RHEOLOGY OF CATIONIC SURFACTANT AND FATTY ALCOHOL MIXTURES IN THE PRESENCE OF HYDROXYETHYL CELLULOSE

Mr. Tanapatr Barameesangpet

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 1999 ISBN 974-331-939-5

110337078

Thesis Title :		Rheology of Cationic Surfactant and Fatty Alcohol
		Mixtures in the Presence of Hydroxyethyl Cellulose
Ву	:	Mr. Tanapatr Barameesangpet
Program	:	Polymer Science
Thesis Advisors	:	Professor Alexander M. Jamieson
		Dr. Malika Punyagupta
		Associate Professor Anuvat Sirivat

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in Partial Fulfillment of the Requirements for the Degree of Mater of Science.

(Professor Somchai Osuwan)

Thesis Committee :

Ars-fell

(Professor Alexander M. Jamieson)

martin Punyagipt.

(Dr. Malika Punyagupta)

Anunathorina

(Associate Professor Anuvat Sirivat)

R Magazoph

(Dr. Rathanawan Magaraphan)

ABSTRACT

##972021 : POLYMER SCIENCE PROGRAM

 KEY WORDS : Cetyltrimethyl ammonium chloride/ CTAC/ Fatty Acohol/ FA/ Hydroxyethyl Cellulose/ HEC/ Emulsion/ Annealing. Tanapatr Barameesangpet : Rheology of Cationic
Surfactant and Fatty Alcohol Mixtures in the Presence of Hydroxyethyl
Cellulose. Thesis Advisors : Prof. Alexander M. Jamieson, Dr. Malika
Punyagupta and Assoc. Prof. Anuvat Sirivat, 112 pp. ISBN 974-331-939-5

The rheological and optical properties of CTAC/FA, BTAC/FA, and CTAC/FA/HEC emulsions were studied as a function of aging time and fatty alcohol concentration. The fatty alcohol interacts with the cationic surfactants to form lamellar and vesicle structures. The zero-shear viscosity and entanglement modulus increase with aging time which correlates to a growth in the size of lamellar and vesicular structures. The morphology of the emulsions depends on the type of cationic surfactant, fatty alcohol concentration and the added polymer. In the CTAC/FA system, lamellar aggregate structures are seen while in the CTAC/FA/HEC system, partition of lamellar aggregates are observed. In addition, vesicle and symmetric sunflower-like structures are found in the BTAC/FA system. Experiments were conducted where emulsions were annealed and rheological properties measured as a function of aging time after cooling down. After annealing at 40 °C, the rheological and optical properties remained to their initial values and conditions while they differ only slightly from initial values. At annealing temperatures of 53 and 80 °C, the zero-shear viscosity decreases initially, then returns to its initial value as a function of annealing time. This correlates to a change from lamellar network structures to droplets of FA surrounded with lamellar aggregates. On aging, the lamellar network morphology recovers.

บทคัดย่อ

ธนภัทร บารมีแสงเพชร : การไหลของสารผสมระหว่างสารลดแรงตึงผิวประเภทประจุ บวกและอัลกอฮอล์ชนิดไขมันเมื่อมีไฮครอกซิเอธิลเซลลูโลส (Rheology of Cationic surfactant and Fatty Alcohol Mixtures in the Presence of Hydroxyethyl Cellulose) อ. ที่ปรึกษา : ศ. คร. อะเล็กซาน เคอร์ เอ็ม เจมิสัน (Prof. Alexander M. Jamieson), คร. มัลลิกา บุณยกุปต์ และ รศ. คร. อนุวัฒน์ ศิริวัฒน์ 112 หน้า ISBN 974-331-939-5

สมบัติการใหลและโครงสร้างของอิมัลชั้น CTAC/FA. BTAC/FA. ແລະ CTAC/FA/HEC ถูกศึกษาในเทอมของเวลา (aging time) และความเข้มข้นของอัลกอฮอล์ ประเภทไขมัน ซึ่งอัลกอฮอล์ประเภทไขมันจะทำปฏิกริยากับสารลคแรงตึงผิวประเภทประจุบวก เพื่อเกิดลาเมลลาและ โครงสร้างแบบเวสสิเคิล (vesicle) มีการเพิ่มขึ้นของความหนืดและมอดลัส สะสม ณ จุคพันกันกับเวลาเพราะมีการเพิ่มขนาคของโครงสร้าง รูปร่างลักษณะโครงสร้างของ ้อิมัลชันขึ้นอยู่กับชนิคของสารลดแรงตึงผิวประเภทประจุบวก ความเข้มข้นของอัลกอฮอล์ประเภท ใขมัน และพอลิเมอร์ที่เติมลงไปในระบบ CTAC/FA จะมีโครงสร้างแบบลาเมลลาในขณะที่ ระบบ CTAC/FA/HEC จะพบการแยกกันของโครงสร้างแบบลาเมลลา นอกจากนี้จะพบโครง สร้างแบบเวสสิเคิลและแบบปุ่ม (sunflower like) ด้วย การทคลองนี้ได้ทำการให้ความร้อนแก่ ้อิมัลชั้นและทำการศึกษาคุณสมบัติการใหลวัดเทียบกับเวลาหลังจากอิมัลชั้นถูกทำให้เย็นลง ที่การ ให้ความร้อนอุณหภูมิ 40 องศาเซลเซียส คุณสมบัติการใหลและโครงสร้างจะคงที่ในสภาวะเดิม ในขณะที่การให้ความร้อนที่อุณหภูมิ 53 และ 80 องศาเซลเซียสจะเกิดการเปลี่ยนแปลงโดยค่า ้ความหนืดจะลุคลงในช่วงแรกและจะกลับเข้าสาค่าเริ่มแรกเมื่อเวลาผ่านไปและจะพบโครงสร้าง แบบลาเมลลาจะเปลี่ยนไปเป็นกลุ่มของอัลกอฮอล์ประเภทไขมันที่ถูกล้อมรอบด้วยโครงสร้างแบบ ລາເມລລາ

ACKNOWLEDGEMENTS

The author would like to gratefully acknowledge all professors who have taught him at the Petroleum and Petrochemical College, Chulalongkorn University, especially those in the Polymer Science Program.

The author greatly appreciates the efforts of his research advisors, Professor Alexander M. Jamieson, Case Western Reserve University, Cleveland, Ohio, U.S.A., and Associate Professor Anuvat Sirivat for their constructive criticism, valuable suggestions and proof-reading of this manuscript. The author would like to give special thanks to his co-advisor, Dr. Malika Punyagupta, Unilever Thai Holding Co., Ltd. for numerous helpful suggestions and proof-readings. The author appreciates the Unilever Thai Holding Co., Ltd. for the financial support and raw materials and would like to thank to BIOTEC for training in the optical microscope. The author would like to give thanks to Dr. Ratthanawan Magaraphan for being a thesis committee member.

The author also thanks, Jintana Nakarapanich, and all of his friends who encouraged him in carrying out the experiment and this thesis writing.

Finally, the author is deeply indebted to his parents for their great love, understanding encouragement, and for constant everlasting source of his inspiration.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	x

CHAPTER

Ι	INTRODUCTION	1
	1.1 Background	1
	1.2 General Aspect	1
	1.2.1 Cationic Surfactants and the Lamellar Phase	1
	1.2.2 Water-Soluble Polymer	2
	1.2.3 The Polymer and Surfactant Interaction	2
	1.2.4 Rheological Properties of Emulsions	3
	1.2.4.1 Types of Flow Behavior	4
	1.2.4.2 Factors Influencing the Flow Behavior	
	of Emulsions	5
	1.2.4.3 Optical Properties	7
	1.3 Literature Survey	8

CHA	PTER	
-----	------	--

1.4 Objectives	12
----------------	----

Π	EXPERIMENTAL	13
	2.1 Materials	13
	2.2 Methodology	15
	2.2.1 Sample preparation of emulsion of CTAC/FA	15
	2.2.2 Sample preparation of solution of HEC	16
	2.2.3 Sample preparation of emulsion of	
	CTAC/FA/HEC	17
	2.2.4 Sample preparation of emulsion of BTAC/FA	18
	2.2.5 Sample preparation of emulsion of	
	CTAC/BTAC/FA	19
	2.2.6 Sample preparation of emulsion for studying	
	effect of annealing	21
	2.3 Apparatus	22
	2.3.1 Laser Scanning Microscope	22
	2.3.2 Rheometer	24
	2.4 Experimental Conditions	28
	2.4.1 Condition in microscope measurement	28
	2.4.2 Condition in oscillatory measurement	28
	2.4.3 Condition in Steady Shear Measurement	29
III	RESULTS AND DISCUSSION	30

3.1 Effect of Aging Time	32
--------------------------	----

CHAPTER

viii

	3.1.1 Emulsions at low fatty alcohol concentration	32
	3.1.2 Emulsions at high fatty alcohol concentration	33
	3.2 Effect of FA Concentration	44
	3.3 Effect of Surfactant Chain Length	48
	3.4 Effect of Polymer Additive	57
	3.5 Effect of Annealing	69
	3.5.1 Emulsion of CTAC/FA systems	69
	3.5.2 Emulsion of BTAC/FA systems	78
IV	FURTHER DISCUSSION	86
	4.1 Possible Mechanisms of Component Interaction	86
	4.1.1 Surfactant and Crystalline Phase	86
	4.2 Possible Mechanisms of the Effect of Annealing Study	90
	4.2.1 Fatty Alcohol Mixed Emulsifiers	90
V	CONCLUSIONS	93
	REFERENCES	95
	APPENDIX	99
	CURRICULUM VITAE	112

LIST OF TABLE

TABLE		PAGE
1.1	Effect of droplet size on physical appearance of emulsion	7

ix

LIST OF FIGURES

FIGURE

PAGE

1.1	Various types of flow behavior	4
2.1	The chemical structure of CTAC	13
2.2	The chemical structure of BTAC	14
2.3	The structure of Hydroxyethyl Cellulose	14
2.4	General view of the LSM system	23
2.5	Schematic of LSM	24
2.6	Schematic diagram showing the principal features of	
	cone-n-plate	25
3.1	Zero shear rate viscosity vs. aging time for low	
	FA emulsion systems	32
3.2	Zero shear rate viscosity vs. aging time for high	
	FA emulsion systems	33
3.3	Micrographs of CTAC/FA = $1.0/2.0$ system structure	
	as a function of aging time: a) 1 day; b) 7 days; c) 14 days;	
	d) 21 days	36
3.4	Proposed models of CTAC/FA = $1.0/2.0$ system as	
	a function of aging time	36
3.5	Micrographs of CTAC/FA = $1.0/6.0$ system structure as	
	a function of aging time: a) 1 day; b) 7 days; c) 14 days;	
	d) 21 days	37
3.6	Proposed models of CTAC/FA = $1.0/6.0$ system as	
	a function of aging time	37

3.7	Micrographs of BTAC/FA = $1.0/2.0$ system structure	
	as a function of aging time : a) 1 day; b) 7 days; c) 4 days;	
	d) 21 days	39
3.8	Proposed models of $BTAC/FA = 1.0/2.0$ system as	
	a function of aging time	39
3.9	Micrographs of BTAC/FA = $1.0/6.0$ system structure as	
	a function of aging time : a) 1 day; b) 7 days; c) 14 days;	
	d) 21 days	40
3.10	Proposed models of BTAC/FA = $1.0/6.0$ system as a	
	function of aging time	40
3.11	Micrographs of CTAC/FA/HEC = 1.0/2.0/0.5 system	
	structure as a function of aging time : a) 1 day; b) 7 days;	
	c) 14 days; d) 21 days	42
3.12	Proposed models of CTAC/FA/HEC = 1.0/2.0/0.5 system	
	as a function of aging time	42
3.13	Micrographs of CTAC/FA/HEC = 1.0/6.0/0.5 system	
	structure as a function of aging time : a) 1 day; b) 7 days;	
	c) 14 days; d) 21 days	43
3.14	Proposed models of CTAC/FA/HEC = 1.0/6.0/0.5 system	
	as a function of aging time	43
3.15	$G'(\omega)$ vs. frequency as a function of fatty alcohol	
	concentration for CTAC/FA system at equilibrium	44
3.16	$G''(\omega)$ vs. frequency as a function of fatty alcohol	
	concentration for CTAC/FA system at equilibrium	45
3.17	η vs. shear rate as a function of fatty alcohol concentration	
	for CTAC/FA system at equilibrium	45

3.18	$G'(\omega)$ vs. frequency as a function of fatty alcohol	
	concentration for BTAC/FA system at equilibrium	46
3.19	$G''(\omega)$ vs. frequency as a function of fatty alcohol	
	concentration for BTAC/FA system at equilibrium	47
3.20	η vs. shear rate as a function of fatty alcohol concentration	
	for BTAC/FA system at equilibrium	47
3.21	Comparison of G'(ω) between CTAC/FA and BTAC/FA	
	systems at low fatty alcohol concentration at equilibrium	48
3.22	Comparison of G'(ω) between CTAC/FA and BTAC/FA	
	systems at high fatty alcohol concentration at equilibrium	49
3.23	Comparison of G"(ω) between CTAC/FA and BTAC/FA	
	systems at low fatty alcohol concentration at equilibrium	50
3.24	Comparison of G"(ω) between CTAC/FA and BTAC/FA	
	systems at high fatty alcohol concentration at equilibrium	50
3.25	Comparison of η between CTAC/FA and BTAC/FA	
	systems at low fatty alcohol concentration at equilibrium	51
3.26	Comparison of η between CTAC/FA and BTAC/FA	
	systems at high fatty alcohol concentration at equilibrium	52
3.27	$tan\delta$ vs. FA concentration of the CTAC/FA and BTAC/FA	
	systems at equilibrium at equilibrium	53
3.28	$\mathrm{G_N}^{\mathrm{o}}$ vs. FA concentration of the CTAC/FA and BTAC/FA	
	systems at equilibrium	54
3.29	τ_B vs. FA concentration of the CTAC/FA and BTAC/FA	
	systems at equilibrium	54

3.30	η_o vs. FA concentration of the CTAC/FA and BTAC/FA	
	systems at equilibrium	55
3.31	Comparison the structures of the CTAC/FA and	
	BTAC/FA systems at low and high fatty alcohol	
	Concentration at equilibrium:a)CTAC/FA = 1.0/2.0; b)	
	BTAC/FA = 1.0/2.0; c) CTAC/FA = 1.0/6.0; d) BTAC/FA	
	= 1.0/6.0	56
3.32	$G'(\omega)$ vs. frequency as a function of FA concentration for	
	CTAC/FA/HEC systems at equilibrium	57
3.33	$G''(\omega)$ vs. frequency as a function of FA concentration for	
	CTAC/FA/HEC systems at equilibrium	58
3.34	η vs. shear rate as a function of FA concentration for	
	CTAC/FA/HEC systems at equilibrium	59
3.35	Comparison G'(ω) vs. frequency between the CTAC/FA	
	and CTAC/FA/HEC systems at low fatty alcohol	
	concentration at equilibrium	60
3.36	Comparison G'(ω) vs. frequency between the CTAC/FA	
	and CTAC/FA/HEC systems at high fatty alcohol	
	concentration at equilibrium	60
3.37	Comparison G"(ω) vs. frequency between the CTAC/FA	
	and CTAC/FA/HEC systems at low fatty alcohol	
	concentration at equilibrium	61
3.38	Comparison G"(ω) vs. frequency between the CTAC/FA	
	and CTAC/FA/HEC systems at high fatty alcohol	
	concentration at equilibrium	62

3.39	Comparison η vs. shear rate between the CTAC/FA	
	and CTAC/FA/HEC systems at low fatty alcohol	
	concentration at equilibrium	63
3.40	Comparison η vs. shear rate between the CTAC/FA	
	and CTAC/FA/HEC systems at high fatty alcohol	
	concentration at equilibrium	63
3.41	tand vs. FA concentration of the CTAC/FA and	
	CTAC/FA/HEC systems at equilibrium	64
3.42	G_N^{o} vs. FA concentration of the CTAC/FA and	
	CTAC/FA/HEC systems at equilibrium	65
3.43	τ_B vs. FA concentration of the CTAC/FA and	
	CTAC/FA/HEC systems at equilibrium	66
3.44	Comparison the structures of the CTAC/FA and	
	CTAC/FA/HEC systems at low and high fatty alcohol	
	Concentration at equilibrium: a) $CTAC/FA = 1.0/2.0$;	
	b) CTAC/FA/HEC = 1.0/2.0/0.5; c) CTAC/FA = 1.0/6.0;	
	d) CTAC/FA/HEC = 1.0/6.0/0.5	67
3.45	η_o vs. FA concentration of the CTAC/FA and	
	CTAC/FA/HEC systems at equilibrium	68
3.46	Zero shear rate viscosity vs. aging time with various	
	annealing temperatures for $CTAC/FA = 1.0/2.0$ system	69
3.47	Zero shear rate viscosity vs. aging time with various	
	annealing temperatures for CTAC/FA = $1.0/4.0$ system	70
3.48	Micrographs of the CTAC/FA = $1.0/2.0$ with annealing	
	at 40 $^{\circ}$ C : a) without annealing; b) after aging 1 day;	
	c) after aging 7 days; d) after aging 14 days	72

3.49	Micrographs of the CTAC/FA = $1.0/2.0$ with annealing	
	at 53 °C : a) without annealing; b) after aging 1 day;	
	c) after aging 7 days; d) after aging 14 days	73
3.50	Micrographs of the CTAC/FA = $1.0/2.0$ with annealing	
	at 80 °C : a) without annealing; b)after aging 1 day;	
	c) after aging 7 days; d) after aging 14 days	74
3.51	Micrographs of the CTAC/FA = $1.0/4.0$ with annealing	
	at 40 °C : a) without annealing; b) after aging 1 day;	
	c) after aging 7 days; d) after aging 14 days	75
3.52	Micrographs of the CTAC/FA = $1.0/4.0$ with annealing	
	at 53 °C : a) without annealing; b) after aging 1 day;	
	c) after aging 7 days; d) after aging 14 days	76
3.53	Micrographs of the CTAC/FA = $1.0/4.0$ with annealing	
	at 80 °C : a) without annealing; b) after aging 1 day;	
	c) after aging 7 days; d) after aging 14 days	77
3.54	Zero shear viscosity vs. aging time with various annealing	
	temperatures for $BTAC/FA = 1.0/2.0$ system	78
3.55	Zero shear viscosity vs. aging time with various annealing	
	temperatures for $BTAC/FA = 1.0/4.0$ system	79
3.56	Micrographs of the BTAC/FA = $1.0/2.0$ with annealing	
	at 40 °C : a) without annealing; b) after aging 1 day;	
	c) after aging 7 days; d) after aging 14 days	80
3.57	Micrographs of the BTAC/FA = $1.0/2.0$ with annealing	
	at 53 °C : a) without annealing; b) after aging 1 day;	
	c) after aging 7 days; d) after aging 14 days	81

3.58	Micrographs of the $BTAC/FA = 1.0/2.0$ with annealing	
	at 80 °C : a) without annealing; b) after aging 1 day;	
	c) after aging 7 days; d) after aging 14 days	82
3.59	Micrographs of the BTAC/FA = $1.0/4.0$ with annealing	
	at 40 °C : a) without annealing; b) after aging 1 day;	
	c) after aging 7 days; d) after aging 14 days	83
3.60	Micrographs of the BTAC/FA = $1.0/4.0$ with annealing	
	at 53 °C : a) without annealing; b) after aging 1 day;	
	c) after aging 7 days; d) after aging 14 days	84
3.61	Micrographs of the BTAC/FA = $1.0/4.0$ with annealing	
	at 80 $^{\circ}$ C : a) without annealing; b) after aging 1 day;	
	c) after aging 7 days; d) after aging 14 days	85
4.1	Schematic diagram of lamellar structure formed from	
	low fatty alcohol concentration with cationic surfactant	
	(CTAC)	87
4.2a	Schematic diagram of lamellar structure formed from	
	a high fatty alcohol concentration with cationic surfactant	
	(CTAC)	87
4.2 b	Schematic diagram of interconnected lamellar structure	
	formed from a high fatty alcohol concentration with	
	cationic surfactant (CTAC)	88
4.3	Schematic diagram of lamellar structure formed from	
	low fatty alcohol concentration with cationic surfactant	
	(BTAC)	88
4.4	Schematic diagram of lamellar structure formed from	
	high fatty alcohol concentration with cationic	
	(BTAC)	89

4.5	Schematic diagram of lamellar structure formed from	
	fatty alcohol concentration with cationic surfactant	
	(CTAC) with polymer additive (HEC)	90
4.6	Schematic illustration of the polymorphic structures	
	formed by fatty alcohol amphiphiles	91
4.7	Schematic illustration of lamellar swollen α -crystalline	
	gel phase and the lamellar liquid crystalline phase that	
	form spontaneously when a fatty alcohol is dispersed in	
	water in the presence of small quantities of ionic	
	surfactant.	92