การเ ครียมและศึกษาคุณลักษณะของฮิลิกาคุณภาพสูงจากแกลบ

นางสาว อุไรวรรณ ลีลาอคิศร

วิทยานิพนธ์นี้เ ป็นส่วนหนึ่งของการศึกษาคามหลักสูกรปริญญาวิทยาศาสกรมหาบัณฑิก ภาควิชาวัสกุศาสกร์

บัณฑิกวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2535

ISBN 974-581-650-7

ลือสีหธิ์ของบัณฑิควิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

PREPARATION AND CHARACTERIZATION OF HIGH-GRADE SILICA FROM RICE HUSK

Miss Uraiwan Leela-Adisorn

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science

Department of Materials Science

Graduate School

Chulalongkorn University

1992

ISBN 974-581-650-7

Thesis Title Preparation and Characterization of High-Grade Silica from Rice Husk Ву Miss Uraiwan Leela-Adisorn Department Materials Science Thesis Advisor Dr. Reinhard Conradt Assoc. Prof. Preeda Pimkhaokham Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree. Thanon Vojiastase Dean of Graduate School (Professor Thavorn Vajrabhaya, Ph.D.) Thesis Committee Charmi Legrageon Chairman (Assoc. Prof. Charussri Lorprayoon, Ph.D.) Reinhard Conradt, Ph.D. (Assoc. Prof. Preeda Pimkhaokham Supatra Sinmah. Member

(Assoc. Prof. Supatra Jinawath, Ph.D.)

พิมพ์ค์นจบับบทกัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

อุไรวรรณ ลีลาอดิศร : การเตรียมและศึกษาคุณลักษณะของชิลิกาคุณภาพสูงจากแกลบ (PREPARATION AND CHARACTERIZATION OF HIGH-GRADE SILICA FROM RICE HUSK) อ.ที่ปรึกษา : คร.ไรน์ฮาร์ค คอนราคห์ อ.ที่ปรึกษาร่วม : รศ.ปรีคา พิมพ์ขาวขำ 99 หน้า. ISBN 974-581-650-7

การวิจัยครั้งนี้มีจุดมุ่งหมายเพื่อศึกษาความเป็นไปได้และข้อจำกัดของการใช้แกลบเป็นวัตถุดิบ สำหรับเตรียมชีลิกาที่มีโครงสร้างแบบ nanostructure โดยนำแกลบมาผ่านกระบวนการด้วยสารเคมี โดยใช้เอนไชม์เซลลูคลาส และกรดอนินทรีย์ชนิดต่าง ๆ นำแกลบที่ผ่านกระบวนการมาเผาที่อุณหภูมิ 600 องศาเซลเซียส เป็นเวลา 6 ชั่วโมง ในบรรยากาศของการเผาไหม้ปกติ นำผลิตภัณฑ์ที่ได้มาศึกษา คณลักษณะต่าง ๆ ได้แก่ ปริมาณซีลิกา การกระจายขนาดอนุภาศที่ระดับต่าง ๆ กันของการเกาะรวม เป็นกลุ่มอนุภาค และพื้นที่ผิวจำเพาะโดยการดูดขับแกสไนโตรเจนที่ผิว พบว่าแกลบที่ผ่านกระบวนการด้วยกรด (กรดไฮโดรคลอริก ความเข้มขัน 1:4 หรือกรดซัลพูริก ความเข้มขัน 1:4) จะได้ผลิตภัณฑ์ที่มีสมบัติ ระหว่าง พูมซีลิกา (fumed silica) และซีโรเจล (xeragel) การกระจายขนาดของอนุภาศที่ระดับ หุติยภูมิเป็นแบบ log-normal โดยมีขนาดอนุภาศที่ปริมาณร้อยละ 50 เป็น 26 นาโนเมตร และอัตราส่วน ระหว่างขนาดอนุภาศที่มีปริมาณร้อยละ 84 ต่อ ขนาดอนุภาศที่มีปริมาณร้อยละ 16 เท่ากับ 2 ช่วงของ ขนาดของกลุ่มอนุภาศที่ระดับตติยภูมิอยู่ในช่วงตั้งแต่ 0.3 ถึง 30 ไมครอน พื้นที่ผิวจำเพาะของอนุภาศที่ ระดับปฐมภูมิมีค่าสูงถึง 250 ตารางเมตรต่อกรัม และความบริสุทธิ์ของฮีลิการ้อยละ 99.4

ภาควิชา	วัสคศาสตร์	ลายมือชื่อนิสิต 🗼 🗫 🕹
สาขาวิชา	เทคโนโลยีเชรามิก	ลายมือชื่ออาจารย์ที่ปรึกษา/
ปีการศึกษา	2535	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

พิมพ์ตันฉบับบทกัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

C225817 : MAJOR TECHNOLOGY CERAMIC

KEY WORD : AMORPHOUS SILICA/RICE HUSK/NANOTRUCTURE

URAIWAN LEELA-ADISORN : PREPARATION AND CHARACTERIZATION OF HIGH-

GRADE SILICA FROM RICE HUSK. THESIS ADVISOR : DR.REINHARD

CONRADT. THESIS CO-ADVISOR: ASSOC.PROF.PREEDA PIMKHAOKHAM.Ed.D.

99 PP. ISBN 974-581-650-7

The potential and limits of rice husk to become a competitive source of nano-structured silica are investigated. Husk samples are submitted to a chemical pre-treatment using celluclase enzyme and different inorganic acids. Subsequently, samples are incinerated at 600° C, 6 h under static atmosphere. The product is characterized in terms of silica content, particle size distributions at the different levels of agglomeration, and specific surface area (BET, N₂). With pre-treatemnt acids, (HCL (1:4) or H₂SO₄(1:4)) a product with properties intermediate to those of fumed silica and xerogel is obtained. The size distribution for secondary particles follows a log-normal distribution with d₅₀ = 26 nm and d₈₄/d₁₆ = 2. Tertiary agglomerates range from 0.3 to 30 μ m. The specific surface area is determined by the primary particle and reaches values of 250 m²/g. Purity is 99.4% silica.

ภาควิชา	วัสดุศาสตร์	
สาขาวิชา	เทคโนโลยีเซรามิก	
ปีการศึกษา	2534	

ลายมือชื่ออาจารย์ที่ปรึกษา *โยนโลน โลก ฟาก* ลายมือชื่ออาจารย์ที่ปรึกษาร่วม *ปักทุ ฟาก* โ

ACKNOWLEDGEMENT

The author would like to express sincere thanks to Dr. Reinhard Conradt. Without his constant guidance and encouragement, frequent stimulation, including a very frank and friendly attitude, this thesis will never be existed.

The extends many thanks to Assoc. Prof. Preeda Pimkhaokham who has contributed the continuing interest and comments.

Appreciation is also extended to Mr. Pisit Geasee, Miss Nang Sam Kham, Miss Inthira Pinkaraket, and Miss Nanthinee Kul'ueng for their assistance.

Sincere thanks for necessary equipments to STREC, MMRI, and Department of Geology; Faculty of Science.

For providing free samples of the commercial enzyme Celluclast: The East Asiatic Company (Thailand) Ltd., Chemicals Division.,

contribution technical data of the commercial amorphous fumed silica Aerosil:

F.E. Zuellig (Bangkok) Ltd., Sole Distributor,

and financial support for this work by the Graduate School Committee to the author are greatfully acknowledged.

CONTENTS

			Page
Abstract	t (Tha	ai)	iv
Abstract	Eng	glish)	V
Acknowle	edgeme	ent	vi
List of	Table	es	ix
List of	Figu	res	x
Chapter			
I	Intro	oduction	1
	1.1	Motivation, Objective, and Scope	1
	1.2	Literature Survey	3
II	Theor	retical Part	12
	2.1	Properties of Natural and Synthetic Silica	12
	2.2	Silica in Plants	19
	2.3	Aqueous Chemistry of Silica	21
	2.4	Biochemical Degradation of Organic Matter	29
III	Expe	riment	31
	3.1	Description of Method	31
	3.2	Method and Equipment	33
IV	Resu	lts	49
	4.1	Appearance of Treated Rice Husk and Its Ash	49
	4.2	Weight Loss Determination	53
	4.3	Crystallinity	55
	4.4	Morphology	57
	4.5	Particle Size Distribution and Particle Size	
		Estimation	64
	4.6	Chemical Analysis	71
	1 7	Considia Cuntana Anna	70

Chapter			Page
V	Disc	ussion	74
	5.1	The Relation Between Particle Size and Specific	
		Surface Area of Ash	74
	5.2	Comparative Properties Between Silica from Rice	
		Husk Ash and Commercial Silica	75
	5.3	Problem and Next Steps	78
IV	Summ	ary	80
Reference			
Appendi		85	
А	Area	meter-Nomogramm	86
В	Chem	nical Analysis Data	87
Vita			xii

List of Tables

Τa	Table Pag				
	1	Husk ash export figures (1988-1990)	1		
	2	Main organic and inorganic components in rice husk	.5		
	3	Ash composition of different wood ashes in comparison			
		to rice husk ash	.6		
	4	Impurities levels (ppm) in rice husks of different origin	.7		
	5	Ash and silica contents in diverse parts of different			
		commercial monocotyledons	.21		
	6	Appearance of husk grains after different treatment	.49		
	7	Appearance of ash of treated husk	.50		
	8	Weight loss of rice husk treatment	.53		
	9	Rest from treatment and incineration	.54		
	10	Particle size estimation from XRD line broadening	.70		
	11	Analytical results on rice husk ash	.71		
	12	Specific surface area (BET) of treated husk ash	.73		
	13	Comparison data between silica from rice husk ash and			
		aerosil OX50	75		

List of Figures

F	igure		Page
	1	DTA graph for the combustion of rice husk in air	9
	2	TG-DTG graph for the combustion of rice husk in air	
		and in N_2 atmosphere	.10
	3	Solubility diagram of silica for low-T quartz and	
		amorphous powder with 250 m^2/g specific surface in	
		aqueous solution as a function of pH	.23
	4	Agglomeration mechanism of colloidal silica particles	24
	5	Effective surface charging of colloidal silica	
		particles in aqueous solutions as a function of pH	25
	6	Synoptic presentation of solubility, surface charging,	
		and polymerization of colloidal silica in aqueous	
		solution as a function of pH	.26
	7	Structure of amorphous silica; influence of the pH and	
		the presence of salts	28
	8	Sketch of cellulose chain cleavage by the action of an	
		endolyase type enzyme	.30
	9	Treatment of rice husk prior to incineration, flow chart.	.32
	10	Illustration of different washing procedures for	
		rice husk	34
	11	Sketch of equipment used for acid and enzymatic	
		treatment of rice husk	37
	12	X-ray peak broadening for XRD graphs of rice husk ash	
		at $2 \cdot \theta = 22^{\circ}$	40
	13	Sketch of the one-point BET areameter	46

Figure		Page
14	Color impression of rice husk after different treatment.	51
15	Appearance of differently treated rice husk ash	52
16	X-ray diffraction patterns of rice husk ash prepared	
	from differently pretreated husk ash	56
17	SEM micrographs of uncombusted, pre-charred, and	
	completely incinerated rice husk grains	58
18	Cross-section of a rice husk grain	60
19	X-ray mapping (Si)	60
20	TEM micrographs from rice husk ash	62
21	SEM micrographs of secondary agglomerates in ashes	63
22	Particle size distribution for the secondary particles	
	in silica from untreated husk ash	65
23	Particle size distribution for the tertiary agglomerates	
	in silica from NaOH/HCl pre-treated husk ash	66
24	Particle size distribution of silica particles presented	
	in the log-normal grid after DIN 66144	68
25	TEM micrographs of rice husk ash and aerosil OX50	76
26	SEM micrographs of rice husk ash and aerosil OX50	. 77