Calculation of Solid/Liquid Surface Tension	26
	4.2 Discu	assion	29
V	CONCLI	USIONS AND RECOMMENDATIONS	32

CHAPTER	PAGE
REFERENCES	33
APPENDICES	39
CURRICULUM VITAE	63

--

LIST OF TABLES

TABLE		PAGE
Al	The advancing contact angle of saturated CaC ₁₂	
	Solution containing NaDS at [NaDS] = 0 mM,	
	solution volume =20 mL	39
A2	The advancing contact angle of saturated CaC ₁₂	
	solution containing NaDS at [NaDS] = 5 mM,	
	solution volume =20 mL	39
A3	The advancing contact angle of saturated CaC ₁₂	
	solution containing NaDS at [NaDS] = 10 mM,	
	solution volume =20 mL	40
A4	The advancing contact angle of saturated CaC ₁₂	
	solution containing NaDS at [NaDS] = 100 mM,	
	solution volume =20 mL	40
B1	The contact angle of saturated CaC ₁₂ containing NaDS.	
	[NaDS] = 0	41
B2	The contact angle of saturated CaC ₁₂ containing NaDS.	
	[NaDS] = 0.5	41
В3	The contact angle of saturated CaC ₁₂ containing NaDS.	
	[NaDS] = 1.0	42
B4	The contact angle of saturated CaC ₁₂ containing NaDS.	
	[NaDS] = 1.5	42
B5	The contact angle of saturated CaC ₁₂ containing NaDS.	
	[NaDS] = 2.0	43
В6	The contact angle of saturated CaC ₁₂ containing NaDS.	
	[NaDS] = 2.5	43

TABLE	PAGE
B7 The contact angle of saturated CaC ₁₂ containing NaD	S.
[NaDS] = 3.0	44
B8 The contact angle of saturated CaC ₁₂ containing NaD	S.
[NaDS] = 3.5	44
B9 The contact angle of saturated CaC ₁₂ containing NaD	S.
[NaDS] = 4.0	45
B10 The contact angle of saturated CaC ₁₂ containing NaD	S.
[NaDS] = 4.5	45
B11 The contact angle of saturated CaC ₁₂ containing NaD	S.
[NaDS] = 5.0	46
B12 The contact angle of saturated CaC ₁₂ containing NaD	S.
[NaDS] = 5.5	46
B13 The contact angle of saturated CaC ₁₂ containing NaD	OS.
[NaDS] = 6.0	47
B14 The contact angle of saturated CaC ₁₂ containing NaD	OS.
[NaDS] = 6.5	47
B15 The contact angle of saturated CaC ₁₂ containing NaD	OS.
[NaDS] = 7.0	48
B16 The contact angle of saturated CaC ₁₂ containing NaD	OS.
[NaDS] = 7.5	48
B17 The contact angle of saturated CaC ₁₂ containing NaD	OS.
[NaDS] = 8.0	49
B18 The contact angle of saturated CaC ₁₂ containing NaD	OS.
[NaDS] = 8.5	49
B19 The contact angle of saturated CaC ₁₂ containing NaD	OS.
[NaDS] = 9.0	50

TABLE		*	PAGE
E2	The reduction of solid/liquid surface tension as a		
	function of NaDS concentration and NaDS adsorption		62

LIST OF FIGURES

FIGURE			PAGE
2.1	The Micellization process		3
2.1	•		3
2.2	Contact angles for nonwetting, partial wetting, and		4
2.2	Wetting (Lange, 1994)		4
2.3	Surfactant alignment in a vapor/liquid/solid system		8
2.4	Typical surfactant adsorption isotherm (Rosen, 1989)		12
2.5	Schematic of Equilibrium existing in system		16
	(Rodriguez et al., 1998)		
3.1	The sessile-drop contact angle method: θ is contact		
	angle, γ_{sv} , γ_{sL} , and γ_{Lv} are solid-vapor, solid-liquid,		
	and liquid-vapor interfacial tensions, respectively		21
4.1	Advancing contact angle of saturated CaC ₁₂ solution		
	containing NaDS as a function of time, (♠) 0 mM,		
	(●) 5 mM, (▲) 10 mM, and (■) 100 mM at 30 °C		23
4.2	The advancing contact angles of saturated CaC ₁₂		
	solution with varying NaDS concentrations		24
4.3	Liquid/vapor surface tension as a function of NaDS		
	concentration, pure NaDS (■) and mixed solution		
	of saturated CaC ₁₂ and NaDS (♠)		25
4.4	Adsorption of NaDS onto CaC ₁₂ precipitate		26
4.5	The contact angle as related to liquid/vapor surface		
	tension (γ_{Lv}) of mixed solution of saturated CaC_{12} and		
	NaDS		27
4.6	The reduction of solid/liquid surface tension of		
	Mixed solution of CaC ₁₂ and NaDS as a function of	0	

FIGURE	PAGE
NaDS concentrations	28
4.7 The reduction of solid/liquid surface tension of	
Mixed solution of CaC ₁₂ and NaDS as a function of	
NaDS adsorption	28