
วิธีการจำแนกประเภทขอมูลแบบสตรีมมิ่ง โดยใชวงรีหลายมิติที่สามารถปรับขนาดได
พรอมกับอัตราสวนระยะทางฉายแบบดิสครีมิแนนตเชิงเสน

นายพีรศุษม รุงจรัสแสง

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต
สาขาวิชาคณิตศาสตรประยุกตและวิทยาการคณนา
ภาควิชาคณิตศาสตรและวิทยาการคอมพิวเตอร
คณะวิทยาศาสตร จุฬาลงกรณมหาวิทยาลัย

ปการศึกษา 2561

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย
บทคดัยอ่และแฟ้มข้อมลูฉบบัเตม็ของวิทยานิพนธ์ตัง้แตปี่การศกึษา 2554 ท่ีให้บริการในคลงัปัญญาจฬุาฯ (CUIR)

เป็นแฟ้มข้อมลูของนิสติเจ้าของวิทยานิพนธ์ท่ีสง่ผา่นทางบณัฑิตวิทยาลยั

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

STREAMING DATA CLASSIFICATION METHOD USING SCALABLE

HYPER-ELLIPSOIDS WITH LINEAR DISCRIMINANT PROJECTION

DISTANCE RATIO

Mr. Perasut Rungcharassang

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Program in Applied Mathematics and

Computational Science

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University

Academic Year 2018

Copyright of Chulalongkorn University

Dissertation Title STREAMING DATA CLASSIFICATION METHOD USING

SCALABLE HYPER-ELLIPSOIDSWITH LINEAR DISCRIM-

INANT PROJECTION DISTANCE RATIO

By Mr. Perasut Rungcharassang

Field of Study Applied Mathematics and Computational Science

Dissertation Advisor Professor Chidchanok Lursinsap, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment

of the Requirements for the Doctoral Degree

. Dean of the Faculty of Science

(Professor Polkit Sangvanich, Ph.D.)

DISSERTATION COMMITTEE

. Chairman

(Assistant Professor Krung Sinapiromsaran, Ph.D.)

. Dissertation Advisor

(Professor Chidchanok Lursinsap, Ph.D.)

. Examiner

(Assistant Professor Khamron Mekchay, Ph.D.)

. Examiner

(Assistant Professor Kitiporn Plaimas, Ph.D.)

. External Examiner

(Assistant Professor Saichon Jaiyen, Ph.D.)

iv

พีรศุษม รุงจรัสแสง : วิธีการจำแนกประเภทขอมูลแบบสตรีมมิ่ง โดยใชวงรีหลายมิติ
ที่สามารถปรับขนาดได พรอมกับอัตราสวนระยะทางฉายแบบดิสครีมิแนนตเชิงเสน.
(STREAMING DATA CLASSIFICATION METHOD USING SCALABLE

HYPER-ELLIPSOIDS WITH LINEAR DISCRIMINANT PROJECTION

DISTANCE RATIO) อ.ที่ปรึกษาวิทยานิพนธหลัก : ศ.ดร.ชิดชนก เหลือสินทรัพย,
77 หนา.

การเรียนรูขอมูลแบบสตรีมมิ่งดวยหนวยความจำที่จำกัดกลายเปนปญหาที่นาสนใจ แมวา
วิธีการเรียนรูหลายวิธีถูกนำเสนอเร็ว ๆ นี้ตามแนวคิดของการละทิ้งขอมูลหลังเรียนรู อยางไร
ก็ตามความเร็วในการเรียนรู จำนวนนิวรอนเกินจำเปน และความแมนยำในการจำแนกของวิธี
การเหลานี้ สามารถปรับปรุงไดดียิ่งขึ้นในแงของความเร็วในการเรียนรูที่เร็วขึ้น จำนวนนิวรอนที่
นอยลง และความแมนยำที่สูงขึ้น แนวความคิดใหมที่ถูกนำเสนอในงานวิทยานิพนธนี้ประกอบ
ดวย 4 สวนดังนี้ (1) โครงสรางใหมของฟงกชันวงรีหลายมิติที่สามารถปรับขนาดได (เชฟ)
สามารถจัดการกับปญหาที่มีจำนวนมิติมากกวาจำนวนขอมูล โดยใชเรกูลาไรเซชันพารามิเตอร
กับเมทริกซความแปรปรวนรวมของฟงกชันวงรีขางตน (2) ฟงกชันเวียนบังเกิดแบบใหม เพื่อ
ปรับปรุงเมทริกซความแปรปรวนรวมของฟงกชันวงรีตามขอมูลที่เขามาเปนกลุม (3) ความเร็ว
และเงื่อนไขที่งายตอการทดสอบการซอนทับของฟงกชันวงรีสองตัวและ (4) ตัววัดระยะทาง
ใหมสำหรับการระบุประเภทของขอมูลโดยใชการฉายระยะทางลงบนเวกเตอรดิสคริมิแนนต วิธี
การที่นำเสนอมีผลการทดลองที่ประสิทธิภาพเพิ่มขึ้น เมื่อเปรียบเทียบกับผลการทดลองของวิธี
การอื่น ๆ

ภาควิชาคณิตศาสตรและ. ลายมือชื่อนิสิต .

. .วิทยาการคอมพิวเตอร. ลายมือชื่อ อ.ที่ปรึกษาหลัก

สาขาวิชา .คณิตศาสตรประยุกต.
. .และวิทยาการคณนา

ปการศึกษา2561. .

v

5572864623 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE

KEYWORDS : STREAMING DATA / CLASSIFICATION / LDA

PERASUT RUNGCHARASSANG : STREAMING DATA CLASSIFICATIONMETHOD

USING SCALABLE HYPER-ELLIPSOIDSWITH LINEAR DISCRIMINANT PROJEC-

TION DISTANCE RATIO. ADVISOR : PROF. CHIDCHANOK LURSINSAP, Ph.D.,

77 pp.

Learning streaming data with limited size of memory storage becomes an interesting

problem. Although there have been several learning methods recently proposed, based on

the interesting concept of discard-after-learn, the performance of these issues: the learning

speed, number of redundant neurons, and classification accuracy of these methods can be

further improved in terms of faster speed, less number of neurons, and higher accuracy.

The following new four concepts and approaches were proposed in this dissertation: (1)

a more generic structure of hyper-ellipsoidal function called Scalable Hyper-Ellipsoidal

Function (SHEF) capable of handling the problem of curse of dimensionality by introduc-

ing a regularization parameter into the covariance matrix of SHEF; (2) a new recursive

function to update the covariance matrix of SHEF based on only the incoming data chunk;

(3) a fast and easy conditions to test the states of being overlapped, inside, or touch of

two SHEFs; (4) a new distance measure for determining the class of a queried datum

based on the projected distance on LDA discriminant vector. The experimental results

show the significant improvement when compared with other methods.

Department :Mathematicsand. Student’s Signature .

.ComputerScience. Advisor’s Signature .

Field of Study :Applied.Mathematics.and .

.ComputationalScience. . . .

Academic Year :2018. .

vi

ACKNOWLEDGEMENTS

In the completion of this dissertation, I am very grateful to my advisor, Professor

Dr. Chidchanok Lursinsap for his advices and many interesting ideas. Without his great

suggestions, this dissertation could not be completed.

Sincere thanks to my dissertation committee, Assistant Professor Dr. Krung Sinapi-

romsaran, Assistant Professor Dr. Khamron Mekchay, Assistant Professor Dr. Kitiporn

Plaimas, and Assistant Professor Dr. Saichon Jaiyen, for their interesting questions and

suggestions on the suitability of the dissertation content.

I sincerely thank all of my lecturers at Department of Mathematics and Computer

Science, Chulalongkorn University, who have given good advices and knowledge for living

as a Ph.D. student.

I would like to thank Teaching Assistant Scholarship, Faculty of Science, Chula-

longkorn University for partial support of this work.

I would like to thank Mr. Kittisak Chumpong for his suggestions about proving

Theorem 3.2.1, and special thank to Miss Pornchanit Supwilai for being so caring, and

understanding all of me.

Moreover, I would like to thank my friends for their support and some important

advices about literature reviews. Last but not least, I am very grateful to my family who

is the most important supporter.

CONTENTS
Page

ABSTRACT IN THAI . iv

ABSTRACT IN ENGLISH . v

ACKNOWLEDGEMENTS . vi

CONTENTS . vii

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 Studied Problems and Constraints . 5

2 RELEVANT BACKGROUND . 8

2.1 Basic Concept of Standard Hyper-ellipsoid Function 8

2.2 Concept of LDA with Multiple Classes and Binary Classes 9

2.3 Concept of Versatile Elliptic Basis Function (VEBF) 11

2.4 Checking the Intersection of Two Hyper-ellipsoids 13

2.5 Distance from a Sample Point to a Hyper-ellipsoid 14

2.5.1 Euclidean Distance . 14

2.5.2 Mahalanobis Distance . 14

2.5.3 The Versatile Elliptic Basis Function Value 15

2.5.4 Boundary Distance . 15

3 METHODOLOGY . 18

3.1 Proposed Structure of Capturing Function and Parameter Updating 18

3.1.1 Structure of Scalable Hyper-Ellipsoidal Function 18

3.1.2 Updating Parameters of SHEF . 21

3.2 New Learning Method Using Scalable Hyper-ellipsoidal Function 22

3.2.1 Initializing SHEF Widths and Threshold Distance for Introduc-

ing New SHEF . 23

3.2.2 Condition of Intersection of Two Scalable Hyper-Ellipsoids 24

3.2.3 Learning Algorithm of SHEF . 26

viii

CHAPTER Page

3.2.4 Time Complexity of the Learning Algorithm 28

3.2.5 The Illustration of Learning Algorithm in Two-dimensional 29

3.3 Identifying Classes of Testing Data . 34

3.3.1 Projecting Width of SHEF onto Discriminant Vector 35

3.3.2 Measuring Distance from a Point to SHEF along Discriminant

Vector . 37

3.3.3 Determining Class of Queried Data Point Based on Projection Ratio 39

4 EXPERIMENTS AND RESULTS . 41

4.1 Data sets . 41

4.2 Accuracy Measurements . 41

4.3 Parameter Settings . 43

4.4 Comparison Results . 45

4.4.1 Test Accuracy . 48

4.4.2 Average number of generated neurons 50

4.4.3 Computational time . 51

4.5 Improve Test Accuracy on VEBF and CIL using Projection Ratio in Testing 55

5 DISCUSSION AND CONCLUSION . 63

5.1 Suggestion on Parameter Settings for the Proposed Method 66

REFERENCES . 69

APPENDICES . 72

BIOGRAPHY . 77

ix

LIST OF TABLES

Table Page

1.1 Characteristics of the Compared Methods . 4

4.1 Experimental data sets and their attributes. 43

4.2 Parameter settings of VLLDA, VEBF, and CIL. 44

4.3 Number of training data in each fold for each streaming chunk. 47

4.4 Comparison of accuracy (%) in the five-fold validation. 49

4.5 Comparison of the number of neurons in VEBF, CIL, and SHEF methods

at the end of training process. 52

4.6 Computational time (seconds) for synthetic data 53

4.7 Computational time (seconds) for real-world data 54

4.8 Comparison of accuracy (%) of VEBF, CIL, VEBF+, and CIL+ 56

x

LIST OF FIGURES

Figure Page

2.1 Approximate distance from a point to an ellipse by Zimmermann and Svoboda. 16

2.2 Approximate distance from a point to an ellipse by Wattanakitrungroj et.al. . 17

3.1 Relationship between eigenvalues and eigenvectors of the covariance matrix

to size and shape of hyper-ellipsoid in two-dimensional, respectively. 19

3.2 The data set in the first chunk for calculating the initial width in each class. . 30

3.3 Feed the first training data with class 1 (blue circle). 30

3.4 Feed the second training data with class 2 (red square). 30

3.5 Feed the third training data with class 1. 31

3.6 Introduce a new SHEF then discard the captured data and feed the forth

training data with class 2. 31

3.7 Feed the fifth training data with class 2. 31

3.8 Introduce a new SHEF then discard the captured data and feed the sixth

training data with class 2. 32

3.9 Update parameters of SHEF2. 32

3.10 Four SHEFs of the first chunk . 32

3.11 Feed a new training data with class 2. 33

3.12 Update parameters of SHEF2. 33

3.13 Merge two overlapping SHEF into the new SHEF. 33

3.14 An example of wrong interpretation of closeness between testing datum and

two SHEFs. The closeness is determined by measuring Euclidean distance

from the datum to the centroids of both SHEFs. 34

3.15 The closeness distances measured with respect to the boundary of SHEF1

and SHEF2. The datum is close to SHEF1 instead of SHEF2. 34

3.16 Projection of a SHEF onto the discriminant vector w in a 2-dimensional space. 36

3.17 The concept for measuring distance from x to a SHEF by the ratio of

|wT
p (x − c)| and r

√
wT

p Swp along the discriminant vector wp defined in

equation (3.24). 37

xi

Figure Page

3.18 An example of projections of two SHEFs and x onto a discriminant vector

w defined in equation (2.8). There are two projection ratios, one for each SHEF. 39

4.1 Seven synthetic data sets used in the experiments. 42

4.2 The results of learning seven synthetic data sets using SHEFs. Only 80%

of data in each synthetic data were used for training. 46

4.3 The chunk-wise accuracy (%) for six methods after training in each chunk

on seven synthetic data sets . 57

4.4 The chunk-wise accuracy (%) for six methods after training in each chunk

on seven real-world data sets . 58

4.5 The average cumulative chunk-wise accuracy (%) for six methods after

training in each chunk on seven synthetic data sets 59

4.6 The average cumulative chunk-wise accuracy (%) for six methods after

training in each chunk on seven real-world data sets 60

4.7 The number of generated neurons for three methods after training in each

chunk on seven synthetic data sets . 61

4.8 The number of generated neurons for three methods after training in each

chunk on seven real-world data sets . 62

CHAPTER I

INTRODUCTION

Problem of classifying streaming data with some specific characteristics has

been an interesting topic in many fields such as business, academia, and medical

information; especially, where valuable information is tremendously and contin-

uously generated in the internet. However, the speed of hardware technology to

increase the memory size to catch up with generated data is obviously much slower

than the speed of generated data. This type of data is known as streaming data [1].

This situation leads to a very challenging development of new neural learning al-

gorithms to cope with the problems of data overflow, fast learning speed, as well as

limited computing resources or low energy consumption. For classifying streaming

data, the learning speed of classifiers must be faster than the speed of incoming

data with limited resources and also be capable of achieving the classification

accuracy for queried data at any time period.

Generally, when the number of dimensions exceeds the number of data in

each class, it is hard to efficiently classify those data. This is known as Curse of

Dimensionality [2]. Thus, a dimensionality reduction method (DRM) or a feature

reduction method (FRM) such as principal component analysis (PCA) [3] and lin-

ear discriminant analysis (LDA) [4] are applied in several classification techniques

as a pre-processing step to reduce the dimensions of the original data space. These

methods transform data in the original space into a new space by either rotating all

bases or projecting data onto a discriminant vector. Furthermore, these methods

are based on the assumption that the whole data set must be presented prior to

the dimensional reduction. Obviously, this assumption cannot be applied to the

2

situation of streaming data where data gradually flow into the learning process.

To cope with streaming data, the incremental versions of both PCA and LDA

were proposed.

LDA is a suitable method for a classification problem more than PCA. Un-

like PCA, LDA emphasizes on the minimum degree of overlap of two individual

class after projecting both classes onto a discriminant vector. On the contrary,

PCA emphasizes on finding the actual direction of data distribution such that the

maximum variance in all dimensions. It does not consider each individual class

as LDA does. In 2005, Pang et.al. proposed an incremental linear discriminant

analysis (ILDA) [5] which makes LDA applicable to the streaming data scenario.

Several versions of incremental LDA were developed to improve computational

speed [6–8]. However LDA and its incremental version have the same major limi-

tation. If data are nonlinear separable, they will not work properly.

Handling a nonlinear classification problem has three main approaches which

are a nonlinear kernel to the classifiers such as a radial basis function kernel [9],

local hyperplanes [10], and local data structure to classify some part of data such

as a versatile elliptic basis function [11, 12], k-nearest neighbors [13], and k-mean

clustering [14]. Those methods are not seriously considered according to the char-

acteristics of streaming data. In [13,14], the whole data set is used for calculating

a distance. Even though both [11, 12] introduced the algorithm for classifying

streaming data, but some parameters of their methods must be derived from in-

coming data. This will add more unnecessary computational time to a learning

process.

Besides the efficiency of the learning process, determining the class of queried

datum is also a very significant step to achieve the highest classification accuracy.

Generally, the class of queried datum is decided by finding a cluster having the

3

nearest distance measured from either the centroid of the cluster or the boundary of

the cluster to queried datum. Although this approach is very practical and rather

efficient, the accuracy of classifying datum depends strongly upon the shape of

data distribution of the cluster. A new improvement of measuring the nearest

distance based on local feature reduction was proposed in this study.

Unlike the traditional feature reduction method where the global feature

reduction is emphasized, our approach concerns only the local features of the con-

sidered cluster. This is based on the observation that data distribution of each

cluster is different which implies that the importance of each feature in differ-

ent clusters should be different as well. Therefore, our approach focuses on the

local feature reduction of each cluster more than global feature reduction. One

significant application of emphasizing the local feature reduction is to determine

the class of queried datum based on the nearest distance between datum and the

candidate cluster.

Several methods have been proposed to solve the streaming classification

problem where nonlinear classifying functions, amount of data, and learning time

complexity are involved. The characteristics of all compared methods in this study

are shown in Table 1.1. Six characteristics are categorized. First, Sequential in-

cremental means that the method learns one by one of incoming data. Second,

Chunk incremental means that the method learns chunk by chunk of incoming

data. Third, One-pass means that the method will discard any data after learned.

Fourth, Stream means the method must process without knowing data in advance.

Besides, the method does not use that data in advance to set any initial parame-

ters. Fifth, FRM means that the method uses the feature reduction method for

the classification problem. Finally, Local means that the method uses only the

information from incoming data distribution.

4

Table 1.1: Characteristics of the Compared Methods

Methods Incremental One-pass Stream FRM Local Tuned parameters
(determined by user)Sequential Chunk

ILDA [5] ✓ - - ✓ ✓ - No tuning
LOL [10] ✓ - ⋆ ✓ - ✓ k, λ, and C
VEBF [11] ✓ - ✓ - - ✓ δ
CIL [12] - ✓ ✓ ⋆⋆ - ✓ δ

VLLDA [13] - - - - ✓ ✓ k
Proposed method ✓ - ✓ ✓ ✓ ✓ No tuning

⋆ LOL is the true one-pass learning for only binary classification problem. When LOL is
applied to classify multi-class data, it uses one-vs-all approach to classify one class at a time.
⋆⋆ The initial width of a hyper-ellipsoid in CIL for any class is computed from the first 20%
of total training data. (✓refers Yes and - refers No)

For ILDA (Incremental LDA), Pang et.al. introduced two strategies for di-

rectly updating SB and SW (between-class and within-class scatter matrix, respec-

tively) which are one-by-one strategy called sequential ILDA and chunk-by-chunk

strategy called chunk ILDA. The equations for parameter updating of SB and SW

were rather complex. Definitely, this method failed when data were not linearly

separable. Only the sequential ILDA is considered for performance comparison

with our method. Although ILDA employs incremental learning, it still needs to

retain whole incoming data during the classification of testing data. This implies

that all training data cannot be discarded from the memory to clear the storage

space for receiving next new incoming data chunk.

For LOL (Local Online Learning), an incremental updating for multiple hy-

perplanes was proposed to deal with streaming data. The Passive Aggressive algo-

rithm was used to update a nonlinear decision boundary of local hyperplanes [15].

However, in multi-class problem, this method adopted one-vs-all strategy to de-

termine a sample class. All incoming data at any time must be retained during

the class determining step. Finding the optimal number of prototypes (k) was not

easy in order to achieve the best performance in each data set.

For VEBF (Versatile Elliptic Basis Function), Jaiyen et.al. proposed a se-

quential incremental learning based on local-shape function and discard-after-

5

learned concept. However, this method could not be applied to the streaming

environment because the initial width of a hyper-ellipsoid was computed using

the whole training data set. Besides, the same initial width of each hyper-ellipsoid

was pre-defined and applied to all classes without analyzing data distribution of

each individual class. This could decrease the classification accuracy when data

distribution in each class was different.

For CIL (Class-wise Incremental Learning), Junsawang et.al. modified VEBF

from sequential incremental learning to chunk incremental learning based on discard-

after-learned concept in order to increase the speed of learning and to reduce the

effect of an order of incoming datum which VEBF had the problem. They intro-

duced two learning scenarios consisting of static learning and streaming learning.

Similarly VEBF, CIL could not be applied to Stream directly because the initial

width of a hyper-ellipsoid must be determined in advance from the first 20% of

total training data. The initial width of each hyper-ellipsoid is pre-defined by the

same width as VEBF without analyzing data distribution of each individual class.

For VLLDA (Vector based Local LDA), the k-nearest neighbors algorithm

was applied to find k local training data of a testing sample used to classify that

sample class. This method was capable of handling high dimensional data and a

non-linear classification problem. But it could not be applied to the environment of

streaming data because the whole incoming data set must be used for calculating

the Euclidean distance in order to find k-nearest neighbors for determining the

class of queried data.

1.1 Studied Problems and Constraints

The objectives of our study are to propose a new classifier method to deal

with streaming data classification problem and to design a new dissimilarity mea-

6

sure based on distribution of data. Constraints and studied problems imposed on

these objectives are the followings.

Constraints:

1. New incoming data gradually flow into the learning process. The memory

size is large enough to hold the incoming data.

2. The distribution probability of data set in each class is unknown in advance.

3. The incoming class sequence is unknown.

4. Learned data are assumed to have no class drift or class characteristic

change.

5. Incoming data are completely discarded from the learning process after be-

ing leaned.

6. The computing memory unit is assumed to be fixed throughout the learning

and testing processes.

7. Only one fixed processing unit is deployed for neural learning.

Although the structure of VEBF previously proposed and modified in [11,12]

are rather efficient to cope with the discard-after-learn approach in terms of epochs

and accuracy, its structure is not consistent with our concept. Both [11, 12] gen-

erate and update their generated hyper-ellipsoidal functions to cover all training

data after finishing learn while our hyper-ellipsoidal functions are not required

covering all of the training data. Thus this study applies the representation struc-

ture of captured data based on versatile hyper-elliptic function (VHEF) in [16] to

each class and updates some parameters based on [11, 12]. However VEBF, CIL,

and VHEF still encounter the following problems:

1. During learning process, VHEF needs to compute an inverse of a covariance

matrix. If the number of features is greater than the number of training

7

data (the condition of curse of dimensionality), then the covariance matrix

becomes singular. This situation does happen in the early stages of learning.

2. Expanding a VEBF or introducing a new VEBF to capture new incoming

data as proposed in [11,12] requires a pre-defined threshold distance between

incoming data and an existing VEBF. If the threshold distance is too large,

then the expanded VEBF may cover some data in other classes possibly

entering the learning process in the future. This expansion results in a

misclassification.

3. Determining the actual class of queried datum based on the nearest distance

between datum and a capturing function is not appropriate. The previous

approaches such as [11,12,16] measure this distance by computing the value

of capturing function with the datum vector. This value indicates how far

datum is from the center of the capturing function. In fact, the nearest

distance should be measured from datum to the capturing function by taking

distribution of data of the capturing function into account.

The rest of the dissertation is organized as follows. Chapter II summarizes the

relevant concept and background used in this study. Chapter III proposes our

methodology consisting of discussion on the new structure of capturing function

and the equations for updating the parameters of the structure, explanation about

the proposed learning steps of the proposed scalable hyper-ellipsoidal function, and

presentation on the new nearest distance measure and its concept. Chapter IV

gives the experimental results and the comparison of performance evaluation with

other methods. Chapter V discusses the rationale behind the results and concludes

the dissertation including the limitation of this proposed method.

CHAPTER II

RELEVANT BACKGROUND

Our proposed method is related to the structure of hyper-ellipsoid function

in terms of covariance matrix and the concept of linear discriminant analysis. Our

learning process mainly develops from VEBF. The summary of related issues are

given in the following sections.

2.1 Basic Concept of Standard Hyper-ellipsoid Function

Let xi ∈ Rd, 1 ≤ i ≤ N , be the ith d-dimensional data vector written in

the form of column vector. Suppose a set of data vectors X = {x1,x2, . . . ,xN}

belongs to class A. The distribution directions of all vectors in set X and the

variance of data in each direction can be captured using the covariance matrix of

set X. This covariance matrix can be easily computed by the following equation.

Let S denote this covariance matrix.

S = E[(X − E[X])(X − E[X])T] (2.1)

where E[·] represents the expected value. To realize the concept of discard-after-

learn, it would be better to compute matrix S in the form of summation as defined

in equation (2.3).

c =
1

N

N∑
i=1

xi (2.2)

S =
1

N

N∑
i=1

(xi − c)(xi − c)T (2.3)

9

where c ∈ Rd is the mean or centroid of data vectors in X. The distribution

directions of all data vectors in set X are the set of eigenvectors of S, denoted by

U = {u1,u2, . . . ,ud} such that each ||ui|| = 1. The data variances of all eigenvec-

tors are the set of corresponding eigenvalues, denoted by Λ = {λ1, λ2, . . . , λd}.

Given a set of data vector X, the standard form of the hyper-ellipsoid func-

tion centered at c can be constructed to capture all vectors in X by employing

the following equation.

(x − c)TS−1(x − c) = 1. (2.4)

2.2 Concept of LDA with Multiple Classes and Binary Classes

Linear Discriminant Analysis (LDA) is a popular supervised dimensionality

reduction method to reduce a dimension of an original data set by projecting onto

a discriminant space. The basic idea of LDA is to find the suitable discriminant

space. When the original data set is projected on that space, projected data can

be classified by some criteria for better classifying their classes. Therefore, LDA is

an efficient method for solving the high dimensional classification problem. LDA is

a data pre-processing, in other words LDA is a step of preparing the original data

set before applying them to any classifier such as the nearest neighbor, the decision

trees, the neural network, etc. The one of the most popular LDA is Fisher’s LDA

or another name, Fisher discriminant analysis (FDA). Several researches applied

Fisher’s LDA to classify their problems such as [6,7,13,14,17,18]. The concept of

Fisher’s LDA is to find the discriminant space maximizing the distance between

projected class means and minimizing the projected within class variance onto

that space called Fisher’s criterion by Sir Ronald Aylmer Fisher [19].

Suppose X = {x1,x2, . . . ,xN} is a set of N data vectors with K classes. Let

Ck denote class k and nk be |Ck|, for 1 ≤ k ≤ K. The covariance matrix of each

10

class Ck is denoted by Sk. The centroid of X is at c and the centroid of each

class k is at ck. The traditional LDA aims to find (K − 1) discriminant vectors

wi formed as a d-by-(K − 1) projection matrix W = [w1 · · ·wK−1] in order to

maximize the following Fisher’s criterion [19].

maximize
W

J(W) :=
|WTSBW|
|WTSWW|

subject to ||wi|| = 1 where i = 1, ..., K − 1.

(2.5)

Note that J(W) is the Fisher’s criterion. | · | represents the determinant of

the matrix. || · || represents Euclidean norm. Between-class scatter matrix SB and

within-class scatter matrix SW are defined as follows:

SB =
K∑
k=1

nk(ck − c)(ck − c)T (2.6)

SW =
K∑
k=1

Sk. (2.7)

The maximization problem in equation (2.5) can be solved by transforming

to the generalized eigenvalue problem S−1
W SBW = J(W)W. In order to solve

W, eigenvalues J(W) of S−1
W SB is computed and then choose the eigenvectors W

corresponding to the non-zero eigenvalues.

For a special case, when LDA is only used for a binary class problem (two

classes, K = 2), the projection matrix W consists of only one discriminant vector

w of size 1. The value of w can be simply computed by the following equation.

Let SW = S1 + S2. Assume SW is invertible, then

w =
S−1
W (c1 − c2)

||S−1
W (c1 − c2)||

. (2.8)

11

LDA has an important limitation. If distribution of data in each class is

not Gaussian distribution, LDA may not efficiently classify. There are many LDA

methods to solve this limitation, overall concepts are called Local LDA. The idea

of local LDA is to divide the data set into subgroups, to use k-nearest neighbor

method [13], or to get weights of each data depending on their local structures [17]

to detect local sample data in order to calculate LDA. The advantages of using

local LDA are 1) when the data is non-linear separable, local LDA can handle

them with local linear discriminant vectors and 2) it uses only some parts of data

for calculating LDA.

Above LDA methods work with a static data that knows the whole data,

sizes, and characteristic in advance. Since practical applications need rework for

streaming data, several researchers proposed the algorithm of LDA for streaming

data as the incremental learning of LDA [5,7]. The same as the traditional LDA,

all incremental learnings of LDA confront the same limitation of LDA.

In our study, a binary class LDA is applied to design a new improvement of

measuring the nearness based on local shape-function and used to determine class

of testing data based on the new measuring distance. From equation (2.8), cen-

troids and covariance matrices of two class groups are used to find the discriminant

vector w for the binary class. This is consistent with updating the parameters of

our proposed method based on the concept of discard-after-learn similar to VEBF.

2.3 Concept of Versatile Elliptic Basis Function (VEBF)

The versatile elliptic basis function (VEBF) was introduced by Jaiyen et.al.

[11] in 2010. They proposed a sequential incremental learning based on local-shape

function and discard-after-learn concept. There are two parts of VEBF. The first

part is the part of introducing the local-shape function (called neuron) based on

12

covered incoming datum . The second part is the learning part or the part of

updating neurons. VEBF proposed a general hyper-ellipsoidal function that can

be expanded, shrinked, or rotated according to distribution of the data set in order

to cover incoming datum during the learning process. The generalization of the

d-dimensional hyper-ellipsoidal function is defined by the following equation.

d∑
i=1

((x − c)Tui)
2

a2i
= 1 (2.9)

where ui is a ith eigenvector of covariance matrix of X = {x1,x2, . . . ,xN} for

determining a direction of the hyper-ellipsoid. The constant ai is the width along

the direction of the ith eigenvector, x is a data vector, and c is a center of X.

From equation (2.9), the versatile elliptic basis function is defined as follows.

ψ(x) =
d∑

i=1

((x − c)Tui)
2

a2i
− 1. (2.10)

Since VEBF is the sequential incremental learning, updating the parameters

such as mean and variance need a recursive computation. Therefore, a recursive

mean and a recursive covariance matrix were introduced. Our proposed method

also used these recursive functions to update the parameters.

Due to the new neurons can be automatically generated during learning

process, some neurons may be redundant. As the reason above, merging strategy

should be included in the learning process. VEBF defined the merging function of

any two neurons in terms of the distance between centers of two neurons c(1) and

c(2).

ϕ(c(1), c(2)) =
d∑

i=1

(
(c(1) − c(2))Tu(2)

i

)2
(a

(2)
i)2

− 1. (2.11)

In the learning algorithm of VEBF, two neurons will be merged when they satisfy

13

the merging criterion ϕ(c(1), c(2)) ≤ θ or ϕ(c(2), c(1)) ≤ θ. The constant θ was set

to 0 for all experiments in [11]. This means if the center of neuron 1 is inside or on

the boundary of neuron 2 or the center of neuron 2 is inside or on the boundary

of neuron 1, respectively, then both neurons are merged into the new neuron with

the new width based on Gaussian distribution.

2.4 Checking the Intersection of Two Hyper-ellipsoids

Checking the intersection of two hyper-ellipsoids is essential in order to merge

two hyper-elliptic structures of the same class into a larger one. This dissertation

modified the method of checking touch of two ellipsoids at a single point by Alfano

and Greer [20]. Let A and B be the represented matrices of the first and the second

ellipsoids, respectively. Suppose X and Y are data vectors for the first and the

second ellipsoids, respectively. The equations of both ellipsoids can be written as

follows.

XAXT = 0 (2.12)

YBYT = 0. (2.13)

Assume that X is in both ellipsoids when they intersect each other. Thus, we have

XAXT = 0 (2.14)

XBXT = 0. (2.15)

Testing overlap of both ellipsoids can be transformed into the process of formulat-

ing eigenvalues by these steps. A constant λ is multiplied to matrix A in equation

(2.14) first.

X(λA)XT = 0. (2.16)

14

Then subtract (2.16) and (2.15) to obtain these equations.

X(λA − B)XT = 0 (2.17)

XA(λI − A−1B)XT = 0. (2.18)

Hence, the relation |λI − A−1B| = 0 is the condition for testing the intersection

of two ellipsoids. | · | represents the determinant of a matrix.

2.5 Distance from a Sample Point to a Hyper-ellipsoid

There are several strategies to measure the closeness between a sample point

and a hyper-ellipsoid. A proper measurement is a key factor on a criterion of

a decision function for classifying with hyper-ellipsoids. Distance measurements

relating with hyper-ellipsoid shape are mentioned as follows. Suppose x is a sample

point in d-dimensional space, S is a covariance matrix corresponding to a hyper-

ellipsoid in d-dimensional space, and c is a centroid of a hyper-ellipsoid in d-

dimensional space. A hyper-ellipsoid is defined in equation (2.4).

2.5.1 Euclidean Distance

A easy way to measure the closeness is to compute the Euclidean distance

between a sample point x and a centroid of a hyper-ellipsoid c by the following

equation.

ED(x, c) := ||x − c|| :=
√

(x − c)T (x − c) (2.19)

where || · || represents Euclidean norm and T represents a transpose.

2.5.2 Mahalanobis Distance

Mahalanobis distance is a distance measure between a sample point x and

distribution of captured data of a hyper-ellipsoid where S and c are updated

15

including the new point x. Let cm be a new centroid, and Sm be a new covariance

matrix, Mahalanobis distance is defined by the following equation.

MD(x, cm,Sm) :=
√

(x − cm)TS−1
m (x − cm) (2.20)

where S−1
m represents the inverse of Sm.

2.5.3 The Versatile Elliptic Basis Function Value

VEBF [11] and CIL [12] use their shape-function value as a decision function

to measure the closeness between a sample point to VEBF. Their versatile elliptic

basis function of the kth neuron is defined as follows.

ψk(x) =
d∑

i=1

((x − c)Tui)
2

a2i
− 1 (2.21)

where {u1,u2, · · · ,ud} are eigenvectors of a covariance matrix of covered data and

ai is the width of each axis of VEBF.

2.5.4 Boundary Distance

Measuring the distance with respect to the boundary of the standard form

of a hyper-ellipsoid is rather complex, hence an approximate distance between a

sample point to the boundary of the standard hyper-ellipsoid was proposed.

In 2005, Zimmermann and Svoboda [21] proposed the approximate distance

between the sample point to the nearest boundary of an ellipse, it also can be

applied to a high dimensional space or a hyper-ellipsoid. This distance is measured

on the line connecting the sample point and the centroid. The line intersects

the boundary of the ellipse at a specific point. The actual distance is measured

from the intersection point to the sample point. Instead of using the ellipse,

16

map an ellipse to a unit circle

by matrix transformation

distance to the boundary

Figure 2.1: Approximate distance from a point to an ellipse by Zimmermann and
Svoboda.

Zimmermann and Svoboda transformed the shape of ellipse as a unit circle by

matrix transformation which is much simpler as shown in Figure 2.1. The concept

of this strategy is described as follows. First, the original ellipse and the sample

point are transformed by the inverse of the matrix LT become a unit circle where

this matrix is obtained by factorizing the covariance matrix representing an ellipse

with a Cholesky factorization (S = LLT). The distance of the sample point to

the unit circle is easy to compute using the Euclidean distance. After that, the

distance value will be retransformed to the original shape using the matrix LT .

Approximate boundary distance according to the above concept is defined by the

following equation.

BD1(x, c,S) := ||(x − c)− (x − c)
||(LT)−1(x − c)|| || (2.22)

where (·)−1 represents the inverse of the matrix and || · || represents Euclidean

norm.

In 2017, Wattanakitrungroj et al. [16] also proposed a method to compute

the distance between the boundary of full micro-cluster and a data point by solv-

ing equations following the concept in Figure 2.2. Although both methods [16,21]

deploy different definitions of ellipsoid, they end up with the same distance ap-

proximation. However, [16] takes less computation time and calculation steps

17

centroid

sample point

distance to the boundary

Figure 2.2: Approximate distance from a point to an ellipse by Wattanakitrungroj
et.al.

than [21]. Approximate boundary distance according to [16] is defined by the

following equation.

BD2(x, c,S) := ||x − c||(1− 1√
(x − c)TS−1(x − c)

). (2.23)

In the next Chapter, these knowledge backgrounds will be adapted to our

proposed method either the part of the learning process or the part of the testing

process.

CHAPTER III

METHODOLOGY

The new structure of capturing function and the equations for updating the

parameters were introduced in this Chapter. The proposed learning algorithm,

its time complexity, and its illustrations in two-dimensional space were provided

in the part of the learning process. In the part of the testing process, the new

distance measure based on LDA discriminant vector and its concept were proposed.

Determining the classes of our method was also based on our new distance measure.

The details of our proposed method are given in the following sections.

3.1 Proposed Structure of Capturing Function and Parameter Updat-

ing

To cope with the problems previously addressed, a new structure of capturing

function and its parameter updating process were proposed. The new structure

processes data faster than those structures used in discard-after-learn approaches

in [11, 12]. The details of these issues are the followings.

3.1.1 Structure of Scalable Hyper-Ellipsoidal Function

Expanding or shrinking the size of the previously proposed structure of stan-

dard hyper-ellipsoid function requires the computations of eigenvectors and eigen-

values first. To reduce this prior computations, the following generic form of

standard hyper-ellipsoid function was used in our approach. Instead of setting

the right-hand side of standard hyper-ellipsoid function to a constant of one, this

constant is replaced by a positive r. This constant r makes the structure of stan-

19

Figure 3.1: Relationship between eigenvalues and eigenvectors of the covariance matrix
to size and shape of hyper-ellipsoid in two-dimensional, respectively.

dard hyper-ellipsoid function easy to be scaled. The equation of this new scalable

hyper-ellipsoidal function (SHEF) is defined as follows.

(x − c)TS−1(x − c) = r2 (3.1)

where x ∈ X is a data vector, c is the center of X, and S is the covariance matrix

of X.

The sizes of semi-axis in each dimension can be assigned by r
√
λi. In other

words, the sizes of semi-axis is set to be the scale of the standard deviation of the

data along the directions of each eigenvector as illustrated in Figure 3.1.

In several applications, the covariance matrix S is singular. To avoid this

condition, the concept of regularization [18,22] was adapted to the scalable hyper-

ellipsoidal function by adding a small positive constant ϵ to the covariance matrix

S as shown in the following equation.

(x − c)T (S + ϵI)−1(x − c) = r2. (3.2)

20

I is a d-by-d identity matrix.

Lemma 1. Let S and S∗ be two covariance matrices such that S∗ = S + ϵI.

Covariance matrix S∗ has the same set of eigenvectors as those of S and each

eigenvalue λ∗i = λi + ϵ.

Proof: The covariance matrix S can be factorized in the term of U and Λ as

follows:

S = UΛUT . (3.3)

Substitute equation (3.3) into S∗ = S + ϵI, we obtain the following equation.

S∗ = UΛUT + ϵI. (3.4)

Since U is an orthogonal matrix, so UUT = I. Hence,

S∗ = UΛUT + (ϵI)UUT

= UΛUT + U(ϵI)UT

= U(Λ + ϵI)UT

(3.5)

and

Λ∗ = Λ+ ϵI =


λ1

. . .

λd

+ ϵ


1

. . .

1

 (3.6)

=


λ1 + ϵ

. . .

λd + ϵ

 . 2

In case of zero covariance matrix (or there is only one datum in SHEF), S becomes

singular. Hence, the initial width of SHEF in each dimension was set to
√
ϵ instead.

21

3.1.2 Updating Parameters of SHEF

Each SHEF contains four parameters: the number of captured data (n), a

centroid of captured data (c), a covariance matrix of captured data (S), and a

class of captured data (z). Since the training process is based on the concept of

discard-after-learn. Incoming datum will be discarded after being captured by any

SHEF, so the first three parameters of that SHEF must be updated accordingly

to recently incoming data.

Assume that incoming datum xnew ∈ Rd is captured by the jth SHEF of

the same class. Let nold
j , cold

j , cnew
j , Sold

j , and Snew
j be the current number of data

points, the current centroid, the updated centroid, the current covariance matrix,

and the updated covariance matrix, respectively. To cope with the possibility of

data overflow and to preserve the time and space complexities when employing the

concept of discard-after-learn, the following set of recursive functions for comput-

ing new centriod and covariance matrix were previously proposed in [11, 12, 16].

cnew
j =

nold
j cold

j + xnew

nold
j + 1

(3.7)

Snew
j =

nold
j

(
Sold
j + cold

j (cold
j)T

)
+ xnew(xnew)T

nold
j + 1

− cnew
j (cnew

j)T .
(3.8)

Although these recursive functions efficiently support the concept of discard-

after-learn, it is possible to speed up the updating process of covariance matrix

by rewriting equation (3.8) as stated in the following theorem.

22

Theorem 3.1.1. A new covaraince matrix Snew
j can be computed by the following

recursive function.

Snew
j =

nold
j

nold
j + 1

(
Sold
j +

(cold
j − xnew)(cold

j − xnew)T

nold
j + 1

)
. (3.9)

The proof of equation (3.9) is given in Appendix A. Note that the time

spent on computing cold
j (cold

j)T , xnew(xnew)T , and cnew
j (cnew

j)T in equation (3.8) is

reduced by computing only (cold
j − xnew)(cold

j − xnew)T instead in equation (3.9).

Although Theorem 3.1.1 addresses only one incoming datum, equation (3.9) can

be adapted to an incoming data chunk by updating the covariance matrix with

one datum at a time.

3.2 New Learning Method Using Scalable Hyper-ellipsoidal Function

The streaming data flow into the learning process in one multi-class chunk

at a time. Let Ω = (X(1),X(2), · · ·) be the sequence of the streaming data chunk

X(t) at different time t. Each X(t) = ((x(t)
1 , y

(t)
1), · · · , (x(t)

Nt
, y

(t)
Nt
)) consists of a set

of Nt pairs of datum x(t)
i and its target class y(t)i . The capturing process focuses

one datum at a time with the following main steps. Assume that class y(t)i = k is

being considered.

1. Capturing an incoming data chunk by introducing a new SHEF or by ex-

panding some existing SHEF of the same class k. The criteria for performing

each operation depend upon: (1) the minimum distance and median distance

among data within each class and (2) an adaptive threshold distance based

on the number of SHEFs of the same class k and the amount of data in each

SHEF of class k.

2. Merging two SHEFs of the same class k into one larger SHEF to reduce

23

the number of SHEFs of class k. The merging criteria are based on degree

of overlap between two nearest SHEFs of the same class k using Euclidean

distance from a centroid to other centroids.

Prior to the learning algorithm based on these two main steps, the compu-

tational detail in each step is discussed first in the following sections.

3.2.1 Initializing SHEF Widths and Threshold Distance for Introduc-

ing New SHEF

At the starting step of learning process, the initial size of the first SHEF for

capturing the first data chunk of a class, say class k, must be defined. If the class

has only one datum, then a constant ϵ as introduced in Lemma 1 is deployed as

the initial width of SHEF in all dimensions. Otherwise the width of SHEF in each

dimension is computed by the following equation. Suppose x(1)
a is in class k and

the amount of data in this class is nk. Let dist(x(1)
a) be the Euclidean distance

from x(1)
a to its nearest neighbour of the same class in the first incoming chunk.

The initial width, denoted as dist_initk, of SHEF in class k is set up as follows.

dist_initk =


median

x(1)
j ∈ class k

(dist(x(1)
j) nk > 1

√
ϵ in Lemma 1 nk = 1

(3.10)

Note that this initial width is used as the initial value for each axis i of SHEF

in class k. The initial widths of all new classes appearing after the first chunk were

set to
√
ϵ.

The value of threshold distance is used to determine whether a new SHEF

of the same class should be introduced to capture new incoming datum or not.

This threshold distance is used to control the number of SHEFs generated during

24

the learning process. If there are too many SHEFs, then the over-fit problem

is occurred and the computational time obviously is increased. But if there are

too few SHEFs, then the misclassification of queried data may be imminent. The

distance concerns two factors. The first factor is the amount of data in each SHEF

of the same class. The second factor is the number of existing SHEFs of the same

class. A merging threshold distance is defined based on these two factors as shown

in the following paragraph.

Let M be the predefined minimum amount data allowed within each SHEF

of class k. Suppose there are mk SHEFs whose amount of data in each SHEF is

less than M . The threshold distance of class k, denoted as dist_thsk, is defined

as follows. Note that dist_thsk = dist_initk in the first chunk.

dist_thsk =



dist_thsk if mk ≤ half of

existing SHEFs in class k

2× dist_thsk if mk > half of

existing SHEFs in class k

(3.11)

From equation (3.11), its concept is that if there exist many inefficiently

generated SHEFs (each SHEF captured data less than M), the threshold distance

having an effect to an introducing new SHEF condition should be scaled up.

3.2.2 Condition of Intersection of Two Scalable Hyper-Ellipsoids

The structure of scalable hyper-ellipsoids in this study is different from the

structure studied by Alfano and Greer [20]. Their structure is based on the stan-

dard elliptic function, where the right-hand side of elliptic equation is set to zero

but SHEF employs a scaling constant r2 as defined in equation (3.1) instead.

However, their technique of deriving the intersecting condition was adapted to

25

our scenario. Suppose two SHEFs, SHEFα and SHEFβ intersect. The covariance

matrix of SHEF can be computed from the covariance matrix of captured data

vectors by the following steps. Let S̃ be the covariance matrix of SHEF and S be

the covariance matrix of captured data vectors. Both S̃ and S are computed from

the same data set. From equation (3.3), we have

S̃ = UΛ̃UT (3.12)

= U


λ̃1

. . .

λ̃d

UT (3.13)

= U


(r
√
λ1)

2

. . .

(r
√
λd)

2

UT (3.14)

= r2UΛUT (3.15)

= r2S (3.16)

Thus,

S̃
−1

=
1

r2
S−1. (3.17)

The following theorem states the conditions of intersection of two scalable hyper-

ellipsoids modified Alfano and Greer’s method [20].

Theorem 3.2.1. Both of SHEFα and SHEFβ do not overlap each other if all

eigenvalues of the following matrix P are distinct and all real numbers with some

negative values, otherwise they either overlap, are inside, or touch.

P =

 D −Dcβ + cα

F −Fcβ + 1

 , (3.18)

26

where F = (−cT
α + cT

β)S̃−1
β and D = S̃αS̃−1

β + cαF. Centroids cα and cβ are of

SHEFα and SHEFβ, respectively.

The proof of modifying in Theorem 3.2.1 is given in Appendix B. If two

SHEFs of the same class satisfy the conditions in Theorem 3.2.1, then both of

them are merged into a larger SHEFγ and all relevant parameters are updated

using the following equations.

nγ = nα + nβ (3.19)

cγ =
nαcα + nβcβ

nγ

(3.20)

Sγ =
1

nγ

(
nαSα + nβSβ +

nαnβ

nγ

(cα − cβ)(cα − cβ)
T

)
(3.21)

3.2.3 Learning Algorithm of SHEF

The learning process of SHEF consists of three main procedures. The first

procedure is initializing the width of the first SHEF based on the condition stated

in Section 3.2.1 and equation (3.10). The second procedure is checking the con-

dition for introducing a new SHEF to capture new incoming data based on the

threshold distance discussed in Section 3.2.1 and defined in equation (3.11). The

last procedure is merging two SHEFs of the same class according to the overlap

constraints in Section 3.2.2 and Theorem 3.2.1 using equations (3.19), (3.20),

and (3.21). The detail of learning algorithm is given in the next page.

27

Algorithm 1 Learning procedure of SHEF for current incoming data chunk
Input: (1) a set of N pairs of datum and target

X = ((x1, y1), · · · , (xN , yN)) for incoming data chunk at any time.
(2) a constant ϵ.
(3) a set of SHEFs from previous learning procedure

(if the incoming chunk is not the first chunk.)
(4) a constant M denoting the minimum of data in any SHEF.

Output: a set of SHEFs and their updated parameters.

1. If the first data chunk then
2. Initialize dist_thsyj = dist_inityj using equation (3.10)

for every class yj in chunk X.
3. EndIf
4. For each pair (xi, yi)) ∈ X do
5. If there exists a set of SHEFs of class yi then
6. Let cj, nj, and Sj be the centroid, amount data,

and covariance matrix of captured data of SHEFj

of class yi, respectively.
7. Let ξ = argmin

j
(||xi − cj||).

8. If ||xi − cξ|| > dist_thsyi then
9. Introduce a new SHEF of class yi to capture

xi and update dist_thsyi using equation (3.11).
10. else
11. Put xi in SHEFξ and update parameters

using equations (3.7) and (3.9). Update nj = nj + 1.
12. EndIf
13. Discard pair (xi, yi) from the training set.
14. Let SHEFα be the SHEF capturing xi.
15. If nα ≥M then
16. Deploy the conditions in Theorem 3.2.1 to test

overlap SHEFα and the nearest SHEFβ of class yi.
17. If SHEFβ overlaps SHEFα then
18. Merge SHEFα and SHEFβ into a larger SHEFγ.
19. Update parameters of SHEFγ using equations

(3.19), (3.20), and (3.21).
20. EndIf
21. EndIf
22. else
23. Introduce a new SHEF of class yi to capture xi

and update dist_thsyi using equation (3.11).
24. Discard pair (xi, yi) from the training set.
25. EndIf
26. EndFor

28

3.2.4 Time Complexity of the Learning Algorithm

There are one step for initialization the width of SHEF and two main steps

for learning algorithm using SHEF. The worst case time complexity of our learning

algorithm can be analyzed as follows. Assume that there is only one class in the

first chunk of streaming data with N1 d-dimensional data points. Initialization

the width consists of finding the nearest Euclidean distance of each data points

and finding the median of them, so the time complexity of this step is O(dN2
1). In

learning step, the time complexity was analyzed as one datum at a time. Assume

that class of the training datum is k. Let h is the number of existing SHEFs of class

k. The time complexity of line 7 is O(dh). The worst case of checking the condition

of line 8 is it always introduces the new SHEF (line 9), the time complexity of line 9

is dominated by the term of updating the threshold distance using equation (3.11).

Therefore, the time complexity of this step is O(h). The worst case of merging

strategy in lines 15 - 21 is it always satisfies the condition of line 15 and line 17.

The time complexity of this step depends on the dimension of the data set due

to the computation of the inverse of covariance matrix and to find its eigenvalues.

Thus, the time complexity of merging step is O(d3). Hence, the time complexity

of Algorithm 1 is O(dN1)+ [O(dh)+O(h)+O(d3)] = O(dN1)+ [O(dh)+O(d3)].

Assume that there are N training data points, N1 << N , d << N , and

h << N . So the time complexity becomes O(dN1) +
∑N

i=1[O(dh) + O(d3)] =

O(dN1) +O(dhN) +O(d3N) = O(N).

29

3.2.5 The Illustration of Learning Algorithm in Two-dimensional

The example of learning algorithm of SHEF according to Algorithm 1 is

illustrated in a two-dimensional space in order to explain how the algorithm works.

Suppose there are 11 samples in the first chunk of streaming data separated into

two classes denoted by five blue circles (class 1) and six red squares (class 2) as

shown in Figure 3.2. AssumeM is set to 2. First, the initial width of SHEF in each

class is calculated using equation (3.10). Figure 3.3 and Figure 3.4 show the first

and second training data of the first chunk with an initial width of class 1 and class

2, respectively. The third training data with class 1 is fed, see Figure 3.5, and finds

the nearest centroid of the same class checking the criteria for introducing a new

SHEF or expanding some existing SHEF. If the Euclidean distance between the

nearest centroid of SHEF and the incoming datum of the same class is less than or

equal to the threshold distance as shown in Figure 3.5, that SHEF will be updated

with that incoming datum. As in the example, the computed distance is greater

than the threshold distance, the new group is introduced following Figure 3.6. The

new SHEFs including updating their parameters of the next incoming datum in the

first chunk are illustrated in Figure 3.7 - Figure 3.9. The captured data into any

SHEF will be discarded forever denoted by a shape with dashed boundary. Finally,

four SHEFs are genearted after learning all of the first chunk as shown in Figure

3.10. New training data in the second chunk is fed and updated parameters of the

capturing SHEF as shown in Figure 3.11 and Figure 3.12, respectively. Notice that

there exists two SHEF overlapping each other, thus those SHEFs will be merged

into the new larger SHEF to reduce the number of SHEFs as shown in Figure 3.13.

30

Figure 3.2: The data set in the first chunk for calculating the initial width in each
class.

A training data

An initial width in class 1

Figure 3.3: Feed the first training data with class 1 (blue circle).

An initial width in class 2

Figure 3.4: Feed the second training data with class 2 (red square).

31

Figure 3.5: Feed the third training data with class 1.

discarded data

Figure 3.6: Introduce a new SHEF then discard the captured data and feed the forth
training data with class 2.

Figure 3.7: Feed the fifth training data with class 2.

32

Figure 3.8: Introduce a new SHEF then discard the captured data and feed the sixth
training data with class 2.

Figure 3.9: Update parameters of SHEF2.

Figure 3.10: Four SHEFs of the first chunk

33

A new training data

Figure 3.11: Feed a new training data with class 2.

Overlap

Figure 3.12: Update parameters of SHEF2.

New SHEF

Figure 3.13: Merge two overlapping SHEF into the new SHEF.

34

testing datum

centroid

centroid

Figure 3.14: An example of wrong interpretation of closeness between testing datum
and two SHEFs. The closeness is determined by measuring Euclidean distance from the
datum to the centroids of both SHEFs.

testing datum

centroid

centroid

Figure 3.15: The closeness distances measured with respect to the boundary of SHEF1

and SHEF2. The datum is close to SHEF1 instead of SHEF2.

3.3 Identifying Classes of Testing Data

The class of testing datum is identified according to the class of two closest

SHEFs. Usually, the closeness between testing datum and SHEF can be easily

determined in terms of Euclidean distance either from datum to the centroid

or from datum to the boundary of SHEF. But the simplicity may lead to the

wrong interpretation. Figure 3.14 shows an example of the Euclidean distances

from testing datum to the centroids of SHEF1 and SHEF2. The distance from

datum to the centroid of SHEF1 is longer the distance to the centroid of SHEF2.

Thus, datum must be assigned to SHEF2 instead of SHEF1. But in fact, the

35

correct class of datum in this example is the class of SHEF1 because it is closer

to SHEF1 than SHEF2. To achieve the correct class identification, the distance

must be measured with respect to the boundaries of SHEF1 and SHEF2 as shown

in Figure 3.15. However, measuring the distance with respect to the boundary of

SHEF in a high dimensional space is rather complex. Recently, there were several

attempts to measure the closest distance to the boundary of a hyper-ellipsoid.

Zimmermann and Svoboda [21] and Wattanakitrungroj et al. [16] proposed the

approximate distance between a sample point to the boundary of an ellipse as

mentioned before in Chapter 2, Section 2.5.4. However, this approximate distance

measure only focuses on the shape of hyper-ellipsoid without taking into account

distribution of data which is different from our purpose. Thus, a new distance

measure was proposed in this study.

3.3.1 Projecting Width of SHEF onto Discriminant Vector

Instead of using the direct distance between testing datum to the boundary

of SHEF, our closeness distance is defined as the distance between the projected

SHEF and the data point onto the linear-discriminant-analysis (LDA) vector de-

rived from the close SHEF and testing datum. The projection of SHEF boundary

and its center onto the LDA vector can be computed as follows.

Let w be the discriminant vector. According to the concept of LDA as

described in equation (2.5), there must be two classes of data given first. Then,

the discriminant vector w is computed using the cost function in equation (2.5). To

explain our proposed closeness distance, it is assumed that w is already computed

and SHEF in one class is projected onto this w as shown in Figure 3.16. Suppose

points A and B are the projected boundary points of SHEF onto w. Centroid c

36

The projected width

centroid

Projected boundary point

Figure 3.16: Projection of a SHEF onto the discriminant vector w in a 2-dimensional
space.

is projected onto w at position c′ using equation (3.22).

c′ = wTc. (3.22)

Note that ||A−c′|| and ||B−c′|| are equal and they can be defined as the projected

width of SHEF onto the discriminant vector w. Actually, the projected width can

be computed without knowing the locations of points A and B. In each eigenvector

of SHEF, the width of SHEF is equal to r
√
λi. This value is actually the eigenvalue

of data along the eigenvector computed from the covariance matrix S̃ of SHEF as

in equation (3.12). Thus, the projected width of ||A − c′|| and ||B − c′|| can be

computed by the following equation.

||A− c′|| = ||B − c′|| =
√

wT S̃w = r
√

wTSw, (3.23)

where wTSw is a non-negative scalar. || · || represents Euclidean norm.

Note that, our projection method is similar to Pope’s idea [23] using the different

definition of hyper-ellipsoid function.

37

centroid

data point

projected data

 point on wp

 projected

centroid on wp

Figure 3.17: The concept for measuring distance from x to a SHEF by the ratio of
|wT

p (x−c)| and r
√

wT
p Swp along the discriminant vector wp defined in equation (3.24).

3.3.2 Measuring Distance from a Point to SHEF along Discriminant

Vector

A new distance measured from queried datum to SHEF along the discrim-

inant vector was proposed. Based on the concept of LDA, a discriminant vector

must be derived from two classes of data to maximize the degree of overlap be-

tween projected data in both classes onto the discriminant vector. Moreover, LDA

assumes that each class must have more than one datum to make the variance

greater than zero. Obviously, the discriminant vector of LDA cannot be directly

adapted to our new proposed distance measure because queried datum is just a

single point. To solve this problem, the following concept was then developed.

Let S and c be the covariance matrix and the centroid of captured data

of SHEF, respectively. Suppose x is a single queried data point. In order to

find the discriminant vector for both SHEF and x, data point x is reconsidered

as the centroid of another SHEF. Using equation (2.8) with this scenario, the

discriminant vector can be derived as follows.

wp =
S−1(x − c)

||S−1(x − c)|| . (3.24)

38

Figure 3.17 shows an example of discriminant vector wp and the projected width

of SHEF as well as the projected location of data point x onto wp. There are two

significant distances to be used. The first distance |wT
p (x − c)| is the projected

distance from the projected centroid to the projected location of x. The second

distance r
√

wT
p Swp is the projected width of SHEF. The new distance from data

point x to SHEF can be measured by the value of the following projection ratio.

D(x, c,S) =
|wT

p (x − c)|

r
√

wT
p Swp

. (3.25)

The value of the projection ratio can be interpreted as follows. If D(x, c,S) < 1,

the projection location of data point x is inside projected SHEF onto wp. If

D(x, c,S) > 1, the projection location of data point x is outside projected SHEF

onto wp. And if D(x, c,S) = 1, the projection location of data point x is on the

boundary of projected SHEF onto wp.

Based on this projection ratio, determining whether data point x is inside

or outside SHEF can be easily done. The following theorem states the conditions

to indicate the location of x with respect to SHEF.

Theorem 3.3.1. Let S and c be a covariance matrix and a centroid of captured

data of SHEF in a d-dimensional space. Suppose x is a single queried data point

and a discriminant vector wp is defined in equation (3.24).

1. If D(x, c,S) < 1 then x is inside SHEF.

2. If D(x, c,S) > 1 then x is outside SHEF.

3. If D(x, c,S) = 1 then x is on the boundary of SHEF.

The proof of Theorem 3.3.1 is given in APPENDIX C.

39

class 1

testing datum

class 2

Figure 3.18: An example of projections of two SHEFs and x onto a discriminant vector
w defined in equation (2.8). There are two projection ratios, one for each SHEF.

3.3.3 Determining Class of Queried Data Point Based on Projection

Ratio

Data point x may encounter two possible scenarios when its projection ratio

is deployed to determine its appropriate class. SHEFs whose amount of data is less

thanM will be ignored for assigning the class of data point x. Suppose two SHEFs

are close to x. The projection ratios of both SHEF1 and SHEF2 are D(x, c1,S1)

and D(x, c2,S2), respectively.

1. If both SHEFs represent the same class, then x is assigned to the class of

either SHEF1 or SHEF2.

2. If both SHEFs represent the different classes, then the appropriate class of

x is determined as follows.

(a) D(x, c1,S1) ≤ 1 < D(x, c2,S2). This implies that x is inside or on the

boundary only SHEF1 following Theorem 3.3.1. Thus, x should be

assigned to the class of SHEF1 rather than that of SHEF2.

40

(b) Otherwise, the projection ratio is deployed to both SHEFs onto a new

discriminant vector w defined in equation (2.8) instead as shown in

Figure 3.18. Denoted by D′(x, c,S) =
|wT (x − c)|
r
√

wTSw
, the appropriate

class of x is determined as follows.

i. If D′(x, c1,S1) < D′(x, c2,S2), then x should be assigned to the

class of SHEF1.

ii. If D′(x, c1,S1) = D′(x, c2,S2), then the appropriate class of x is

indeterminate.

CHAPTER IV

EXPERIMENTS AND RESULTS

In this Chapter, the performance of SHEF was evaluated on synthetic data

sets and real-world data sets compared to other methods. Parameter settings of

each method were described. The details of these issues are given in the following

sections.

4.1 Data sets

All experiments were tested with seven 2-dimensional synthetic data sets

(see Figure 4.1) consisting of a differently distributed data set in each class (Set1),

nonlinear separable data sets (Set2 - Set6), and a Guassian distributed data set

(Set7) and seven real-world data sets from the University of California at Irvine

(UCI) Repository of the machine learning database [24] which were selected by

varying the number of features, the number of data, and the number of classes.

Letter, Shuttle_trn, and Kddcup99 data set were selected to represent streaming

data. For Kddcup99, four symbolic features which are more than two categories

were removed. So there are 38 features in this data set. The description of all

data sets were given in Table 4.1.

4.2 Accuracy Measurements

Since the proposed SHEF learning was designed to cope with streaming

data environment, a sequence of incoming data chunks was alternatively assigned

as a training chunk and a testing chunk. Only the accuracy of the testing chunk

is evaluated. The accuracy of each testing chunk is cumulated as Cumulative

42

-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-80

-60

-40

-20

0

20

40

60

80

100

(a) Set1

-20 -15 -10 -5 0 5 10 15 20
-40

-30

-20

-10

0

10

20

30

40

(b) Set2
-20 -15 -10 -5 0 5 10 15 20

-20

-15

-10

-5

0

5

10

15

20

(c) Set3

-20 -15 -10 -5 0 5 10 15 20
-50

-40

-30

-20

-10

0

10

20

30

40

50

(d) Set4
-20 -15 -10 -5 0 5 10 15 20

-50

-40

-30

-20

-10

0

10

20

30

40

50

(e) Set5

-10 -5 0 5 10 15
-30

-20

-10

0

10

20

30

40

(f) Set6
-10 -5 0 5 10 15 20

-10

-5

0

5

10

15

20

(g) Set7

Figure 4.1: Seven synthetic data sets used in the experiments.

43

Table 4.1: Experimental data sets and their attributes.

Data set # of features # of data # of classes
% Synthetic data sets

Set1 2 496 3
Set2 2 2000 2
Set3 2 2000 2
Set4 2 2000 2
Set5 2 2000 4
Set6 2 3000 3
Set7 2 6000 4

% Real-world data sets
Segment 19 2310 7
Spambase 57 4601 2
Waveform 21 5000 3
Satimage 36 6435 6
Letter 16 20000 26

Shuttle_ trn 9 43500 7
Kddcup99 38 494020 23

Accuracy. The SHEF was also evaluated with non-streaming data. There is only

one training chunk and one testing chunk. The accuracy of this evaluating scheme

is called Test Accuracy. For streaming data evaluation, we assume that training

data is divided into T chunks. Let ACCt, for 1 ≤ t ≤ T , be the evaluation accuracy

of the (t+ 1)th testing chunk after training the tth training chunk. Therefore, the

test accuracy is defined as ACCT . The average cumulative accuracy after training

t chunk ACAt is defined as follows.

ACAt =
1

t

t∑
i=1

ACCi, (4.1)

where t = 1, · · · , T − 1.

4.3 Parameter Settings

The performance of the proposed method was compared to VEBF [11], CIL

[12], ILDA [5], VLLDA based on k-NN [13], and LOL [10]. Since each compared

method uses different parameters, the settings of parameters of each method must

be separately done.

44

Table 4.2: Parameter settings of VLLDA, VEBF, and CIL.

Data set VLLDA (k) VEBF (δ) CIL (δ)

Set1 5 0.2 0.2
Set2 5 0.1 0.1
Set3 5 0.2 0.1
Set4 5 0.1 0.1
Set5 5 0.1 0.1
Set6 5 0.1 0.1
Set7 10 0.4 0.5
Segment 10 1 0.7
Spambase 10 1 0.4
Waveform 5 1 0.3
Satimage 10 0.9 0.7
Letter 5 0.7 0.7
Shuttle_trn 10 20 1
Kddcup99 10 2 2

For VEBF and CIL, the constant δ was set to scale the initial width of VEBF

shape function calculated from the average distance. Parameter settings for the

data sets of Segment, Spambase, Waveform, and Letter were referred from [12].

VEBF uses whole training data to calculate their initial average distance while CIL

uses the first 20% of training data. Unfortunately, the number of training data in

Shuttle_trn and Kddcup99 is too huge to be calculated in a short time. Hence the

only first 10,000 training data of Shuttle_trn and Kddcup99 were calculated for

VEBF and the only first 10,000 training data of Kddcup99 were calculated for CIL.

For LOL, the authors claimed that LOL is not very sensitive to the parameters

and suggested the settings of three parameters, namely the number of prototypes

k was set to 60; the balancing parameter λ was set to 1.0; and the aggressive

parameter C was set to 1.0 for all experiments. For VLLDA, the parameter k

must be set to be congruent with the k-nearest neighbour method. For ILDA and

VLLDA which use LDA for classification, the number of selected discriminant

vectors was set according to the number of non-zero eigenvalues of S−1
W SB.

For our proposed method, the following parameters were set: constant r was

set to 1.5; regularization parameter ϵ in Lemma 1 was set to 0.0001; minimum

45

number of data M in a SHEF was set to 3 for all experiments without tuning.

Parameter settings of VLLDA, VEBF, and CIL in this dissertation are shown in

Table 4.2.

4.4 Comparison Results

A 5-fold cross validation was used in all experiments for each method. In

order to create the environment of streaming data, training data in each data set

were divided into several chunks of different sizes. These chunks were sequentially

fed into the training process. The amount of data in each chunk was randomly

set within a pre-defined range called chunk-size range. Table 4.3 summarizes the

chunk-size range of each data set, the number of training chunks in each fold, and

the average of the number of training data in each chunk. In order to study the

effect of an incoming order of data chunks in each data set, ten groups of different

shuffle patterns of data chunks in each data set were created for each fold. All

experiments were conducted on a desktop PC with 8 GB RAM, Intel Core i7-4770,

3.4 GHz with licensed Matlab code.

Figure 4.2 illustrates the generated SHEFs by our method with the synthetic

data set. SHEFs captured local streaming data structures in each class according

to our purpose quite well being compared to original data in Figure 4.1. The

size, direction, and number of SHEFs in each class were appropriately updated

according to distribution of original data. The independent t-test was adopted

to measure the statistically significant difference between the average value of the

proposed method and other methods. The value with asterisk (*) means that there

is no statistically significant difference at the 5% significance level (p > 0.05). The

experimental results concerned the following issues.

46

-100 -50 0 50 100
-100

-50

0

50

100

12

10
7

1

3

2
6

8

11

4

9
5

-20 -15 -10 -5 0 5 10
-20

-15

-10

-5

0

5

10

10

7

3

2

6

4

9

5
Zoom

(a) Set1

-20 -15 -10 -5 0 5 10 15 20
-40

-30

-20

-10

0

10

20

30

40

12

10

1

4

3

9

2

6

5

7

8

11

(b) Set2
-20 -15 -10 -5 0 5 10 15 20

-20

-15

-10

-5

0

5

10

15

20

7

13 14

3 11

4

12

2

5

10
8

6

16

1

9

15

(c) Set3

-20 -15 -10 -5 0 5 10 15 20
-50

-40

-30

-20

-10

0

10

20

30

40

50

11

3

7

8

5

9

1

10

2
4

6

(d) Set4
-20 -15 -10 -5 0 5 10 15 20

-50

-40

-30

-20

-10

0

10

20

30

40

50

1

21

19

16

14

13

9

7

6

15

17

4

22

12

11

2

5

10
8

3

18

20

(e) Set5

-10 -5 0 5 10 15
-30

-20

-10

0

10

20

30

40

15

12

14

7

13

11

9

8

4

2

5

1

6

16

10

3

(f) Set6
-10 -5 0 5 10 15 20

-10

-5

0

5

10

15

20

4

1

3

2

(g) Set7

Figure 4.2: The results of learning seven synthetic data sets using SHEFs. Only 80%
of data in each synthetic data were used for training.

47

Table 4.3: Number of training data in each fold for each streaming chunk.

Data set Chunk-size range # of training chunks in each fold Avg and Stdv of # of training data (x̄±sd) in each chunk
fold1 fold2 fold3 fold4 fold5 fold1 fold2 fold3 fold4 fold5

Set1 [20,50] 11 12 11 12 10 36.09±8.9 33.08±7.44 36.09±9.51 33±7.9 39.7±9.72

Set2 [100,200] 10 11 11 11 10 160±28.67 145.45±19.61 145.45±21.78 145.45±21.57 160±26.83

Set3 [100,200] 11 11 10 10 10 145.45±21.04 145.45±21.77 160±27.53 160±35.38 160±22.03

Set4 [100,200] 10 11 11 10 10 160±31.12 145.45±24.68 145.45±29.04 160±25.39 160±31.36

Set5 [100,200] 10 9 10 10 10 160±31.22 177.78±22.61 160±27.93 160±32.07 160±23.41

Set6 [100,200] 15 16 15 17 16 160±18.94 150±29.8 160±23.37 141.18±31.52 150±24.83

Set7 [100,200] 31 30 33 32 31 154.84±26.71 160±23.74 145.45±31.1 150±24.63 154.84±32.88

Segment [100,200] 12 13 12 12 13 154±31.2 142.15±28.8 154±30.54 154±25.89 142.15±32.18

Spambase [100,200] 24 25 25 24 24 153.33±28.86 147.28±28.81 147.28±28.83 153.33±29.67 153.33±28.94

Waveform [100,200] 26 26 28 27 25 153.85±28.21 153.85±31.83 142.79±24.38 148.19±25.76 160.04±27.69

Satimage [100,200] 35 35 35 34 35 147.09±29.91 147.09±29.13 147.11±31.22 151.41±31.09 147.06±27.6

Letter [100,200] 109 108 107 104 105 146.8±27.92 148.14±28.44 149.52±28.23 153.82±27.14 152.42±27.87

Shuttle_trn [100,200] 230 231 232 236 232 151.31±30.18 150.65±29.61 150±29.6 149.46±30.3 149.99±29.31

Kddcup99 [1000,2000] 263 272 260 258 268 1502.7±269.85 1453±285.57 1520.1±287.42 1531.8±276.97 1474.7±285.18

48

4.4.1 Test Accuracy

The average test accuracy and the standard deviation of all methods in

each data set are reported in Table 4.4. The compared methods used different

approaches to learning data. The first approach is retaining all training data

throughout the training and testing processes as implemented in VLLDA and

ILDA. But the second approach is using the concept of discard-after-learned. Each

datum is learned in one pass and discarded afterwards. No need to retain any

incoming datum throughout the training and testing processes as implemented in

LOL, VEBF, CIL, and our proposed method. To obtain a clear comparison based

on these two approaches, the testing was conducted into two categories according

to each approach.

Without tuning any parameters, our method called SHEF achieved better

accuracy in 11 out of 14 data sets compared to the methods using the second

approach and in 5 out of 14 data set when compared to the methods using the

first approach. The better accuracy is shown in bold numbers and underlined

numbers. Notice that there is a statistically significant difference between the

average test accuracy of SHEF and other methods (LOL, VEBF, and CIL) on

every data set, except for VEBF on Set2, Set4, and Set5. LOL has the lowest

accuracy on Set2, Set3, Set4, Segment, Spambase, and Waveform. VEBF has the

lowest accuracy with large standard deviation on Shuttle_trn. CIL has the lowest

accuracy on Satimage, Letter, and Kddcup99. For Kddcup99 data set, VLLDA

and ILDA could not finish the learning process within an hour.

49

Table 4.4: Comparison of accuracy (%) in the five-fold validation.

Data set Approach 1 Approach 2
(# features, # classes) VLLDA ILDA LOL VEBF CIL SHEF

Set1 99.798∗ 99.798∗ 91.930 86.592 89.291 99.738
(2, 3) ±0.408 ±0.408 ±9.280 ±4.024 ±2.863 ±0.447

Set2 92.600∗ 72.550 55.135 93.325∗ 89.445 92.780
(2, 2) ±1.853 ±1.913 ±1.978 ±1.640 ±5.128 ±1.922

Set3 99.600 67.850 50.150 97.820 97.625 98.750
(2, 2) ±0.258 ±1.602 ±2.163 ±1.512 ±3.244 ±1.680

Set4 100.000 62.200 49.960 99.730∗ 93.255 99.500
(2, 2) ±0.000 ±4.521 ±0.999 ±0.307 ±4.840 ±0.791

Set5 99.850 99.850 95.750 98.865∗ 92.430 98.950
(2, 4) ±0.202 ±0.202 ±6.893 ±0.839 ±4.830 ±0.941

Set6 99.733 99.767 97.307 98.897 92.710 99.253
(2, 3) ±0.172 ±0.172 ±1.857 ±0.582 ±3.928 ±0.548

Set7 90.050 89.633 88.220 90.733 85.122 93.093
(2, 4) ±1.055 ±0.793 ±2.788 ±3.881 ±3.537 ±1.074

Segment 95.065 95.714 79.320 82.498 88.563 93.844
(19, 7) ±1.511 ±1.479 ±2.938 ±2.935 ±2.305 ±0.848

Spambase 85.773 87.433 60.533 71.902 90.239 90.845
(57, 2) ±0.588 ±0.324 ±1.391 ±8.121 ±1.847 ±0.775

Waveform 81.920 82.019 80.926 84.116 81.388 86.480
(21, 3) ±0.679 ±1.217 ±2.142 ±4.201 ±1.139 ±0.907

Satimage 88.163 86.869 80.634 83.081 58.176 84.881
(36, 6) ±1.037 ±0.585 ±2.950 ±4.454 ±2.809 ±0.903

Letter 95.552 95.723 61.205 65.985 26.432 84.918
(16, 26) ±0.279 ±0.328 ±2.332 ±5.730 ±16.741 ±0.378

Shuttle_trn 99.862 99.883 97.753 38.343 97.280 96.236
(9, 7) ±0.055 ±0.029 ±0.677 ±30.677 ±0.324 ±1.391

Kddcup99 N/A N/A 98.757 78.919 19.93 99.348
(38, 23) ±0.394 ±0.38 ±0.189 ±0.055

1. Bold number indicates the maximum average accuracy in the part of approach 2.
2. Underlined number indicates the maximum average accuracy between SHEF and
approach 1.
3. N/A indicates that method could not finish the learning process within an hour.
4. The value with asterisk (*) means that there is no statistically significant difference
at the 5% significance level (p > 0.05).
5. Average test accuracy (%) and standard deviation (x̄±sd) of 50 replications is reported.

50

Figure 4.3 and Figure 4.4 show the chunk-wise accuracy for six methods

after training in each chunk on seven synthetic and seven real-world data sets,

respectively. One of 50 experiments was picked up to show the accuracy at each

chunk of streaming data. Since VLLDA and ILDA used and retained all incoming

training chunks to classify testing data, thus instead of measuring chunk-wise

accuracy after each testing chunk, the average cumulative accuracy was measured

in this case. It is remarkable that LOL has a wide swinging range of accuracy

on Set1, Set5, Set6, Set7, Waveform, Satimage, and Kddcup99. VEBF has a

wide swinging range of the accuracy on Spambase and Shuttle_trn. There is

a sudden change of the accuracy value in VEBF on Shuttle_trn data set to be

discussed in the next section. CIL has a wide swinging range of the accuracy

on Set7, Waveform, and Letter. For Kddcup99, CIL has the low accuracy every

chunk of data. The average cumulative accuracy of the results in Figure 4.3 and

Figure 4.4 calculated by equation (4.1) are shown in Figure 4.5 and Figure 4.6,

respectively. This type of accuracy indicates the trend of accuracy as the result of

incrementally learning the incoming chunk after chunk. For the proposed method,

the average cumulative accuracy trends to increase in all data sets when SHEFs

are incrementally trained.

4.4.2 Average number of generated neurons

Table 4.5 shows the number of neurons generated by VEBF, CIL, and SHEF

based on hyper-ellipsoidal shape function to capture incoming data. SHEF at the

end of training all incoming chunks, the number of generated SHEFs is less than or

equal to those of the others in 11 out of 14 data sets. There is statistically signif-

icant difference between the average number of neurons in our proposed method

and the other methods (VEBF and CIL) in every data set, except for VEBF on

Set7 and Waveform. There are six data sets, i.e. Set7, Segment, Spambase, Wave-

51

form, Satimage, and Letter, where our method generated the number of SHEFs

close to the number of classes. However, there is one data set, namely Kddcup99

data set, where the number of generated SHEFs is less than the number of classes

(23 classes). They are discussed in the next section.

Figure 4.7 and Figure 4.8 show the number of generated neurons for three

methods (VEBF, CIL, and proposed SHEF) during training in each chunk seven

synthetic and seven real-world data sets, respectively. VEBF and SHEF merge two

overlapped hyper-ellipsoids. Therefore the number of neurons during the training

process may be increased or decreased according to their approaches. Since CIL

does not have any merging strategy, the number of neurons is always increased.

4.4.3 Computational time

Computational time of training and testing processes is reported in Table 4.6

and Table 4.7. There is a statistically significant difference between the average

of computational time (both training and testing process) of the proposed method

and the other five methods, except for the testing time of LOL on Set1. For

VLLDA, they used only the testing process so only the testing time is reported.

The training time of VEBF, CIL, and our proposed method included the com-

putational time of calculating the initial distance of hyper-ellipsoids. When the

number of data is not huge, the computational time of all methods may not be dif-

ferent. However, the last three data sets (Letter, Shuttle_trn, and Kddcup99) are

quite big, our method was obviously faster than others methods for both training

and testing. For example, our method spent about 18 seconds for 395,216 training

data and about 93 seconds for 98,804 testing data in Kddcup99 data set while

the other methods spent for a much longer time to train and test, especially for

VLLDA and ILDA. They could not finish the process within an hour. Actually,

VLLDA and ILDA spent about four hours and three days, respectively.

52

Table 4.5: Comparison of the number of neurons in VEBF, CIL, and SHEF methods
at the end of training process.

Data set VEBF CIL SHEF

Set1 29.960 17.980 12.280
±2.878 ±3.431 ±1.485

Set2 9.020 109.920 12.480
±0.845 ±13.471 ±1.568

Set3 16.640 186.640 15.360
±1.120 ±11.374 ±1.575

Set4 15.320 133.140 13.380
±1.115 ±10.208 ±1.413

Set5 17.080 99.280 16.320
±1.291 ±17.473 ±1.609

Set6 12.220 218.960 12.800
±1.314 ±19.283 ±1.457

Set7 4.260∗ 43.720 4.500
±0.600 ±3.881 ±1.909

Segment 14.320 86.040 7.120
±0.978 ±3.812 ±0.328

Spambase 20.420 108.140 2.280
±1.500 ±6.958 ±0.536

Waveform 3.000∗ 80.300 3.000
±0.000 ±2.845 ±0.000

Satimage 6.500 211.780 6.060
±0.909 ±3.247 ±0.240

Letter 41.460 2532.380 27.840
±5.997 ±30.438 ±2.235

Shuttle_trn 24.680 751.460 13.160
±1.253 ±9.232 ±2.394

Kddcup99 117.34 2328.6 16.2
±18.92 ±119.14 ±1.917

1. Bold number indicates the minimum average number of neurons.
2. The value with asterisk (*) means that there is no statistically
significant difference at the 5% significance level (p > 0.05).
3. Average number of neurons and standard deviation (x̄±sd) of
50 replications is reported.

53

Table 4.6: Computational time (seconds) for synthetic data

Data set Process Approach 1 Approach 2
(# train : # test) VLLDA ILDA LOL VEBF CIL SHEF

Set1 train - 0.149±0.005 0.057±0.003 0.124±0.011 0.034±0.016 0.099±0.028

(397 : 99) test 0.121±0.018 0.121±0.015 0.014∗±0.001 0.039±0.004 0.005±0.002 0.014±0.004

Set2 train - 2.260±0.017 0.074±0.002 0.416±0.026 0.218±0.024 0.404±0.034

(1600 : 400) test 0.772±0.083 0.621±0.018 0.016±0.001 0.045±0.005 0.078±0.009 0.053±0.006

Set3 train - 2.263±0.007 0.074±0.001 0.584±0.022 0.250±0.019 0.399±0.039

(1600 : 400) test 0.770±0.037 0.614±0.004 0.016±0.001 0.089±0.006 0.132±0.009 0.064±0.005

Set4 train - 2.260±0.013 0.074±0.003 0.593±0.032 0.224±0.006 0.399±0.043

(1600 : 400) test 0.696±0.006 0.618±0.006 0.016±0.000 0.076±0.006 0.095±0.008 0.058±0.006

Set5 train - 2.285±0.014 0.301±0.001 0.380±0.015 0.201±0.005 0.366±0.028

(1600 : 400) test 0.704±0.009 0.687±0.007 0.082±0.002 0.083±0.007 0.072±0.012 0.066±0.007

Set6 train - 5.092±0.022 0.340±0.003 0.682±0.042 0.428±0.009 0.511±0.009

(2400 : 600) test 1.415±0.010 1.396±0.017 0.092±0.002 0.089±0.009 0.230±0.020 0.078±0.007

Set7 train - 20.543±0.072 0.909±0.007 0.754±0.019 1.457±0.016 0.411±0.063

(4800 : 1200) test 5.744±0.189 4.761±0.035 0.210±0.001 0.070±0.007 0.105±0.009 0.083±0.020

1. In VLLDA, it does not need to train the model.
2. N/A indicates that method could not finish the process within an hour.
3. Bold indicates the fastest computaional time on six methods.
4. The value with asterisk (*) means that there is no statistically significant difference at the 5% significance level (p > 0.05).
5. Average computational time and standard deviation (x̄±sd) of 50 replications is reported.

54

Table 4.7: Computational time (seconds) for real-world data

Data set Process Approach 1 Approach 2
(# train : # test) VLLDA ILDA LOL VEBF CIL SHEF

Segment train - 4.238±0.010 0.714±0.005 0.399±0.026 0.258±0.002 0.220±0.027

(1848 : 462) test 0.766±0.074 0.522±0.010 0.179±0.003 0.334±0.029 0.093±0.004 0.084±0.005

Spambase train - 78.007±0.979 0.387±0.042 6.017±0.237 1.407±0.048 1.618±0.537

(3681 : 920) test 4.440±0.106 2.740±0.131 0.056±0.001 3.440±0.264 0.334±0.022 0.287±0.058

Waveform train - 20.131±0.069 0.679±0.003 0.862±0.060 1.036±0.020 0.274±0.019

(4000 : 1000) test 2.083±0.027 3.751±0.027 0.171±0.003 0.235±0.014 0.184±0.008 0.109±0.006

Satimage train - 48.688±0.771 1.982±0.009 1.887±0.116 1.999±0.096 0.802±0.249

(5148 : 1287) test 4.782±0.140 6.411±0.259 0.471±0.009 1.459±0.147 0.718±0.011 0.383±0.019

Letter train - 304.808±0.954 22.495±0.356 12.323±9.146 18.609±0.576 0.997±0.245

(16000 : 4000) test 14.724±0.855 8.673±0.074 5.014±0.091 7.691±0.922 24.378±0.916 2.132±0.173

Shuttle_trn train - 1207.920±11.657 12.469±0.054 12.419±1.137 76.331±1.402 5.836±0.996

(34800 : 8700) test 458.069±2.394 359.521±13.420 2.851±0.031 4.337±0.302 13.261±0.240 1.985±0.384

Kddcup99 train - N/A 553.41±24.448 515.48±96.792 176.92±9.669 18.365±1.208

(395216 : 98804) test N/A N/A 115.66±4.9891 804.04±119.51 854.92±48.558 93.878±13.266

1. In VLLDA, it does not need to train the model.
2. N/A indicates that method could not finish the process within an hour.
3. Bold indicates the fastest computaional time on six methods.
4. Average computational time and standard deviation (x̄±sd) of 50 replications is reported.

55

4.5 Improve Test Accuracy on VEBF and CIL using Projection Ratio

in Testing

To measure the performance of projection ratio on other hyper-ellipsoidal

shape functions, Models from the learning process of VEBF and CIL were used

but the decision function for assigning the class label of testing data would be

replaced with our proposed testing approach in Section 3.3.3 based on projection

ratio. The average test accuracy and the standard deviation of VEBF and CIL

were reported in Table 4.8. VEBF and CIL using our testing approach are denoted

by VEBF+ and CIL+, respectively.

VEBF+ achieved better average accuracy in 12 out of 14 data sets compared

to VEBF. The average accuracy of VEBF+ is statistically and significantly differ-

ence to VEBF on 9 data sets, namely Set2, Set7, Segment, Spambase, Waveform,

Satimage, Letter, Shuttle_trn, and Kddcup99. CIL+ achieved better average

accuracy in 12 out of 14 data sets compared to CIL. The average accuracy of

CIL+ is statistically and significantly difference to CIL on every data set, except

for Set7 and Letter.

56

Table 4.8: Comparison of accuracy (%) of VEBF, CIL, VEBF+, and CIL+

Data set VEBF VEBF+ CIL CIL+

Set1 86.592∗ 87.455 89.291 87.579
±4.024 ±2.832 ±2.863 ±2.984

Set2 93.325 92.155 89.445 93.080
±1.640 ±2.054 ±5.128 ±2.322

Set3 97.820∗ 97.545 97.625 98.810
±1.512 ±1.666 ±3.244 ±1.437

Set4 99.730∗ 99.745 93.255 99.150
±0.307 ±0.321 ±4.840 ±0.821

Set5 98.865∗ 99.140 92.430 98.290
±0.839 ±0.722 ±4.830 ±1.125

Set6 98.897∗ 99.073 92.710 99.173
±0.582 ±0.593 ±3.928 ±1.324

Set7 90.733 93.310 85.122∗ 86.167
±3.881 ±0.411 ±3.537 ±1.948

Segment 82.498 93.913 88.563 94.138
±2.935 ±1.359 ±2.305 ±0.913

Spambase 71.902 90.628 90.239 92.885
±8.121 ±1.034 ±1.847 ±0.979

Waveform 84.116 86.480 81.388 83.004
±4.201 ±0.907 ±1.139 ±1.126

Satimage 83.081 85.041 58.176 61.768
±4.454 ±0.857 ±2.809 ±2.251

Letter 65.985 85.311 26.432∗ 26.150
±5.730 ±0.621 ±16.741 ±5.21

Shuttle_trn 38.343 96.817 97.280 97.879
±30.677 ±0.192 ±0.324 ±0.227

Kddcup99 78.919 99.738 19.93 99.74
±0.38 ±0.062 ±0.189 ±0.02

1. Bold number indicates the minimum average number of neurons.
2. The value with asterisk (*) means that there is no statistically
significant difference at the 5% significance level (p > 0.05).
3. VEBF+ and CIL+ refer VEBF and CIL using our criteria
based on projection ratio, respectively.
4. Average test accuracy (%) and standard deviation (x̄±sd) of
50 replications is reported.

57

0 2 4 6 8 10 12

Chunks of streaming data

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

(a) Set1

0 2 4 6 8 10

Chunks of streaming data

50

60

70

80

90

A
cc

ur
ac

y
(%

)

(b) Set2

0 2 4 6 8 10 12

Chunks of streaming data

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

(c) Set3

0 2 4 6 8 10

Chunks of streaming data

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

(d) Set4

0 2 4 6 8 10

Chunks of streaming data

60

70

80

90

100
A

cc
ur

ac
y

(%
)

(e) Set5

0 5 10 15

Chunks of streaming data

70

75

80

85

90

95

100

A
cc

ur
ac

y
(%

)

(f) Set6

0 5 10 15 20 25 30

Chunks of streaming data

60

70

80

90

A
cc

ur
ac

y
(%

)

(g) Set7

VLLDA ILDA LOL VEBF CIL SHEF

Figure 4.3: The chunk-wise accuracy (%) for six methods after training in each chunk
on seven synthetic data sets

58

0 2 4 6 8 10 12

Chunks of streaming data

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

(a) Segment

0 5 10 15 20 25

Chunks of streaming data

50

60

70

80

90

A
cc

ur
ac

y
(%

)

(b) Spambase

0 5 10 15 20 25

Chunks of streaming data

60

70

80

90

A
cc

ur
ac

y
(%

)

(c) Waveform

0 10 20 30

Chunks of streaming data

30

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

(d) Satimage

0 20 40 60 80 100

Chunks of streaming data

20

40

60

80

A
cc

ur
ac

y
(%

)

(e) Letter

0 50 100 150 200

Chunks of streaming data

20

40

60

80

100

A
cc

ur
ac

y
(%

)

(f) Shuttle_trn

0 50 100 150 200 250

Chunks of streaming data

20

40

60

80

100

A
cc

ur
ac

y
(%

)

(g) Kddcup99

VLLDA ILDA LOL VEBF CIL SHEF

Figure 4.4: The chunk-wise accuracy (%) for six methods after training in each chunk
on seven real-world data sets

59

0 2 4 6 8 10

Chunks of streaming data

0

20

40

60

80

100

A
ve

ra
ge

 C
um

ul
at

iv
e

A
cc

ur
ac

y
(%

)

(a) Set1

0 2 4 6 8 10

Chunks of streaming data

60

70

80

90

A
ve

ra
ge

 C
um

ul
at

iv
e

A
cc

ur
ac

y
(%

)

(b) Set2

0 2 4 6 8 10

Chunks of streaming data

50

60

70

80

90

100

A
ve

ra
ge

 C
um

ul
at

iv
e

A
cc

ur
ac

y
(%

)

(c) Set3

0 2 4 6 8 10

Chunks of streaming data

50

60

70

80

90

100

A
ve

ra
ge

 C
um

ul
at

iv
e

A
cc

ur
ac

y
(%

)

(d) Set4

0 2 4 6 8 10

Chunks of streaming data

90

95

100

A
ve

ra
ge

 C
um

ul
at

iv
e

A
cc

ur
ac

y
(%

)

(e) Set5

0 5 10 15

Chunks of streaming data

70

75

80

85

90

95

100

A
ve

ra
ge

 C
um

ul
at

iv
e

A
cc

ur
ac

y
(%

)

(f) Set6

0 5 10 15 20 25 30

Chunks of streaming data

60

70

80

90

A
ve

ra
ge

 C
um

ul
at

iv
e

A
cc

ur
ac

y
(%

)

(g) Set7

VLLDA ILDA LOL VEBF CIL SHEF

Figure 4.5: The average cumulative chunk-wise accuracy (%) for six methods after
training in each chunk on seven synthetic data sets

60

0 2 4 6 8 10 12

Chunks of streaming data

40

50

60

70

80

90

A
ve

ra
ge

 C
um

ul
at

iv
e

A
cc

ur
ac

y
(%

)

(a) Segment

0 5 10 15 20

Chunks of streaming data

60

65

70

75

80

85

90

A
ve

ra
ge

 C
um

ul
at

iv
e

A
cc

ur
ac

y
(%

)

(b) Spambase

0 5 10 15 20 25

Chunks of streaming data

55

60

65

70

75

80

85

A
ve

ra
ge

 C
um

ul
at

iv
e

A
cc

ur
ac

y
(%

)

(c) Waveform

0 5 10 15 20 25 30 35

Chunks of streaming data

30

40

50

60

70

80

90

A
ve

ra
ge

 C
um

ul
at

iv
e

A
cc

ur
ac

y
(%

)

(d) Satimage

0 20 40 60 80 100

Chunks of streaming data

20

40

60

80

A
ve

ra
ge

 C
um

ul
at

iv
e

A
cc

ur
ac

y
(%

)

(e) Letter

0 50 100 150 200

Chunks of streaming data

75

80

85

90

95

100

A
ve

ra
ge

 C
um

ul
at

iv
e

A
cc

ur
ac

y
(%

)

(f) Shuttle_trn

0 50 100 150 200 250

Chunks of streaming data

20

40

60

80

100

A
ve

ra
ge

 C
um

ul
at

iv
e

A
cc

ur
ac

y
(%

)

(g) Kddcup99

VLLDA ILDA LOL VEBF CIL SHEF

Figure 4.6: The average cumulative chunk-wise accuracy (%) for six methods after
training in each chunk on seven real-world data sets

61

0 2 4 6 8 10 12

Chunks of streaming data

5

10

15

20

25

30

T
he

 n
um

be
r

of
 g

en
er

at
ed

 n
eu

ro
ns

(a) Set1

0 2 4 6 8 10

Chunks of streaming data

20

40

60

80

100

T
he

 n
um

be
r

of
 g

en
er

at
ed

 n
eu

ro
ns

(b) Set2

0 2 4 6 8 10 12

Chunks of streaming data

50

100

150

200

T
he

 n
um

be
r

of
 g

en
er

at
ed

 n
eu

ro
ns

(c) Set3

0 2 4 6 8 10

Chunks of streaming data

20

40

60

80

100

T
he

 n
um

be
r

of
 g

en
er

at
ed

 n
eu

ro
ns

(d) Set4

0 2 4 6 8 10

Chunks of streaming data

20

30

40

50

60

70

80

90
T

he
 n

um
be

r
of

 g
en

er
at

ed
 n

eu
ro

ns

(e) Set5

0 5 10 15

Chunks of streaming data

50

100

150

T
he

 n
um

be
r

of
 g

en
er

at
ed

 n
eu

ro
ns

(f) Set6

0 5 10 15 20 25 30

Chunks of streaming data

10

20

30

40

T
he

 n
um

be
r

of
 g

en
er

at
ed

 n
eu

ro
ns

(g) Set7

VEBF CIL SHEF

Figure 4.7: The number of generated neurons for three methods after training in each
chunk on seven synthetic data sets

62

0 2 4 6 8 10 12

Chunks of streaming data

20

40

60

80

T
he

 n
um

be
r

of
 g

en
er

at
ed

 n
eu

ro
ns

(a) Segment

0 5 10 15 20 25

Chunks of streaming data

20

40

60

80

T
he

 n
um

be
r

of
 g

en
er

at
ed

 n
eu

ro
ns

(b) Spambase

0 5 10 15 20 25

Chunks of streaming data

50

100

150

200

250

T
he

 n
um

be
r

of
 g

en
er

at
ed

 n
eu

ro
ns

(c) Waveform

0 10 20 30

Chunks of streaming data

50

100

150

200

T
he

 n
um

be
r

of
 g

en
er

at
ed

 n
eu

ro
ns

(d) Satimage

0 20 40 60 80 100

Chunks of streaming data

500

1000

1500

2000

2500

T
he

 n
um

be
r

of
 g

en
er

at
ed

 n
eu

ro
ns

(e) Letter

0 50 100 150 200

Chunks of streaming data

100

200

300

400

500

600

700

T
he

 n
um

be
r

of
 g

en
er

at
ed

 n
eu

ro
ns

(f) Shuttle_trn

0 50 100 150 200 250

Chunks of streaming data

500

1000

1500

2000

T
he

 n
um

be
r

of
 g

en
er

at
ed

 n
eu

ro
ns

(g) Kddcup99

VEBF CIL SHEF

Figure 4.8: The number of generated neurons for three methods after training in each
chunk on seven real-world data sets

CHAPTER V

DISCUSSION AND CONCLUSION

The results in the previous section would be discussed in the term of the

reasonable methods for applying to streaming data by focusing on the acceptable

accuracy during the training process in the appropriately computational time.

Definitely, VLLDA and ILDA are not suitable for an streaming scenario

because they need to store the whole incoming training data for classification.

Besides when the amount of data is big such as Shuttle_trn and Kddcup99, both

VLLDA and ILDA methods spent too much training time because they must hold

all training data in the process. This makes them unsuitable for learning stream-

ing data. However, VLLDA and ILDA still hold the advantages in classification

accuracy because they employ the concept of k-NN and LDA. Comparing the per-

formances of VLLDA and ILDA to the performances of LOL, VEBF, CIL, and

SHEF approaches where no trained data are retained throughout the classification

is not appropriate.

For ILDA, they have also the same limitation as LDA as seen in the results

of Set2, Set3, and Set4 in Table 4.4. The time complexity of updating equations

for both SB and SW affects the training time when training data are big. VLLDA

based on LDA with k-NN can improve LDA to handle the complex distribution

of data. But choosing k may affect the accuracy. Furthermore, VLLDA needs to

compute Euclidean distances among all training data no matter how value of k

was set. Hence, the more data are trained, the more time is obviously spent.

For LOL, the number of prototypes k that was set to 60 in all experiments

64

may not be suitable for all data sets in the term of the accuracy such as the

resulted accuracy in these data sets, i.e. Set2, Set3, Set4, Spambase, and Letter.

Hence, using 60 hyperplanes may not be enough to classify those data sets. As the

results, LOL is sensitive to the parameter settings in each data set inconsistent

with their conclusions in [10]. Moreover, the sequence of the incoming data has

an effect on updating positions of prototypes and the accuracy such as seen in

the results of Set1 and Set5 shown in Table 4.4 with a large standard deviation.

The computational time is directly proportional to the number of training data

and the number of classes, especially the number of classes. Since LOL adopts

the one-vs-all strategy in the multi-class problem, LOL must iteratively learn one

class at a time.

For VEBF, there is a large standard deviation of accuracy on Set1, Set7,

Spambase, Waveform, Satimage, Letter, and Shuttle_trn. Consequently, the se-

quence of incoming data quite affects on the accuracy of this method that is consis-

tent with the conclusion in [12]. For Shuttle_trn data set, VEBF has the unusual

low accuracy at 38.343% with the unusual large standard deviation at 30.677. To

answer this situation, the accuracy characteristic displayed in Figure 4.4(f) should

be thoroughly analyzed. After considering all 50 experiments of VEBF on this

data set, there are 31 out of 50 whose accuracy was immediately decreased at

some incoming chunks and never increased again. This problem may occur in the

step of merging two neurons of VEBF algorithm when the initial width was set

too large. After merging them, the width of the new neuron was set by assuming

the Gaussian distribution of data in both neurons that may be smaller than the

widths of two previous individual neurons. As the result, updating the parame-

ters of a neuron based on the next training data may be dominated by the larger

size of neuron. The training time is directly proportional to the number of the

generated neurons during the training process. While the testing time is directly

65

proportional to the number of neurons in the final process. For example, there

are about 117 generated neurons in the final state on Kddcup99 data set. Taking

about 515 seconds for 395,216 training data and about 804 seconds for 98,804

testing data. Furthermore, if the number of neurons was unnecessarily generated,

they would be stored in forms of d-by-d covariance matrices.

For CIL, the number of training data in each chunk is inversely proportional

to the number of generated neurons. If the number of training data in each chunk

is quite small, the number of neurons may be redundantly generated (no merging

strategy in this method). The number of generated neurons is directly proportional

to the computational time. However, the large number of neurons may reduce the

classification accuracy. CIL is sensitive to the number of training data in each

chunk on some data sets (Satimage and Letter). For examples, if the chunk-size

range of Satimage is changed from [100,200] to [400,600], the average accuracy

will increase to 81.386% and the average number of used neurons will decrease to

62.6. If the chunk-size range of Letter is changed from [100,200] to [1000,2000],

the average accuracy will increase to 87.181% and the average number of used

neurons will decrease to 282.94. For Kddcup99, although CIL has the lowest

average accuracy at 19.93% but the reason is not the sensitivity of the number of

train data in each chunk. It is because of the definition of the decision function

for determining the class label of the testing data. This conclusion was confirmed

using the generated neurons from CIL and our proposed testing approach. The

average test accuracy increases from 19.93% to 99.74% as shown in Table 4.8.

For our proposed method, the performance depends on how SHEFs and

the network of SHEFs are appropriately constructed to capture the sequential

streaming data. According to the 2-dimensional illustration in Figure 4.2, it is

noticeable that no matter how complicated the patterns of data distribution are,

66

SHEFs can capture them very well. The proposed method provided the high

accuracy more than 80% on several data sets during the incremental learning in

the training process at any time stamp of streaming data (see Figure 4.3 and Figure

4.4). Although there are more steps in our discriminant distance testing process

than other testing process, our testing process is rather fast because fewer numbers

of SHEFs were effectively generated. Moreover, our method also spent less training

time than the others because the merging step helps reducing the number of

generated SHEFs during the training process. For Kddcup99 data set, 16 SHEFs

were generated because there are 15 classes out of 23 classes that have the number

of data points more than 20. Before testing the data, any SHEFs containing the

number of members fewer than M (M = 3) were eliminated. Therefore, some

classes might be ignored as noisy data. The number of training data in each

chunk does not affect massively to our accuracy. Even though the input data were

fed as the chunk, our algorithm still sequentially learns each datum.

5.1 Suggestion on Parameter Settings for the Proposed Method

The positive constant r in the learning algorithm is directly proportional to

the size of SHEF which can indirectly effect the merging strategy. The preliminary

experiments found that when r = 1, the sizes of two SHEF are too small to make

two SHEFs of the same class overlapped. As the result, it may lead to many

redundant SHEFs generated. While r = 2, the size of SHEF is too large to make

many SHEFs overlap. As the result, many SHEFs may be unnecessarily merged.

Hence, r = 1.5 is suggested to appropriately scale the size of SHEF for only 14

data sets used in this dissertation.

The small positive constant ϵ was applied in order to find the inverse of a

singular covariance matrix. It was used on two steps such as the step of checking

overlap of two SHEFs in the learning process and the step of finding the discrim-

67

inant vector in the testing process. Without the regularization parameter ϵ, the

proposed method may not continue the process that it should be. In this dis-

sertation, ϵ is set to 0.0001 for 14 data sets; however, this value can be changed

according to the data set. ϵ should be suitably set without affecting the size of

SHEF.

The predefined minimum amount data M in the learning algorithm is di-

rectly proportional to the number of SHEF used for determining class of testing

data. Besides, it may be indirectly proportional to accuracy of the imbalanced

data set; for example, some classes of Kddcup99 data set might be ignored when

M was set to 3. Therefore, M can be changed following the data set.

In this dissertation contributed the following issues to cope with learning streaming

chunk data and determining the class of queried data.

1. A more generic structure of hyper-ellipsoidal function called Scalable Hyper-

Ellipsoidal Function (SHEF) was introduced to learn streaming data. This

structure is capable of handling the problem of curse of dimensionality by

introducing a regularization parameter ϵ into the covariance matrix of SHEF.

2. Initializing SHEFs width with taking distribution of an individual class into

account makes SHEFs cope with the very different distributed data of each

class.

3. A new recursive function to update the covariance matrix of SHEF based on

only the incoming data chunk was proposed. This new function takes less

computational than those previously introduced in VEBF, CIL.

4. Fast and easy conditions to test the states of being exactly overlapped,

inside, or touching of two SHEFs were intoduced.

68

5. A new distance measure for determining the class of a queried datum based

on the projected distance on LDA discriminant vector was proposed to

achieve our concept of integrating distribution to the distance measure. This

distance can significantly improve the classification accuracy when compared

with others’ distances.

The experimental results significantly supported the merit of our proposed

concepts in terms of higher accuracy, less computational time, and less number of

generated neurons. However, this approach has not been tested with more complex

data characteristics such streaming data with dynamic class drift or streaming data

with class imbalance.

REFERENCES

[1] J. Gama, Knowledge Discovery from Data Streams. Chapman & Hall/CRC,

1st ed., 2010.

[2] E. Keogh and A. Mueen, Curse of Dimensionality, pp. 314–315. Boston, MA:

Springer US, 2017.

[3] K.-L. Du and M. N. S. Swamy, Principal Component Analysis, pp. 355–405.

Springer London, 2014.

[4] K.-L. Du and M. N. S. Swamy, Discriminant Analysis, pp. 451–468. London:

Springer London, 2014.

[5] S. Pang, S. Ozawa, and N. Kasabov, “Incremental linear discriminant analysis

for classification of data streams,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), vol. 35, pp. 905–914, Oct 2005.

[6] G.-F. Lu, J. Zou, and Y. Wang, “A new and fast implementation of orthogonal

LDA algorithm and its incremental extension,” Neural Processing Letters,

vol. 43, pp. 687–707, Jun 2016.

[7] D. Chu, L. Z. Liao, M. K. P. Ng, and X. Wang, “Incremental linear discrim-

inant analysis: A fast algorithm and comparisons,” IEEE Transactions on

Neural Networks and Learning Systems, vol. 26, pp. 2716–2735, Nov 2015.

[8] Y. A. Ghassabeh, F. Rudzicz, and H. A. Moghaddam, “Fast incremental lda

feature extraction,” Pattern Recognition, vol. 48, no. 6, pp. 1999 – 2012, 2015.

[9] B. C. Kuo, H. H. Ho, C. H. Li, C. C. Hung, and J. S. Taur, “A kernel-based

feature selection method for svm with rbf kernel for hyperspectral image

70

classification,” IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, vol. 7, pp. 317–326, Jan 2014.

[10] Z. Zhou, W.-S. Zheng, J.-F. Hu, Y. Xu, and J. You, “One-pass online learning:

A local approach,” Pattern Recognition, vol. 51, pp. 346 – 357, 2016.

[11] S. Jaiyen, C. Lursinsap, and S. Phimoltares, “A very fast neural learning for

classification using only new incoming datum,” IEEE Transactions on Neural

Networks, vol. 21, pp. 381–392, March 2010.

[12] P. Junsawang, S. Phimoltares, and C. Lursinsap, “A fast learning method for

streaming and randomly ordered multi-class data chunks by using one-pass-

throw-away class-wise learning concept,” Expert Systems with Applications,

vol. 63, no. Supplement C, pp. 249 – 266, 2016.

[13] Z. Fan, Y. Xu, and D. Zhang, “Local linear discriminant analysis framework

using sample neighbors,” IEEE Transactions on Neural Networks, vol. 22,

pp. 1119–1132, July 2011.

[14] T.-K. Kim and J. Kittler, “Locally linear discriminant analysis for multi-

modally distributed classes for face recognition with a single model image,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27,

pp. 318–327, March 2005.

[15] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer, “Online

passive-aggressive algorithms,” J. Mach. Learn. Res., vol. 7, pp. 551–585,

Dec. 2006.

[16] N. Wattanakitrungroj, S. Maneeroj, and C. Lursinsap, “Versatile hyper-

elliptic clustering approach for streaming data based on one-pass-thrown-

away learning,” Journal of Classification, vol. 34, pp. 108–147, Apr 2017.

71

[17] M. Sugiyama, “Local fisher discriminant analysis for supervised dimensional-

ity reduction,” in Proceedings of the 23rd International Conference on Ma-

chine Learning, ICML ’06, (New York, NY, USA), pp. 905–912, ACM, 2006.

[18] A. Sharma and K. K. Paliwal, “Linear discriminant analysis for the small sam-

ple size problem: an overview,” International Journal of Machine Learning

and Cybernetics, vol. 6, pp. 443–454, Jun 2015.

[19] R. A. FISHER, “The use of multiple measurements in taxonomic problems,”

Annals of Eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[20] S. Alfano and M. Greer, “Determining if two solid ellipsoids intersect,” Jour-

nal of Guidance Control and Dynamics - J GUID CONTROL DYNAM,

vol. 26, pp. 106–110, Jan 2003.

[21] K. Zimmermann and T. Svoboda, “Approximation of euclidean distance be-

tween point from ellipse,” Research Report CTU–CMP–2005–23, Center for

Machine Perception, K13133 FEE Czech Technical University, Prague, Czech

Republic, August 2005.

[22] J. H. Friedman, “Regularized discriminant analysis,” Journal of the American

Statistical Association, vol. 84, no. 405, pp. 165–175, 1989.

[23] B. P. Stephen, “Algorithms for ellipsoids,” Tech. Rep. FDA-08-01, Sibley

School of Mechanical & Aerospace Engineering Cornell University, Ithaca,

New York 14853, February 2008.

[24] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,” 2017.

APPENDIX

73

APPENDIX A

Proof of modifying in Theorem 3.1.1: To ease the complication of notations,

the following simplified notations are used in the proof. Let x′, n′, c′, and S′

represent xnew, nold
j + 1, cnew

j , and Snew
j , respectively. Let n, c, and S represent

nold
j , cold

j , and Sold
j , respectively.

S′ =
n(S + ccT) + x′(x′)T

n′ − c′(c′)T

=
n(S + ccT) + x′(x′)T

n′ − (
nc + x′

n′)(
nc + x′

n′)T

=
n(S + ccT) + x′(x′)T

n′ − n2ccT + nc(x′)T + nx′cT + x′(x′)T

(n′)2

=
n′nS + n′nccT + n′x′(x′)T

(n′)2
− n2ccT + nc(x′)T + nx′cT + x′(x′)T

(n′)2

=
n′nS + (n′ − n)nccT + (n′ − 1)x′(x′)T − nc(x′)T − nx′cT

(n′)2

=
n′nS + nccT + nx′(x′)T − nc(x′)T − nx′cT

(n′)2

=
n′nS + nc(cT − (x′)T) + nx′((x′)T − cT)

(n′)2

=
n′nS + n(c − x′)(c − x′)T

(n′)2

=
n

n′ (S +
(c − x′)(c − x′)T

n′)

74

APPENDIX B

Proof of modifying in Theorem 3.2.1: Let d be the dimensions of data; S̃i of

size d-by-d be a covariance matrix of a ithSHEF; Ri of size (d + 1)-by-(d + 1) be

the translation matrix of the centroid of the ithSHEF; x be any data point, ci be

the center of data in the ithSHEF. Then the representation of the SHEF in [20]

would be

xTRT
i

 S̃
−1

i 0d×1

01×d −1

Rix = 0 (1)

where S̃
−1

i is the inverse matrix of S̃i, 0d×1 is a zero vector, 01×d is the transpose

of 0d×1, and Id×d is an identity matrix,

x =



x1

x2
...

xn

1


, Ri =

Id×d −ci

01×d 1

 , ci =



ci1

ci2
...

cid


.

From (1), two candidate SHEFs should be checked for overlap if they satisfy the

following conditions.

xTAx = 0 and xTBx = 0,

where

A = RT
A

 S̃
−1

A 0d×1

01×d −1

RA, B = RT
B

 S̃
−1

B 0d×1

01×d −1

RB.

In [20], the intersection of SHEFA and SHEFB can be described with an eigenvalue

of the matrix A−1B or B−1A where

75

A−1B =

(
RT

A

 S̃
−1

A 0d×1

01×d −1

RA

)−1

RT
B

 S̃
−1

B 0d×1

01×d −1

RB (2)

for SHEFA and SHEFB, respectively.

A−1B = R−1
A

 S̃A 0d×1

01×d −1

 (RT
A)

−1RT
B

 S̃
−1

B 0d×1

01×d −1

RB (3)

Since for any SHEFi

R−1
i =

Id×d ci

01×d 1

 ,
hence, the matrix A−1B can be simplified to our block matrix as

A−1B =

D −DcB + cA

F −FcB + 1


(d+1)×(d+1)

(4)

where

F1×d = (−cA + cB)
T S̃−1

B (5)

Dd×d = S̃AS̃−1
B + cAF

76

APPENDIX C

Proof of Theorem 3.3.1: Suppose the projected x is inside the projected SHEF

(D(x, c,S) < 1) on the discriminant vector wp defined in (3.24). The projection

must satisfy the following inequality.

|wT
p (x − c)| < r

√
wT

p Swp . (6)

Substitute wp =
S−1(x − c)

||S−1(x − c)||
in (6) to obtain

|(x − c)TS−1(x − c)| < r

√
(x − c)TS−1(x − c) . (7)

It is obvious to see that

0 < (x − c)TS−1(x − c) < r2. (8)

Equation (8) implies that x is inside the SHEF scaled by r2 in the original space

following (2.4).

The conditions of outside and boundary can be proved by the similar argu-

ment of these inequalities |wT
p (x−c)| > r

√
wT

p Swp and |wT
p (x−c)| = r

√
wT

p Swp,

respectively.

77

BIOGRAPHY

Name Mr. Perasut Rungcharassang

Date of Birth 30 April 1987

Place of Birth Bangkok, Thailand

Education B.S. (Mathematics),

Kasetsart University, 2008

M.Sc., Chulalongkorn University, 2012

	COVER (THAI)
	COVER (ENGLISH)
	ACCEPTED
	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	CONTENTS
	CHAPTER I INTRODUCTION
	CHAPTER II RELEVANT BACKGROUND
	CHAPTER III METHODOLOGY
	CHAPTER IV EXPERIMENTS AND RESULTS
	CHAPTER V DISCUSSION AND CONCLUSION
	REFERENCES
	APPENDIX
	VITA

