HAINNTEUIUNSWRNaBRNzlulAT vy

A [ 14
L@@ﬂ@ﬁ—Lﬁ‘LABVﬁS‘U’]@LL‘U‘U‘UTUG]'JI@

wangiad Wesnsald

"3‘1/1mﬁwuﬁ‘ﬁlﬂudawﬁwmmiﬁﬂmmwé’ﬂgmﬂ%@mﬁwEnmam@wﬁﬁ’m%m
anNand nadvWand
ANEINEIAERT PNAINTAIUNINERY
Un1sfinwn 2561
uwﬁmﬂmmmm%gmﬁuLﬁum@qﬁﬁm@w‘éﬁ@@iﬁmﬂﬁmﬁzﬁmq?ﬁlﬁ@ﬁgﬂmﬁqﬂmmnvﬁw (CUIR)
Lﬂuuﬂu%gmmﬁﬁmL’fﬁ’m@ﬁmmﬂwu%ﬁmmum\aﬁmﬁmawméfﬂ

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.



EFFECT OF LOCAL REWIRING IN ADAPTIVE EPIDEMIC
ERDOS-RENYI RANDOM NETWORKS

Ms. Suwakan Piankoranee

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Physics
Department of Physics
Faculty of Science
Chulalongkorn University
Academic Year 2018
Copyright of Chulalongkorn University



Thesis Title EFFECT OF LOCAL REWIRING IN ADAPTIVE

By

EPIDEMIC ERDOS-RENYI RANDOM NETWORKS

Ms. Suwakan Piankoranee

Field of Study Physics

Thesis Advisor Associate Professor Surachate Limkumnerd, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Doctoral Degree

..................................... Dean of the Faculty of Science
(Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

..................................... Chairman

(Assistant Professor Rattachat Mongkolnavin, Ph.D.)

..................................... Thesis Advisor

(Associate Professor Surachate Limkumnerd, Ph.D.)

..................................... Examiner

(Associate Professor Somchai Kiatgamolchai, Ph.D.)

..................................... Examiner

(Associate Professor Udomsilp Pinsook, Ph.D.)

..................................... External Examiner

(Assistant Professor Kornkanok Bunwong, Ph.D.)



iv

gaiad Wesnsdld NAINNTTUIUNEToNmelarlulAssteEy
Woslaa-lsudnszuInwuuUsUAle.  (EFFECT OF LOCAL REWIRING
IN ADAPTIVE EPIDEMIC ERDOS-RENYI RANDOM NETWORKS)

0.7USnw : s.az.aaeys viaui e, [rd uth.

LSO U NT WIS TEUIN KUU ARLUSIUTENOU A8 #83NT2UIUNTVEN LakA
(1) nsgvrumsinde-meths Fadunszuiunsfuisuaniuzauninesivun uas
(2) nszvaumsdenaslmidauiun sz viunsiasuudaslassairsvesiaiedie
Turaaesnassuiisium uwwudasslsnszuinluiniediefauladlduauaule
agnaun esanenudilelunatnsewineansnsruunsiasidusiladi b
siaINIsmMuUauMTuNseUInld agndlsAmulasdaulngluuuudaesmdni
nsvuIunsdouanglmioguuiiuguvesdoyalussdunsouaquittaietng dufe
usiay Audanu guninveannauluiafetne wiviudnmsihiansivlunsdiede
e vuIn g 3mmﬁwuéfﬁqm§wmaﬁ%ﬁﬂLauaﬁﬁmiLs?famawﬁmmiaﬂg’jﬁ’ﬁ
¥ a3slunmsnaunmiiiemuasmsunsszuin Tneldthiausnszuiunms denansd
o1dedoyalurdiinveivun TaefenTEnsuuudadud “nedenanslviuuy
AseUARY” LagFenisnsiiauelmain “m3denaelmiwuuianyd” Tus
st i AnwuuaeInIsundsEuIaLUY SIS Ta S Wunquidessionis
fnido war 1 Wunquinide vuiededsuuudaulasdmiunssuiunsdenas
TmiwuuaseuAguIazLULIRNEA UTIeTeTieRTnsenmelanz? Hlena
tlognilumstlestunsszuindefisuiueietneifimadouamensoungu agndls
Anu Mnnanisdasansotiametauiaslasallawansliiiuindinnsdouriui
voulassvinnszuunmIdenameiiansuuy Famnsarmidedeyaiisita 5
aansvhunenadnsvesnsunsszuaiielugmsteatusgiadussuule



## 5572870323 : MAJOR PHYSICS
KEYWORDS : ERDOS-RENYI RANDOM NETWORKS / SIS EPIDEMICS /
ADAPTIVE NETWORKS / LOCAL REWIRING

SUWAKAN PIANKORANEE : EFFECT OF LOCAL REWIRING
IN ADAPTIVE EPIDEMIC ERDOS-RENYI RANDOM NETWORKS.
ADVISOR : ASSOC.PROF. SURACHATE LIMKUMNERD, Ph.D., fid pp.

Adaptive epidemic network is driven by two main processes, (1) infection-
recovery process that changes the states of the nodes, and (2) rewiring process that
modifies the topology of the network. In the past two decades, epidemic models
on adaptive networks have gained interests because understanding the dynamics
between these two processes can be key to improving control of diseases. However,
in most of these models, the rewiring mechanism is based on information known
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CHAPTER 1

Introduction

Epidemic models are very useful to understand the rate at which diseases spread
and how to control them. Early epidemic models are based on the homogeneously
mixed, where it is assumed that each individual has the same chance to contact
with an infected individual [I-5]. Deterministic mathematical models have been
used to understand the spread of disease in large and uniform population. In
general, however, these deterministic models are not sufficient to consider the
stochastic dynamics in finite population. Furthermore, each individual comes into
contact only with its network-based neighbours [6-9]. Therefore, the structure of
population is modelled as a network, where the node represents an individual and

a link represents relation or interaction between individuals.

In early works on network epidemic models, the topology of the network
is assumed to be fixed, which is called a static network. However, people may
change their social behaviours in response to infection to avoid catching it [10—
12]. For example, as SARS epidemic zone is declared, people may attempt to
reduce their chances of infection by eliminating contacts with infected individuals
which may alter the progression of the disease [[13]. Then the coevolution between
the topology of the network and the epidemic dynamics has been formed. This
brings to the concept of an adaptive network [10,[14] where changes to the network
structure are occurred in dependence of the dynamic state of the nodes and in turn

affect future dynamics of the state.

Gross et al. [10] introduced rewiring mechanism based on removing high-

risk contacts between the susceptible and infected nodes, and rewiring with non-



infectious contacts. In this model, the total number of links in the network is
conserved. This may be assumed to maintain the functionality of the society.
Here, the rewiring mechanism occurs at the global level where every node must
know epidemiology status of every other in the network. In reality, however, in-
dividuals may have incomplete knowledge about the status of the whole network.
More practically, the nodes may know the status of other nodes only within their
local areas, for example, neighbourhoods including neighbour one, two, or more
links away. To make adaptive networks more realistic, the local knowledge should

be taken into account.

This dissertation aims to give more practical rewiring model for epidemic
control strategy. We simulate the stochastic processes of two rewiring methods.
The first method called “global rewiring” is described by the original one [10],
while the second method, proposed by us, is called “local rewiring”. The words
global and local are used to described the knowledge about health statuses that a
node has about its neighbours. In this dissertation, we investigate adaptive model
on Erds-Rényi (ER) random networks [[15-18], but the introduced framework may

be applied to other network structures such as scale-free network [19,20] as well.

The scope of this work covers the following objectives. We investigate the
susceptible-infected-susceptible (SIS) epidemic model with local rewiring on ER
random network. We neglect the effects of natural birth and death because epi-
demic duration is much shorter than the time scale of the demographic process
thus the total number of nodes is constant. Also, the number of links is conserved
according to the networks with global rewiring [[10]. The effects of local informa-
tion with various values of neighbouring distances are studied and compared with
the effects of global information. Here, the neighbouring distance is not a physical
distance, but it is defined through paths of nodes in the network. The dynami-
cal consequences of local rewiring network: endemic state, disease-free state and
coexistence of bistable state are observed. In addition, the analytic approach to

support our simulation results is provided.

The outline of the dissertation is the following: In chapter II, we give a



glimpse into adaptive epidemic networks. We start with SIS model of disease
dynamics in fully mixed population with continuous random variables. Then we
present a brief overview of some definitions related to networks used in this disser-
tation. After that we present SIS model on ER random network. Our assumptions
are following: (1) network size is large enough to be simulated on our computer
cluster which is up to 10,000 nodes, (2) links are distributed homogeneously in
the network, and (3) the degree distribution used in the pair approximation is
based on Poisson distribution. In the last section, we explain SIS dynamics on
adaptive networks and show prior results as background for our research that will

be presented in Chapters III and IV.

In Chapter III, we propose the local rewiring method where rewired links
are restricted within a neighbouring area. We then introduce the most commonly
used simulation algorithm for stochastic process known as kinetic Monte-Carlo
algorithm [21-24]. In this work we propose an alternative analytical approach for

calculating the phase transition for the local rewiring method

In chapter IV, we present our numerical results of epidemic networks at
different network sizes and epidemic parameters. We study the effects of the local
rewiring mechanism on the epidemic spread, investigate how it change the network

topology and phase diagram.

Finally, we draw the conclusions of our work and consider what future

research is possible in the field of epidemics on adaptive networks in Chapter V.



CHAPTER II

The Adaptive Epidemic Networks

2.1 Compartmental SIS model

One of the standard approaches to study epidemiology is through what are tra-
ditionally called compartmental models [Ll-5]. The population is divided into dif-
ferent compartments based on the epidemiological status of each individual. The
number of compartments and the ways in which individuals move from one com-
partment to another depends on the nature of the disease being modelled. In the
case of susceptible-infected-susceptible (SIS) model, there are two compartments,
S (susceptible) and I (infected) [§]. Susceptible individuals are healthy ones who
are susceptible to the disease if they come into contact with infected individuals
who are currently infected and able to spread the disease to susceptible individuals.
In this model, the infected becomes susceptible again immediately after recovery.
The SIS model assumes that there is no immunity for the disease then the individ-
uals can be infected over again following a cycle S — I — S. The transition rates
from one compartment to another are mathematical expressed as derivatives. In
the following, we will introduce the rate equation of each compartment and its

solutions.

2.1.1 Mathematical approach to SIS model

Mathematical models can estimate how infectious disease progress to show the

consequence of an epidemic. In SIS model there are two possible transitions: (1)



Figure 2.1: This diagram shows transitions between compartments consisting of
individuals with the same state in the SIS model. The solid line denotes an

infection process and the dashed line denotes a recovery process.

infection, denoted by S — I, and (2) recovery, denoted by I — S (Fig. El!) In
the continuous-time limit, I — S transition occurs at the recovery rate of r. The
time an individual spends on average in the infected compartment, an average

infectious period, is approximately 1.

A formula of S — I transition is more complicated than I — S depending
on the modelling consideration. Here, the mathematical models are as good as the
assumption of homogeneous mixing, i.e., every individual has the same probability
to make a contact with any other [1,8]. With this assumption, the larger the
number of infected individuals, the higher the probability of transmission of the
disease. So the probability that susceptible individuals acquire the disease per unit
time is b(k)I/N, where b is the infection rate per contact and (k) is the number

of contact with other individuals per unit time [8,9,25].

These transitions can be modelled by reaction-diffusion type process where
the transition is defined by its reaction rates [26]. The time evolution of the
epidemic is described by deterministic rate equations stating that the average
change in the number of individuals of each compartment due to interactions is
given by the product of the force of infection times the average individuals. Let
the number of population be conserved, i.e., N = S+ I. If N is large, we can

treat S and I as continuous variables, and the model is fairly well described by



the following rate equations:

B i Ls i,
dt N
T , (2.1)

These equations rely on the homogeneously mixing approximation which assumes
that the susceptible and infected individuals are well mixed and interact with each
other at random. In this dissertation, we neglect the effects of natural birth and
death because the duration of an epidemic is much shorter than the time scale of

the demographic process. At this stage, the disease is also not life threatening.

2.1.2 Basic results of the SIS model

To express the solution of Eq. @ it is often convenient to define variables repre-
senting the density of susceptible and infected individuals:

S AN
5/ =S A T8

N’ N

With the normalisation condition s +7 = 1, Eq. @ reduces to

di
d—z = b(E)i(1 — 1) = ri = (blk) — 1 — b{k)i)i. (2.2)
Here we choose to investigate the dynamic of the infected fraction rather than

the susceptible fraction because the existence of infection describes the epidemic

state.

The solution of Eq. @ provides the density of infected individuals as a

(b(#)—r)t
o (1- )¢ , (2.3)
b(k) ) 1+ Celb—t

function of time

where the integration constant C'is fixed by the initial condition iy = i(t = 0) so
that

c=—" (2.4)
1—Zo—m

Eq. @ predicts that there are two possible outcomes:
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Figure 2.2: The density of infected individuals grows with time following a sigmoid
function and tends to constant density at which the rates of infection and recovery

are balanced.

« Endemic state when b(k) —r > 0 or b(k)/r > 1.
In this condition, the infected fraction ¢ follows a sigmoid function (see
Fig. @) At long time, 7 reaches a constant 7., calculated by setting Eq. @

to zero:

oo =1— B (2.5)

In this state, the rates that individuals are infected and recover from infec-
tion are exactly equal. Consequently the infected density does not change

with time. This steady state is called endemic state.

» Disease-free state when b(k) —r < 0 or b(k)/r < 1.
In this condition, ¢ decreases exponentially with time, indicating that the
disease will die out eventually. This is because the number of individuals who
recovered per unit time is larger than the number of new infected individuals.

Therefore at long time, the disease disappears from the population.



From outcomes above, the condition b(k) = r indicates a transition between
a state in which the disease can spread and one in which it cannot. This transition
is called an epidemic transition (Fig. @) and the point of the transition is called

the basic reproduction number or the basic reproductive ratio Ry [27-30],

Ry = 2. (2.6)

Ry is defined as the average number of secondary infections caused by a
primary infected individual introduced in a completely susceptible population. If
Ry > 1, the epidemic is in the endemic state. If Ry < 1, then the epidemic is in
disease-free state. The point Ry = 1 marks the epidemic threshold between these

two states.

The classical SIS model ignores the fact that individuals come into contact
only with their neighbours in the contact network that facilitates the spread of a
disease. Classical SIS assumes homogenous mixing, which means that an infected
individual can interacts other individuals with the probability depending on their
populations. It means that an infected individual typically infects only (k) other
individuals, ignoring variations in node degrees. To accurately predict the dy-
namics of an epidemic, we need to consider the impact of connectivity patterns,

reflected by a network topology, on the epidemic behaviours.

2.2 Complex networks

2.2.1 Network definitions

A network, also called a graph in mathematical terms, is a collection of N nodes
(or vertices) joined by M links (or edges). A network is usually visualised as in
Fig. @, where circles are referred to as nodes and lines are referred to as links.
The size of a network is described by the total number of nodes, N. Two nodes
are said to be neighbouring or adjacent if they are connected via a link. The

links of a network may be directed or undirected. The directed links represent
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Figure 2.3: Epidemic transition of the classical SIS model. Below the epidemic
threshold at Ry = 1, there is no infected density (disease-free phase). Above the
epidemic threshold, the infected density attains a nonzero average value at the

long time regime (endemic phase).
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unidirectional relationships between neighbouring nodes, for example, hyperlinks
on the WWW run in one specific direction from one web page to another. On the
contrary, the undirected links describe bidirectional relationships, like classmate
or co-worker relationship: if you work with Dang, Dang also work with you. A
network whose all links are undirected is called an undirected network while a

network of directed links is called a directed network.

© ©
©——®

Figure 2.4: A schematic represent of a small network contains eleven nodes and

nine links.

A network might contain self-loops, which are links that connect nodes to
themselves or multiple links, where there can be more than one link between the
same pair of nodes. Link might also have weight which, for instance, express the
importance of a connection between pair of nodes. Many interesting networks are
weighted, but it is difficult to put down the appropriate numbers [25]. Conse-

quently, these networks often are approximated by an unweighted network.

In the scope of this dissertation, we are interested in a simple network
with undirected and unweighted conditions. A simple network means that neither

self-loops nor multiple links are allowed in the network.

In the following lists we introduce the basic quantities used to describe and

analyse networks.
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o Degrees: The number of neighbours of a node ¢ or the number of links con-
nected to it is called degree k; of the node. For example, for the undirected
network shown in Fig. @ we have kg = 1,k1 = 2,ky = 3,k19p = 0. In an
undirected network the total number of links, M, can be expressed as the

sum of the node degrees
N
2M = ki (2.7)
i=1

The factor 2 comes from the fact that each link has two ends, the total

number of ends.

The average degree (k) of a node in an undirected network is

(k) = % ki = % (2.8)

=if

So in the Fig. P4, (k) = 18/11.

o Paths: In network, distance is described by path length. A path is a route
that runs from node to node along the links of the network. The length
of a path represents the number of links traversed along the path. For
example, in Fig. @ the path between node 5 to 9 may follow the route
5—=6—8 —T7—=9, hence its length is 4. In general, a path can intersect
itself or visit the same node more than once. For example, the path between

node 7 and 9 follows 7—5 — 6 — 8 — 7 — 9, so node 7 is visited twice.

« Shortest path: A shortest path between nodes ¢ and j, denoted by [;;, is
a path with the least number of links. If the path intersects itself, then it
contains a loop. It can be shortened by avoiding the loop and still connecting
between nodes ¢ and j. From the previous example of the path between node
7 and 9, we can remove the loop 7— 5 — 6 — 8 — 7 and the shortest path
is 7 — 9. It is possible to have multiple shortest paths of equal length
between a given pair of nodes (e.g., there are two shortest paths between
node 5 and 8 5 — 6 — 8 and 5 — 7 — 8). Also, it is possible to have

no shortest path between two nodes if they are not connected via any route
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(e.g., there is no shortest path between node 0 and 5), on the other hand,

they are in different components.

o« Components: A component is a group of connecting nodes in the network—
each of which is reachable from the others by some paths through the net-
work. For instance, in Fig. @ there are three components: {0,1,2,3,4},
{5,6,7,8,9} and {10}.

o Diameter: The diameter of a network, denoted by /.y, is the maximum
shortest path between any pairs of nodes in the network. In general the
diameter is rarely used as a representation of a network because it only
measures the furthest pair, and is unlikely a good indicator of the whole

network.

o Average path length: The average path length, denoted by (I), is the
average number of links along the shortest paths for all possible pairs of
nodes in the networks. The average path length is more useful as a measure

of the behaviour of the network than the diameter.

2.2.2 Erdoés-Rényi random network

One of the simplest network models reproducing the real networks is the FErdds-
Rényi random network [15-18]. An ER random network contains N nodes and M
links where a link between two nodes is placed with probability p. There are two

definitions of ER random network:

« G(N, M) model: In G(N, M) model, the number of nodes and links are

N
fixed. There are, hence, ((]\2/[> ) possible graphs that can be formed from

the N nodes by chosen M links from all possible pairs, (]; ) [15-17].

« G(N,p) model: The G(N,p) model fixes the probability p that two nodes

are connected, but the number of links is not fixed [1§].
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The two models G(N, M) and G(N,p) are statistically equivalent with
M = p(g ) [B1]. In this dissertation we explore the networks with some constant

number of links so we prefer the G(N, M) model than G(N, p).

An ER random network is generated by

1. Create N isolated nodes.

2. Select a pair of nodes randomly. If they are not connected, then connect
them with a link and increase the number of pairs. Otherwise, leave them

and go to the next step.

3. Repeat step 2 until the total number of pairs is M.

In an ER random network, the degree distribution pj, which is the proba-
bility that a random chosen node has degree k, follows the binomial distribution.
However, we are interested in the properties of large networks with a fixed aver-
age degree. In some situations, this is more realistic. For example, the typical
number of friends a person has does not depend on the total number of people in
the world. Moreover, most real networks are sparse meaning that (k) < N. So
in this limit with fixed (k), the binomial distribution can be approximated by the

Poisson distribution
—(k) M
k!

The advantage of the Poisson distribution is that it does not depend on the network

Pr=¢ (2.9)

size, but on the average degree (k) only.

One interesting property of an ER random network is the emergence of the
largest component. Many real networks typically contain one large component
that occupies most of the network (usually more than half of the network size),
and numerous number of small components [31]. In ER random network a unique
large component or a giant component appears when (k) > 1 [15]. The word giant
component has a specific meaning that it is the component whose size grows in

proportion to the network size.
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ER random network also displays small world property, where distance
between two randomly chosen nodes in the network is short. The small world
effect is found in many real networks. The small world effect predicts that the
average path length, (I), and the diameter, l.y, scales logarithmically with the
system size for fixed average degree [G,B2]. So the term short means that the
value of (I) or l., is proportionally to In N and grows very slowly with N. The

diameter of an ER random network is [0, 31,32]

In N
lnax &~ ———. 2.10
In(k) (2.10)
The average path length of an ER random network is [33]
InN -~ 1
)= ——— + = 2.11

where v ~ 0.5772 is the Euler’s constant.

Real world networks, however, differ from ER random network. For ex-
ample, the degree distribution of real networks is scale-free or power law (most
nodes have low degree and a few of nodes have high degree) distribution while
an ER random network provides the Poisson degree distribution. Despite the
disagreement, an ER random network has been widely studied for complex net-
works. As we can find tremendous papers related to ‘random networks/graphs’
in Scopus (see http://www.scopus.com/scopus/home.url) and ISI database (see
www.webofknowledge.com). The simplicity of an ER random networks makes
it possible to compute analytically many properties, particularly with respect to
component sizes and average path lengths. Consequently, an ER random network
is often used as a baseline model for various applications. Anyway, a random
network with non-Poisson degree distribution is developed by Newman [32,34].

The discussion of this extended model is beyond the scope of this dissertation.

2.2.3 Network dynamics

Complex networks have been generally studied in two aspects of network dynamics.

The first aspect is the evolution of particular network structure where the topology
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of the network changes as a function of time. There are several possible ways to
change topology such as creation and deletion of links, or creation and deletion
of nodes [6,85,86]. The second aspect is the dynamics on networks where the
state of a node (characterised by a discrete variable; for example: active/inactive,
spin up/down, susceptible/infected or a scalar variable; for example: density,
concentration, flow) changes dynamically in time. In this aspect, the network
topology is considered as a static network while the dynamical processes take

place, e.g. a disease propagation on a certain network structure.

In most real systems, however, the networks do not have fixed connections
for some dynamical processes. Indeed, they evolve in time in response to the
dynamics of nodes. Furthermore, the states of nodes change is dependent on the
evolution of the topology. In this sense, there is a coupling between the state
dynamics and the topological evolution and a feedback loop is formed (Fig. @)
The effect of this coupling relies on a dynamic timescale characterised by the time
that the node state can change and an evolution timescale which the network
topology changes. Faster process is often explored, while slower process is often
treated as a constant background influence. If the dynamic timescale is much
larger than the evolution timescale, we get an evolving network and can neglect a
dynamic state. On the other hand, if the evolution timescale is much larger than
the dynamic timescale, then we get a fixed network. However, if the dynamic
and evolution are in the same timescale, there is a pure coupling between the
state dynamics and the network topology. This network is called an adaptive
network [[10,114,87]. An adaptive network establishes many interesting properties
such as bifurcations and phase transitions. We will discuss these properties in the

following section.

2.3 The SIS model on adaptive networks

When epidemic spreads are modelled in networks, individuals are represented by

nodes and the connections between individuals are represented by links of the
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Figure 2.5: Feedback loop shows the coupling between the state dynamics and the

topological evolution [14].

network. In SIS adaptive model proposed by Gross et al. [10], there are two main
processes: (1) Infection-recovery process which determines the changing of node
states, and (2) rewiring process which determines the changing of the network
topology. These two processes are coupling that the network structure affects the
epidemic spread on the network, while the states of nodes affect the evolution of

network topology (see Fig. @)

In this section, we first introduce SIS model on ER random network and
some mathematical techniques that are usually used in this approach. After that,
the rewiring process is introduced. We note that there are many types of link
dynamics to evolve the network topology such as contact-conserving rewiring [[10,
38-41], link removal [42], and random link activation and creation [42-44]. In
this dissertation, we only follow and develop the adaptive SIS model with contact-

conserving rewiring.
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(a) (b)

Figure 2.6: Ilustrations of open triplet (figure (a) above) and closed triplet (figure
(a) below). The small network (figure (b)) shows that the number of SSI-triplets

is two and the number of ISI-triplet is one.
2.3.1 SIS model on networks

In this section we consider quantities related to the dynamics of state and struc-
ture. The variables of interest here are typically the average values such as the
expected number of nodes ([A]), the expected number of links ([AB]) and the
expected number of triplets ([ABC]), with A, B,C € {S,I}. A triplet consists
of three nodes connected by either two links (open triplet) or three links (closed
triplet)-see Fig @ The ordered expression in [ABC] means that a middle node

of state B is connected to state A and state C.

Consider random variable X;(¢) that determines the type of node i at time
t, for example, X;(t) = S if node i is susceptible at time t. Then the expected

values can be defined as

[A] (1) = Z Prob(X;(t) = A),

Z Z a; jJProb(X;(t) = A, X;(t) = B), (2.12)

i=1 j=1
N N N
[ABC)(1) = > 3 " agapProb(Xi(t) = A, X;(t) = B, Xu(t) = C),

i=1 j=1 k=1

where A, B,C' € S,I and a;; is one if node ¢ connects to node j; otherwise it is
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Zero.

These expected values of nodes and links obey conservation relations. The
conservation for the node is based on the fact that Prob(X;(¢) = S)+Prob(X;(t) =
I)=1fori=1,...,N. This implies that

[S](#) + [1](¢) = N, (2.13)

for any time ¢. Similarly, the conservation relation of the links following four states
SS,51,18 and I1 is

N N

[SS](8) + [ST](¢) + [IS](1) + [11)(8) = D > ~(Dai; = (k)N

i=1 j=1
where (k) is the average degree defined in Section 2.2.1|. Since SI-links and IS-
links are symmetrical, we can count [IS] as [SI]. Thus we reduce the above
equation to

[SS|(t) + [SI)(t) + [[1](t) = (k)N. (2.14)

From now on, we drop the explicit t-dependence of [A](t), [AB](t) and [ABC]|(t)

for convenience.

In the classical SIS model, the fully-mixed assumption approximates the
infection term in Eq. @ to b(k)[S][/]/N. With contact base, instead, this can
be written exactly as b[SI| where [SI] is the expected number of links between
susceptible and infected nodes. So we obtain the dynamic of nodes with the

pairwise term:

a8 o
dﬁj] []] b[SIL (2.15)
= b[SI] — r[I].

Eqgs. show that the dynamic of nodes depends on the number of SI-links.
Therefore this set of equations is not closed. To close the equations, one employs

the mean-field approrimation, in which the number of S/7-links is approximated

by [SI] =~ (k)[S][I]/N [37]. Egs. can be closed as

d[S] (k)
—— =] = b==[S]l1],

dt N (2.16)
1]

(k)
L=y S]] ol
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[5S] 5] 1]

Figure 2.7: Flow diagrams show the flux between compartments of nodes (figure
(a)) and compartments of links (figure (b)). Solid lines denote the infection process
coming from an infected node with the rate depending on a link or a triplet.

Dashed lines denote the recovery process.

In this approximation, however, all structural properties of the network are ne-
glected, except for the average degree (k). This means that the dynamics of links

cannot be taken into account in this approximation.

To capture the effects of the topological changes, we need to treat com-
partments of links as dynamical variables. To write down the rate equations
for the dynamics of links, we construct a flow diagram directly derived from the
infection-recovery process for SIS model (see Fig. @) To close Eqgs. , we need
additional dynamical equations for links. From the flow diagram in Fig. , SS-
links are created by recovery at rate r[SI] and destroyed by an infection event due
to infected neighbours outside the SS-links at rate b[SSI]|. So we obtain the rate
equation for [SS]:

d[SS]

— o = r[SI —[ss1]. (2.17)

For the I1-links, a recovery event can destroy I[-links if a recovered node

is in such a link. Since one II-link consists of two infected nodes, the total rate
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at which I1-links are destroyed is 2r[II]. I1-links can be created by two infection
events. The first one comes from the infection spreading across a S/-link con-
verting the link into //-link at rate b[SI]. The second event occurs due to the
infection of infected nodes in I.SI-triplets which creates two II-links so this event

occurs at rate of 2b[ISI|. Thus the rate equation for [/]] is

% = b(2[ISI] + [S1]) — 2r[I1). (2.18)

From the conservation relation of links (Eq. ), the rate equation of [S/] is

d[S1]

== = 2r[1) 4+ b([SST) - 2[IST]) = (b+ )[SI]. (2.19)

Again, this system of Egs. @ does not yield a closed form and
involves the triplets of [SSI] and [IST]. In order to close the system, pair approz-

imation is used here to approximate the triplets [37,145, 46]:

<k> [B] Hac

where pap = 1+ 045 denotes the double-counting of symmetric triplets and (q)

is the mean excess degree which is the average number of additional links con-
nected to B-node found by following a random link. According to Rand [45], the
pair approximation is considered for two types of distributions: Poisson distribu-
tion and multinomial distribution. In this work, we consider ER random network
with large network size and fixed mean degree. Therefore, the degree distribu-
tion is Poisson distribution (Sec. ) For simplicity, the adaptive network is
approximated to be random network, to which a random-graph-like approxima-
tion is applied [37]. With this assumption, (¢) ~ (k). Consequensely, we can
approximate the expected number of triplets as

2[SS][S1]
1]

[S1]*
2[5]

[SST] = [1S1] = (2.21)

The approximation is under assumption that links are distributed homogeneously

in the network [46]. Substituting these relations into Egs. , and , we
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obtain a closed system of differential equations

W] iy~ bisn,

W s -,
@ = r[SI] - 2b%, (2.22)
W s (1 " %) ~ 2011},

% = 2r[11] + b[S1] (W) = (b+7)[S1].

The pair approximation only requires basic information of link and node distri-
butions that are available in most network model. This approximation is more
realistic to study local behaviour of network such as infection process which can-
not be accurately determined by using fully mixed approximation. Furthermore, if
link distribution is properly sampled, this approximation can be used to represent
of entire network. However, the pair approximation neglects higher-order network
structure such as stars and triangles. This makes less accurate to model highly

clustering network where correlation is very localised [g].

2.3.2 Describing the SIS adaptive network model

In this section, we briefly review the work given by Gross et al. [10], where epidemic
spread is studied on the adaptive SIS network model. As an adaptation strategy to
avoid infection, susceptible nodes are allowed to remove their links with infected
neighbours with rewiring rate w, and the susceptible node immediately finds a

randomly chosen susceptible node to reconnect once the original link is cut off.

To analyse the adaptive network for SIS model, the system of Eqs is
modified. We can reduce five dynamical variables down to three by using conser-

vation relations (Eqs. m and ) The rate equations with rewiring mechanism
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] _
S = vis1) 1)
d[ss] _ ESIEN
T_T[S]]_%)l——[[] | dw[f’]]’ i
% = 2r(1— [SS] — [SI]) + b[ST] (%—[}f[]) CansT— wsT)
loss due t(er.eQWi;r)ing

The term w[SI] is added to the rate equations of [SS]| and [SI] because each
rewiring event creates new S.S-link and destroys S7-link. Even if the system con-
tains three dynamical parameters, b, r and w, it can be reduced to two independent
dimensionless ratios namely b/r and w/r. Physically speaking, this is equivalent

to rescaling time by the infection period r—!. Thus we obtain the rescaling form

of Egs. :

] _

— = bsI =1,
d[SS] [SS][S1]
= =[S0 - 2b1—_m— +w[ST], (2.24)
% = 2(1 - [SS] — [SI])+ b[ST] (%}[}Sﬂ) = (b+w+1)[51],

where b and w are rescaled parameters.

It is convenience to consider the density of node and links. Node density

can be defined as

[s] = N and [i] = N (2.25)
and link density as
[ss] = [S—]\j], [it] = % and [si] = % (2.26)

Using the definition of average degree (k) = 2M /N, we obtain a closed three-
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dimensional system of rate equations:

dii]  bk). . .

- T[SZ] = 4],
d[ss] , [ss][si]

el (w + 1)[si] — b(k) - (2.27)
d[si] (k) 2[ss| — [si]

Wz?(l—[ss}—[si])—i—b—[si]( ) — (b4 w+ 1)[s1].

1 — 4]

To prevent and control infection, we can use phase diagram as a guideline.
So in this work, we study phase diagram of epidemics which shows all possible
outcomes of a network. The phase diagram is usually compute from the steady
state conditions. At the steady state we observe the epidemic transition between
the disease-free state and the endemic state. We start from the Jacobian matrix

at an arbitrary point

b{k)
B [ss][si] /b [s1] w B [s5]
i I G e HETTy
b(k) 2[ss][st] — [si]* [s1] [ss] = [si] w—
> (- ’)(’“)1—[@ S
For the disease-free state, ([i], [ss], [si]) = (0, 1,0), so J reduces to
b(k)
i 0 5
J=10 o0 w41 — b(k)
0 -2 blk)—b-w-—3

To find the eigenvalues A of the Jacobian matrix, we solve
det(J — M) =0
A+DNV+AX2+b—a)—2a) =0,

where o = b(k) —w — 1. One eigenvalue is \; = —1, and other two eigenvalues

are

)\i:(a—b—Q)j:\/;a—b—Z)2+8a. (2.28)
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If the real part of all eigenvalues are negative, then the steady state is stable. If
at least one eigenvalue has a positive real part, then the steady state is unstable.
Consider Eq. if @ < 0, then Re(A;) < 0 and Re(A-) < 0. On the other hand,
if @« > 0, then Re(A\;) > 0 and Re(A_) < 0. Therefore the disease-free state is
stable if @ < 0 or b(k) —w — 1 < 0 and the state loses stability if & > 0. This

implies the critical value of infection rate
be= — — (2.29)

which is called the epidemic threshold [AT]. Note that this corresponds to b, =
r/{k) for w = 0.

At the steady state of Eqs. M for [i] # 0, we can obtain the link variables,

[ss] and [si], as a function of [i]:

5] = %m,
) (2.30)
[ss] = W(l —[1])

d[si]

Substituting Eqgs. into 7 (e 0, then we have the quadratic equation of [i]

as

(b —w)[i]* — (b{k) + b —2w)[i] + (b{k) —w —1) =0 (2.31)

whose solutions are

bR +b— 2w £/ (k) — 1) + 4(b — w)
1= 2(b — w) '

(2.32)

For a static epidemic network w = 0, the solutions in Eq. become

. k) +1) +\/b2 )2+ 4b
[2]1 )

0 \/ b2((k) — 1)2 + 4b

The solution [i]; is always larger than one, so it is unphysical. Consider the

(2.33)

remaining solution [i]o, if b > 1/(k), then 0 < [i]o < 1; otherwise [i], < 0. Combine
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Figure 2.8: Bifurcation diagram of the SIS model on ER random network shows
the stationary infected density ([i]~) as a function of the infection rate. Solid lines
show stable solutions whereas dashed lines show unstable solutions. In disease-free
phase, [i]. = 0 is stable below the critical infection rate and in endemic phase,
[i]oo > 0 becomes stable. The unstable stationary state [i]o < 0 is a non-physical

solution. This plot uses (k) = 4.

this solution to the trivial solution, [i{] = 0, in the disease-free state, we obtain
the epidemic transition as shown in Fig. @ At small infection rate below the
epidemic threshold, there is no infected node left in the network indicating that
the network is in a disease-free phase. For large infection rate above the epidemic
threshold, there is the persistence of infected nodes indicating an endemic phase.
These results yield the epidemic threshold corresponding to the classical SIS model
(Fig. @), with reproduction number Ry = b.(k)/r = 1.

For the adaptive network case (w # 0), at the epidemic threshold b. =
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(w+ 1)/(k), there are two solutions

Ml =0,

b(k) + b — 2w (2:34)

[i], = b—w
Then two endemic steady states exist for some set of parameters (k),b and w.
Gross et al. [10] observed that there is another threshold corresponding to a saddle-
node bifurcation. Kiss et al. [47] claimed that this threshold is on the parabola w =

b2((k) — 1)% + 4b
(k) )+ . Combine these two thresholds, we obtain bifurcation diagram

in Fig. @ With rewiring mechanism, therefore, a region of stable solutions of

both endemic and disease-free states exists.
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Figure 2.9: Two-parameter bifurcation diagram shows the dependence on the in-
fection rate and the rewiring rate for (k) = 4. The dashed and dotted lines are
transition lines corresponding to transcritical and saddle-node bifurcation, respec-
tively. Below the dashed line, there is only endemic state while above the dotted
line there is only disease-free state. Between these two transition lines, networks

can be either endemic or disease-free state.



CHAPTER II1

Analysis and modelling method

In the past two decades, epidemic models on adaptive networks have gotten more
attention [10, 11,88, B9, 4244, 18]. Many strategies to model the real-world be-
haviours are proposed such as contact-conserving rewiring [10, B8, B9, link re-
moval [42], and random link activation and creation [42-{44]. In these models, a
decision to change contact is based on information known globally, i.e., everyone
knows the health status of all others in the network. This concept, however, is
not practical in real life for large network. For example, a college student may
not know health statuses of every one of her classmates. Even if it is possible for
a node to know the status of each other such as computers in a network, storing
this information consumes significant time and memory space. Thus we propose
a more practical method where decision is based on local information. The word
“local” means that there is a limited distance where information can be transmit-
ted. In a network, distance is defined through a path (section ) so we define
the local area as the neighbourhood of a node. In this chapter we discuss our
proposed method called local rewiring method and how to simulate the adaptive
epidemic network with local rewiring. Equations describing the evolution of this

network are also described.

3.1 An adaptive SIS model with local rewiring

According to section , a susceptible node who makes contact with an in-

fected node may decide to break this SI-link and create a new link with another
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non-contact susceptible node. This decision assumes that the node that wants
to rewire away must possess information about every node in the network so it
can make the decision. We call the original rewiring method [L0] global rewiring
method. In order to make rewiring more realistic, we modify the existing rewiring
method based on the neighbouring information such that the rewiring takes this
information into account when identifying candidate nodes for rewiring. We called

our proposed method local rewiring.

In the local rewiring mechanism, determining who are neighbours of a node
is required. We introduce a new quantity called neighbouring distance d which is
the maximum distance where information about health statuses of neighbours are
known. The neighbouring distance is defined through the shortest path from a
given node. For example, in Fig. @, with d = 3, neighbours of the black node are
the nodes in the dashed circle where the first-order neighbourhood of the black
node is the set of the nearest neighbours of the node, the second-order neighbour-
hood is the set of the second-nearest neighbours, etc. In the local rewiring, a node
is allowed to rewire within their neighbourhood. In the Fig. @ with d = 3, the
black node knows the health status of every nodes in the dashed circle, then the
node is able to rewire to any susceptible nodes in the regions B and C. Note that
we consider a simple network where self-loops and multiple links are not allowed
so the node cannot rewire to itself or to its nearest neighbours to avoid double
links. To simplify the model, we set the neighbouring distance to be constant for
every node in the network. Fig. @ shows the differences between global and local

rewiring.

3.2 Analytic approach

The node and link densities are defined as

5= 5o ana i = e
g g (3.1)
N I 1 _ 191

[ss4] = M, [iig) = M, and  [sig] = Wg
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Figure 3.1: A schematic represents neighbours of a node with a neighbouring
distance d = 3. Consider the black node, the set of the white nodes inside the
region A is in first-order neighbourhood, the set of the white nodes inside the
region B is in the second-order neighbourhood and the set of the white nodes
inside the region C is in the third-order neighbourhood. With d = 3, every node

in dashed circle is a neighbour of the black node.
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Figure 3.2: A schematic represents some possible rewiring events for the global
rewiring and the local rewiring with the neighbouring distance d = 3. In the
global rewiring method, the black node who is susceptible breaks the SI7-link
(dashed line) and may create new SS-link (wavy lines) with any S-node in (a) the
second-order neighbourhood, (b) the third-order neighbourhood, (c) the fourth-
order neighbourhood or (d) another component. In the local rewiring method, the
node is allowed only to rewire within the neighbouring distance (d = 3) which is
in the case of (a) or (b). Notice that neighbours of the node are observed before
the taking place of rewiring event. After the rewiring, neighbours of the node will

be updated. Figure reprinted from [49].
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The subscript ¢ signifies that the quantities of interest are those of the giant
component. For other components such as small components, their evolution
tends to typically of size one due to the local rewiring (we will explain more in the
next chapter). Eventually, all nodes in the small components are susceptible and
there is no dynamics. Therefore we are interested in the giant component rather

than the whole network. With these definitions, we obtain the conservation of

nodes and links, the same as in Egs. and

[sg] + i, =1 and [ss,] + [iig] + [sig] = 1. (3.2)

A node in ER random network has on average:
(k) at distance one,
(k)? at distance two,

(k)3 at distance three,

(k)4 at distance d.

Then the average number of neighbours of a node at distance d is

> a (k) —1
Assume that (k) > 1 the equation becomes
Ny~ (k)4 (3.4)

For example, if (k) = 10 and d = 4, then N; ~ 10* = 10,000. In this
work, we consider the network size up to 10,000 so the value of N; may exceed

the network size such that N, is set to the giant component size Nj.
N4 = N,. (3.5)

Among the N, neighbours, there are roughly [S,] susceptible nodes to which a
susceptible node can rewire. Thus the probability that the susceptible node in the

giant component has susceptible neighbours is [S;]/N,. In the local rewiring with
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rewiring rate wy, therefore, the rewiring event occurs at the rate of wy[Sy]/N, =

g
wqls,]. Egs. p.27 are modified to

at T[SZQ] — [ig],
dlssy] _ - - [55][57)
ol (o )] - o, B2
Wl _ 91— fosy] — fsi) + 20 [si (%‘[[]]) (b4 wall — [i]) +1) i),

local rewiring

(3.6)

where k, is the mean degree of a node in the giant component.

3.3 Kinetic Monte Carlo simulation

To study the stochastic process of epidemic spreads on a network, we perform
a stochastic node-based simulation by keeping track of all possible events in the
network and the rates at which these events happen. We consider the node-based
selection where an S node is chosen randomly and, if the S-node connects to an
I node, it is rewired to a randomly chosen available susceptible node. To perform
this simulation, we model the adaptive SIS network with continuous-time Monte
Carlo method with event driven algorithms, also called kinetic Monte Carlo (kMC)
simulation [21-24].

Consider adaptive SIS dynamics taking place on a network of N nodes and
M links. At any time ¢ each node i has a corresponding state X!, which is either
susceptible (X! = S) or infected (X} = I), and each link between node i and j
has a corresponding state Y5, which can be one of: SS-link (Y5 = SS), II-link
(Y, = IT) or SI-ink (Y}, = SI). There are three processes of an adaptive SIS

network including:

1. Recovery process which acts on I-nodes. This event occurs at recovery rate

of r for each I-node.
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2. Infection process which acts along SI-links. The infection rate per link is
b, therefore the total infection rate of a given S-node who has k; infected

neighbours is k;b.

3. Local rewiring process which acts along S/-links. A given S-node who has
infected neighbour(s) may rewire to non-adjacent node who is susceptible
and one of the S-node’s neighbours N;. For the local rewiring with neigh-

bouring distance d, the rewiring occurs at rate wy.

These processes can be defined in terms of probabilities as [b0]

P(X[" = S|Xf = 1)

= 1
" A At }
b 1 al, P(X[T™ = [ X" = [|X! =5, X! =) (3.7)
== 1m s .
At—0 At
t (1 .t )(1 /| t+At) t+At P(yt+At _ SS’Yt _ S[)
wo— Tim @ Qi1 1eN, Qij ~ )ien \Litien, = ij =
d At—0 At ’
where aj; = 1 when nodes 7 and j are adjacency at time ¢, otherwise af; is zero.

v

For the local rewiring process with neighbouring distance d, the rewire-to S-node

must be in the set of Ny.

The fraction terms on the right hand sides of Egs. @ are the transition
probabilities per unit time. Taking the limit as At — 0 leads to the concept of

transition rates. We define the transition rate W; as

(

b fori=0,1,.... N -1

*)

Wi=4q r fori=N, (3.8)

wy fori= N+ 1.

\
For ¢ = 0,..., N — 1 the transition rates W; are the total infection rate for each
S-node who has ¢ infected neighbours. For ¢ = N and N + 1, WW; are the transition

rate of recovery and rewiring, respectively. After weighing the transition rate W;
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with its number of events, we obtain the rate

p

ib[S];  fori=0,1,...,N—1
Ri =4 r[I] for i = N, (3.9)

wy[SI] fori=N+1,

\
where [S]; is the number of S-nodes with ¢ infected neighbours. The sum of the

rates is denoted by

R=) R. (3.10)

In continuous-time dynamics, these processes cannot happen simultane-
ously [b1]. When a node is infected, we are able to calculate with a well-prescribed
probability when it will recover. For a susceptible node who has infected neigh-
bour(s), we calculate when its neighbour(s) will transmit a disease to and when
it will rewire to another susceptible. We construct the probability distribution of

these events according to as follows [51,H2]:

(a) The probability that no event occurs in the time interval (o = 0,¢) [21-23]
is
P(t) = exp(—Rt). (3.11)

The probability that any event occurs in the interval (¢, t+dt) is p(t)dt. Thus

the total probability that any event occurs in the time interval (ty = 0,¢) is

/ (OB, IMIVERS) (3.12)

This represents a distribution with mean waiting time 7 that the network

remains in its current state before changing to the next state where
o 1
T = tp(t)dt = —. (3.13)
to=0 R

(b) The probability that an event ¢ will be selected is R;/ Z;V:ng R;.

These are the basis of the kMC simulation [51] which is an event-driven

algorithm. Time interval is not fixed but rather corresponds to the time between



36

consecutive changes in the network. At each step, time advances by an amount
7 and node ¢ changes its state or link, where 7 and ¢ are random numbers drawn
(see Fig. @) Once the system has been initialised, the algorithm then consists of
the following steps that are iterated until either the chosen final time is reached,

or the network reaches the disease-free state where there is no evolution anymore:

1. At each time step, compute transition rate W; and weigh it with the number

N+1
=0

cumulative rates C; = S°'_ | R; is drawn (see Fig. @)

of events for each rate. The total rate R = > .~ R; is calculated. Then the

2. Randomly select a process with a probability given by item @ Thus an
event [ is selected such that C; > p1R > C;_1, where p; is a random number

uniformly distributed in the interval (0, 1).

3. Event [ is executed and time ¢ is updated according to item @ Waiting

time 7 is drawn from a Poisson distribution [21,22,51] as

7= : (3.14)

where py is a random number distributed uniformly in the interval (0, 1).

Therefore the physical time advanced in a single step is t — ¢ + 7.

Our kMC simulation is illustrated as a flowchart in Fig @



37

Figure 3.3: A Schematic of the kMC algorithm. Vertical ticks on the ¢ axis
indicate the moments when the simulation advances. The interval time 7 is given
by item @ The square around a node shows that the node has been chosen for
updating. This node is chosen according to item .

0 Ro Cl—l Cl CN_1 CN R

Recovery Rewiring
process process

Infection process

Figure 3.4: A schematic representation of the [th event selection.
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CHAPTER 1V

Results and Discussions

In this chapter, we discuss our numerical results of epidemic spreading on adaptive
networks at different neighbouring distances and network sizes. The main goal is
to investigate the effects due to local rewiring and global rewiring processes. In
this work, we simulate the adaptive SIS model on ER random networks of size N
= 2000, 5000 and 10000 nodes, and (k) = 4. The reason we chose these network
configurations was that we want to observe the effects of neighbouring distance
d comparing with the average path length (I) of the network. With small world
effect, we see that (I) depends on In N/In(k) (Eq. ) Due to computational
resources limitation, we consider N up to 10,000 nodes. However, the network
size must be large enough to correspond to the real systems. The smallest size we
used is 2,000 nodes. In our work, we consider (k) = 4, which corresponds to ([) ~
5.5, 6.1 and 6.6 for N = 2000, 5000 and 10000 nodes respectively. With these
configurations, we can observe the dynamics due to small value of d, for example
d = 4, which is less than the above chosen values of (I). Note that d must be
greater than two because if a node rewires to its adjacent susceptibles, then its

new link will be a double link, which is prohibited from our network.

4.1 Effects of local rewiring method

In this section we present the results of simulating the adaptive SIS on ER random

network to explain how the local rewiring affects the epidemic dynamics.
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4.1.1 Dynamics on topological networks

Let us first consider the case that there is only local rewiring process (wy; # 0
but b = r = 0). Fig. @ shows that at the beginning, with the fraction of initial
infected nodes [i]p = 0.1, the giant component consists of S-nodes and I-nodes
(Fig. ) As time progresses, I-nodes are isolated from the giant component so
the size of the giant component decreases and the number of small components
increases (Fig. ) Eventually, there is no network dynamics when all of I-nodes
are separated from the giant component (Fig. ) In the case of no epidemic
dynamics, the fraction of the S-nodes and I-nodes in the network are constant.

However, the number of S7-links decreases until S-nodes and I-nodes are totally

separated, i.e. [si] = 0 (Fig. )

Fig. @ shows a similar dynamics as that in Fig. @ but with different
fraction of initial infected nodes [i]op = 0.9. The network tends to split up /-nodes
from S-nodes. Then S-nodes join together densely and connect loosely to I-nodes
(Fig. ) Eventually, S-nodes and /-nodes are totally separated. In this case,
there are two large components (Fig. ); one is full of I-nodes, and the other,
which is larger than the former, consists of S-nodes. The networks are in steady

state and there is no rewiring event anymore when [si| = 0 (Fig. Q)

The small components whose S-nodes and I-nodes tend to avoid SI-links
and split into smaller components if they can. The rewiring event cannot happen
across components due to the local rewiring rule. Thus, the giant component will
become smaller and smaller until there is no dynamics in its component. If the
epidemic dynamics is switched on, the dynamics in the small components will
stop when all nodes are susceptible whereas the dynamics of the giant component
depends on the rates of b and w. In this regard, the dynamics of small compo-
nents are trivial. Henceforth, without loss of generality, we study only the giant

component instead of the whole network.

To investigate how the neighbouring distance d affects to the dynamics,

we consider the fraction of infected nodes in the giant component [i,] for various



41

Figure 4.1: Snapshots of adaptive SIS epidemic network with local rewiring and
without epidemic dynamics. The initial infected fraction is 0.1. S-nodes are rep-
resented by blue dots and I-nodes are represented by red dots. a) At initial time
t=0 w;l, the fraction of the giant component is 0.98. b) At ¢t =1 w;l, the frac-
tion of the giant component is 0.89. ¢) At t = 1,000 w;l, the fraction of the giant
component is 0.88. The plots correspond to N = 10*, (k) = 4,b =r = 0,wy # 0
and d = 4.
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Figure 4.2: Fraction of SI-links [si] as a function of time. The parameters are
chosen to be the same as in Fig. @ The results of simulations are averaged over

100 trials.
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Figure 4.3: Snapshots of adaptive SIS epidemic network with local rewiring and
without epidemic dynamics. The initial infected fraction is 0.9. S-nodes are
represented by blue dots and I-nodes are represented by red dots. a) At initial time
t = 0w ", the fraction of the giant component is 0.98. b) At ¢t = 1 w;l, the fraction
of the giant component is 0.97. ¢) At ¢ = 1,000 wd_l, the fraction of the giant
component is 0.87. The plots correspond to N = 10%, (k) = 4,b = r = 0,wy # 0
and d = 4.
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Figure 4.4: Fraction of SI-links [si] as a function of time. The parameters are
chosen to be the same as in Fig. @ The results of simulations are averaged over

100 trials.
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values of d comparing to the average path length in the giant component ([).
We simulate the network size of N = 10* and (k) = 4 so (I) ~ 6.7. We consider
d = 4,8 and co. Fig. @ shows that [i,] decreases faster when d > () than d < (l).
This is not surprising because larger d means higher chance to rewire. However,
at very large d, i.e. d = oo, the ability to prevent infection is not different from
d 2 (l) because at that stage, information about a node is know throughout the

whole graph.

4.1.2 Epidemic dynamics with local rewiring

Now we consider the case with both epidemic dynamics and local rewiring. We
begin with the simulations of networks in disease-free phase with b = 1, wy = 6
and d = 4 shown in Fig. @ At time t = 0, the ER network consists of one giant
component and some small components (Fig. ) As time progresses, with
local rewiring mechanism S-nodes attempt to avoid infection by rewiring from /-
neighbouring nodes to other S nodes, and then the /-nodes are isolated from the
giant component. In Fig. at time ¢t = 1, there are many small components
of I-nodes, separated from the giant components where as the giant component
contains compact group of S-nodes and loose group of I-nodes. At ¢t = 100, all
nodes in the giant component are S-nodes (Fig. ), then the network reaches
its steady state. Along the network evolution, size of giant component is reduced
and the number of small components increases as shown in Fig. @ As we discuss
above, because of the local rewiring mechanism, the separated recovered nodes
cannot reconnect to the giant component. Fig. @ confirms that in this case
the local rewiring method can also prevent infection by splitting I-node from the
giant component using only information about the nearby neighbourhood other

than global information as in the global rewiring method [53].

The effect of local rewiring on the network structure is further described
in Fig. @ With the local rewiring, the average degree of the giant component k,

tends to increase. This is because there are some nodes separated from the giant
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Figure 4.5: Fraction of infected nodes in the giant component [i,] as a function
of time. Simulations are performed for adaptive SIS on ER networks without
epidemic dynamics (b = r = 0) with N = 10%, (k) = 4,[i]o = 0.5 and w = 6 for

various d: d = 4 (blue circle), d = 8 (red triangle) and d = oo (black x-cross).
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(a) (b)

Figure 4.6: Snapshots of adaptive SIS epidemic network with local rewiring in
disease-free phase with S-nodes (blue) and I-nodes (red). a) At initial time ¢t = 0
r~! the fraction of the giant component is 0.98. b) At t = 1 r~!, the fraction of
the giant component is 0.9. ¢) At ¢t = 100 !, the fraction of the giant component
is 0.84. The plots correspond to N = 10%, (k) = 4,[i]o = 0.1,b = 1, wg = 6 and
d = 4. Figure reprinted from [@]
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Figure 4.7: Distribution of component sizes of adaptive SIS epidemic network with
local rewiring in disease-free phase at ¢ = 0 r~! (blue x-crosses), t = 1 r~! (red
triangles) and ¢ = 100 7! (black circles). The plots in the dashed circle represent
for the giant component. The parameters are chosen to be the same as in Fig. @

The results of simulations are averaged over 100 trials. Figure reprinted from [49].
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Figure 4.8: Fraction of infected nodes in the giant component [i,] as a function of
time. Simulations are performed for adaptive SIS epidemic network in disease-free
phase with parameters chosen to be the same as in Fig. @ The results of the

simulations are averaged over 100 trials. Figure reprinted from [49].
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Figure 4.9: Average degree of nodes in the giant component (k,) as a function of
time. Simulations are performed for adaptive SIS epidemic network in disease-
free phase with parameters chosen to be the same as in Fig. @ The results of

simulations are averaged over 100 trials. Figure reprinted from [49].
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component due to breaking of SI-links. However, the total number of degrees
in the giant component does not quite decrease because S-nodes create SS-links
substituting the broken S/7-links within the component. The value of £, is constant
when there are only S-nodes in the giant component, i.e., the network is in the
disease-free phase. Degree distribution in the giant component in Fig. shows
that the degree distributions of both S-nodes and I-nodes are broadened from the
initial profile. This is because S-nodes increase their degrees by rewiring to other
S-nodes whereas the I-nodes has broadened because of the new infections in the
susceptible group. Furthermore, the mean degree of S-nodes increases whereas

the mean degree of I-nodes decreases.

Next we consider networks in endemic phase with b = 1,w; = 2 and
d = 4 shown in Fig. . In this case, rewiring is not fast enough to separate
I-nodes and S-nodes completely. However, the rewiring mechanism tries to form
two loosely connected groups of S-nodes and I-nodes (Fig ) While S7-links
are continuously broken by rewiring, new S-nodes are created by recoveries in
the infected groups and new I-nodes are created by infections in the susceptible
groups (Fig ) At large time, the local rewiring method is not successful
in isolating /-nodes from the giant component so the network is in the endemic
phase (Fig ) As time progresses, the giant component size decreases and
many small components of size one are produced shown in Fig. .

For long-time evolution, [i,4] increases continuously (Fig. ) The value
of [ig4] will tend to constant ([¢4] > 0) when there is no chance for nodes in the giant
component to rewire anymore. It means that there is only dynamics of states and
the network is in the endemic phase. In this network, the effect of local rewiring to
the network structure is more apparent than that of the previous one. The value
of k4 in Fig. continues to increase.  Eventually k, is more than double its
initial value. Note that we do not show the plot of k4 as a function of time from
the beginning until steady state. Because the steady state occurs at very large
time (¢ ~ 10%) and tracking the network structure throughout the whole history is

very time consuming. So we simulate the networks and let them evolve, until very
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Figure 4.10: Degree distribution in the giant component p, of adaptive SIS epi-

demic network with local rewiring in disease-free phase for S-nodes at t = 0 r—!

(circles), t = 1 r~! (triangles) and ¢ = 100 r~! (squares) and I-nodes at t = 0

r~! (dots) and t = 1 r~! (crosses). The average degrees of S-nodes in the giant

component are 4.1, 4.5 and 4.6 for t = 0,1 and 100 respectively. The average

degrees of I-nodes in the giant component are 4.1 and 2.3 for t = 0 and 1, respec-

tively. The parameters are chosen to be the same as in Fig. @ The results of

simulations are averaged over 100 trials. Figure reprinted from [49)].
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Figure 4.11: Snapshots of adaptive SIS epidemic network with local rewiring in
endemic phase with S-nodes (blue) and I-nodes (red). a) At initial time ¢t = 0
r~! the fraction of the giant component is 0.98. b) At ¢t = 1 r~!, the fraction of
the giant component is 0.97. ¢) At ¢t = 10 !, the fraction of the giant component
is 0.9. d) At t = 100, the fraction of the giant component is 0.72. The plots
correspond to N = 10%, (k) = 4,b = 1 and wy = 2. Figure reprinted from [@]
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Figure 4.12: Distribution of component sizes of adaptive SIS epidemic network
with local rewiring in endemic phase at ¢t = 0 r~! (blue x-crosses), t = 1 r~! (red
triangle), t = 10 r=! (black circle) and ¢ = 100 r~! (green crosses). The marks in
the dashed circle represent for the giant component. The parameters are chosen
to be the same as in Fig. . The results of simulations are averaged over 100

trials. Figure reprinted from [49].
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Figure 4.13: Fraction of infected nodes in the giant component [i,] as a function
of time. Simulation are performed for adaptive SIS epidemic network in endemic
phase with parameters chosen to be the same as in Fig. . The results of

simulations are averaged over 100 trials. Figure reprinted from [49].
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Figure 4.14: Average degree of nodes in the giant component (k,) as a function
of time. Simulation are performed for adaptive SIS epidemic network in endemic
phase with parameters chosen to be the same as in Fig. . The results of

simulations are averaged over 100 trials. Figure reprinted from [49].
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large time before we start to observe the network structure. As an example, we
plot time evolution of k, for small networks size (N = 500) as shown in Fig. .
This plot illustrates that £, increases slowly at the beginning, after that it grows
rapidly until reaching a constant value at steady state. The degree distributions
of N = 10* are shown in Fig. . In the case of endemic phase, distributions for
both I-nodes and S-nodes are broadened corresponding to the increasing value of
ky. The average degree tends to increase. Moreover, the average degree of I-nodes
is a bit higher than the average degree of S-nodes. So disease transmission is

highly likely.

4.1.3 Summary

Results in this section are summarised as follows. With the local rewiring mech-
anism, [-nodes are isolated from the giant component. This process makes the
size of the giant component decreases and the number of the small components
increases. However, the network still contains one largest component and the dy-
namics of network depends on this component. That is the reason why we only
study the giant component instead of the whole network. We already show that
the local rewiring can prevent infections by using less information than can the
global rewiring. However, the effects of local rewiring may give the opposite result.
Due to the high connectivity within the giant component, the infection among the

group of S-nodes is easy to disperse.

4.2 Bifurcation diagrams

In this section, we will show how steady-state solutions of infected fraction [iy]f
depend on the value of d. Our simulations are performed with N = 2000, (k) = 4
and w = 2 so at initial time (/) ~ 5.6. In Fig. the analytical results from the
pair approximation model, calculated from Egs. @, are compared with numerical

simulations of the full adaptive SIS model at d = 4. Let us first consider the
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Figure 4.16: Degree distribution in the giant component p, of adaptive SIS epi-
demic network with local rewiring in endemic phase for S-nodes at t = 0 r~!
(circles), t = 1 r~! (triangles) and ¢ = 100 r~! (squares) and I-nodes at t = 0 7!
(dots), t = 1 r~! (solid triangles) and ¢ = 100 r~! (solid squares). An average
degree of S-node in the giant component are = 4.1, 4.2 and 4.8 for t =0, 1 and
100, respectively. An average degree of I-node in the giant component are 4.1,
3.9 and 5.7 for t = 0, 1 and 100, respectively. The parameters are chosen to be

the same as in Fig. . The results of simulations are averaged over 100 trials.
Figure reprinted from [49].
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numerical results. When epidemic dynamic is switched on, i.e. b > 0, we found
two thresholds. The first one is the epidemic threshold where the network changes
from disease-free phase ([i,]; = 0) to endemic phase ([iy]; > 0). The second one is
the persistence threshold where the network transitions from the endemic phase
to the disease-free phase. For analytical results, we obtain the solutions of [i,];
from computing Egs. @ at steady state. With the local rewiring, the degree of
the giant component ky is not constant but always increases until reaching its
steady state value. As shown in the previous section, in the disease-free phase, k,
does not quite change from (k) whereas, in the endemic phase, k, is much greater
than (k). In the case of endemic phase, steady state occurs after a very long time
as shown in Fig. . Therefore, the analytical solutions depend on what phase
the network is in. In the Fig. , the lower thick line comes from the solutions
in disease-free phase where as the upper thick line comes from the solutions in

endemic phase.

The analytical results agree well with the simulation results for value of
i) but the thresholds occur differently. This is because the approximation of the
local rewiring term in Egs. @ From Eq. @ and the fact that (k)¢ may exceed
the size of the giant component, we approximate N; = N, (Eq. @) However
this approximation is an overestimation for networks in disease-free phase with
small (k) and small d, e.g. for the network in Fig. where Ny ~ 4* = 256
which is considerably less than the network size N = 2,000. Beside that, in
the Eqs. @, the triplets [SSI] and [ISI] are approximated to products of lower
moments (Eqs. ) This pair approximation applies well to the global rewiring
whose topology is claimed to be random-graph like [37]. For the local rewiring,
degree distribution of the giant component is very broad (Fig. and ) and
the pair approximations for [SSI| and [/SI] overestimates the actual number of
triplets. Moreover, the effect of the local rewiring on the network topology is
more subtle than that of the global rewiring. Simulation results also depend on
the network size. For larger N, at the same value of wy, the invasion of new disease

can occur at lower rate of b. We will discuss this effect in the next section.
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Now we consider the effect of local and global rewirings to the epidemic and
persistence thresholds. For the local rewiring, we simulate networks with three
values of d: small value at d = 4, large value at d = 8 and very large value at
d = oo. Fig. shows that the different values of d affect the locations of the
threshold. For the epidemic threshold, when d > (I), the value of threshold is
higher than the that of d < (I). Comparing with the global rewiring in Fig. ,
the epidemic threshold of the networks with large d occurs at the same b as that of
the global rewiring. For the persistence threshold, at large d, the value of threshold
is also higher than that of small d because nodes have higher chance to rewire.
However, even if d is very large, the persistence threshold is still lower than the

global rewiring due to the rewiring rules discussed above.

4.3 Phase diagram

The possible asymptotic behaviours of our model can be represented in a phase
diagram on the two-dimensional parameter (b,w) as shown in Fig. . In this
diagram we also plot the phase diagram of the global rewiring for comparison. For
each rewiring, the diagram is divided into three regions: endemic phase (right-
most region for large b), disease-free phase (left-most region for small b), and
bistable phase (central region between endemic and disease-free phases). In the
bistable phase, the network can be stable in either endemic state or in disease-free
state. Fig. shows that boundary between endemic and bistable phases for
both rewirings are hardly different so the global and local rewirings have similar
endemic phase (orange colour). While the boundary between disease-free and
bistable phases of the local rewiring (solid triangles) is higher than the global
rewiring (solid circles). Thus, there are some overlaps of disease-free phase (blue
colour), and bistable (pink colour). This phase diagram is truly remarkable since

we can predict outcomes of an epidemic by using only local information.

Fig. shows the effect of network size to the values of thresholds. For

small b, the values of epidemic and persistence thresholds are quite similar for
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Figure 4.18: Bifurcation diagram for infected density in adaptive SIS epidemic net-
work with local rewiring as a function of infection rate b for different neighbouring
distances d = 4 (circles), 8 (triangles) and oo (crosses). The plots correspond to
N =2000, (k) = 4 and wy = 2. The results of simulations are averaged over 10
networks trials for each initial infected fraction [i]o = 0.01,0.1,0.9,0.99. Figure
reprinted from [@]
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Figure 4.19: Bifurcation diagram for infected density in adaptive SIS epidemic
network with global rewiring as a function of infection rate b. The plots correspond
to N = 2000, (k) = 4 and w = 2. The results of simulations are averaged over 10
networks trials for each initial infected fraction [i]o = 0.01,0.1,0.9,0.99. Figure
reprinted from [49)].
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Figure 4.20: Phase diagram of adaptive SIS epidemic network with local rewiring
(triangles) and global rewiring (circles). There are some overlap phases between
global and local rewirings: (1) endemic phase for both rewirings (orange colour),
(2) bistable phase for both rewirings (pink colour), (3) disease-free phase for global
rewiring but bistable phase for local rewiring (green colour), and (4) disease-free
for both rewirings. The plots correspond to N = 10* and (k) = 4 and for the local
rewiring d = 4. The results of simulations are averaged over 100 trials for each

plot. Figure reprinted from [49].
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each N. For large b, the thresholds are higher for larger N because the ability
of S-nodes to rewire is really restricted to local neighbourhood. Then rewiring
event must be fast enough to isolate I-nodes. This means that the effect of local

rewiring in large network size is stronger than that of small network size.



67

20 T T T T T T T T T T T T l.l ‘
I -AA.
I miig ]
].5 B n -
- I... ]
A
= [ ]
= r o a
S 10 L mle i
i lA.
|
¥ B
ge’
( ] AA
5 t 5o R ]
O AAA A
i ggadses”
" . Eggaggé
0 - T11-1 S '
0 0.5 1 1.5 2
b

Figure 4.21: Phase diagram of adaptive SIS epidemic network with local rewiring
for three network sizes: N = 2,000 (circles), N = 5,000 (triangles) and N =
10,000 (squares). For each N the opened and solid symbols represent, respectively,
the epidemic and persistence thresholds. The plots correspond to (k) = 4 and
d = 4. The results of simulations are averaged over 100 trials for each plot. Figure

reprinted from [@] .



CHAPTER V

Conclusions

In this dissertation, we have studied an adaptive SIS epidemic model with the
contact-conserving rewiring method on ER model networks. The individuals’ de-
cision to avoid infection by changing their social contacts is based completely on
information about which epidemiological status the other individuals possess. We
replaced the existing rewiring method, the global rewiring that requires infor-
mation of the entire network, with a more practical rewiring method, the local
rewiring, that uses only limited information to make a decision. For controlling
real-world diseases, the local rewiring strategy is more suitable since it requires
less information than does the global rewiring. The goal of this work is to investi-
gate the effect of local information of the epidemiological status on SIS epidemic
spreading in the adaptive network using both continuous-time kinetic Monte Carlo

simulations and pair approximation technique.

We have shown that both methods predict similar behaviours. The epi-
demic threshold and the persistence threshold are obtained with non-zero local
rewiring rate wy # 0. Although the epidemic thresholds of the global and local
rewiring at the same rewiring rate are nearly identical, their persistence thresholds
are definitely different. Our results show that there are phase overlaps between
both rewiring strategies. This means that under a certain circumstance, we can
predict the outcomes of an epidemic for planned interventions. In addition, we
compared the efficiency of both rewiring processes in preventing the spread of a
disease on the adaptive network. Our results indicate that even with limited local

information, we can satisfactorily predict the outcomes of an epidemic.
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The impact of neighbouring distance d has been studied on the local rewiring
network. With large value of d compared to the average path length of a net-
work, the epidemic threshold and the persistence threshold are higher than the
thresholds for small d. As we mentioned, [-nodes are isolated and later they are
recovered and have low risk of infection. However, the topological change of the
giant component responding to local rewiring is a cause for concern. With the
local rewiring, a node cannot rewire across its component to make a connection
with another one. So the giant component of S-nodes forms a dense connection
which is highly vulnerable to an infection as its size is reduced. Therefore, a small
fraction of I-nodes in the giant component which seems to be a little issue may
be very difficult to handle since it could cause an epidemic over the component.

This situation decreases the effectiveness of targeted vaccination.

Moreover, we have shown that the effect of local rewiring in the network
with large size is stronger than that of the network with small size. We conclude
that neighbouring distance and network size affect behaviours of the networks,
especially the value of the persistence threshold. We have shown that the larger
the network size, the lower the persistence threshold. This is because the effect of
local rewiring in a large network size is stronger than the effect in a small network

size.

Finally, we recommend for further investigation that the pair-approximation
should take the triplets or higher-order network structures into account. Since the
local rewiring affects the network connections such that the network is strongly
localised and makes the prediction of the model less accurate. We suggest that
the correlation should be included to the approximation of the triplets. Further-
more, we have studied only the local rewiring on ER random network. With
minimal effort, this model should be extended to study more realistic networks

with non-Poisson degree distribution.



[10]

References

Kermack, W. O., and McKendrick, A. G. A contribution to the mathematical
theory of epidemics. Proc. R. Soc. A 115 (1927) : 700-721.

Anderson, R. M., and May, R. M. Population biology of infectious diseases:
Part 1. Population biology of infectious diseases: Part I 280 (1979) :
361-367.

Hethcote, H. W., and Yorke, J. A. Gonorrhea transmission dynamics and

control. Berlin: Springer, Berlin, Heidelberg, 1984.

Brauer, F., and Castillo-Chavez, C. Mathematical Models in Population Bi-
ology and Epidemiology. 24 ed. New York: Springer-Verlag New York,
2012.

Brauer, F. Compartmental Models in Epidemiology. in F.Brauer, P.vanden
Driessche and J.Wu (ed.), Mathematical epidemiology, pp.19-80. Berlin :
Springer-Verlag Berlin Heidelberg, 2008.

Albert, R and Barabasi, A. Statistical mechanics of complex networks. Reuv.

Mod. Phys. 74 (2002): 47-97.

Newman, M. E. J. Spread of epidemic disease on networks. Phys. Rev. F 66
(2002): 016128.

Keeling, M. J. and Eames, K. T. D. Networks and epidemic models. J. R.
Soc. Interface 2 (2005): 295-307.

Pastor-Satorras, R., Castellano, C., Mieghem, P. V. and Vespignani, A. Epi-
demic processes in complex networks. Rev. Mod. Phys. 87 (2015):925-979.

Gross, T., Dommar D’Lima, C., and Blasius, B. Epidemic dynamics on an

adaptive network. Phys. Rev. Lett. 96 (2006) : 208701-4.



[11]

[12]

[14]

[15]

[21]

[22]

71

Funk, S., Salathé, M., and Jansen, V. A. A. Modelling the influence of hu-
man behaviour on the spread of infectious diseases: a review. J. R. Soc.

Interface 7 (2010) : 1247-1256.

Epstein, J. M., Parker, J., Cummings, D., and Hammond, R. A. Coupled
contagion dynamics of fear and disease: mathematical and computational

explorations. PLoS ONE 3 (2008) : e3955.

Omi, S. SARS — How a global epidemic was stopped Manila : WHO Regional
Office for the Western Pacific, 2006.

Gross, T. and Blasius, B. Adaptive coevolutionary networks: a review. J. R.

Soc. Interface 5 (2008): 259-271.

Erdés, P. and Rényi, A. On random graphs, 1. Publ. Math. Debrecen 6 (1959)
1 290-297.

Erdés, P. and Rényi, A. On the evolution of random graphs. Publ. Math. Inst.
Hung. Acad. Sci. 5 (1960) : 17-61.

Erdos, P. and Rényi, A. On the strength of connectedness of a random graph.
Acta Mathematica Academiae Scientiarum Hungaricae 12 (1961) : 261
267.

Gilbert, E. N. Random Graphs. Ann. Math. Statist. 30 (1959) : 1141-1144.

Barabasi, A.-L., and Albert, R. Emergence of scaling in random networks.

Science 286 (1999) : 509-512.

Clauset, A., Shalizi, C.R., and Newman, M. E. J. Power-law distributions in
empirical data. STAM Review 51 (2009) : 661-703.

Landau, D. P., and Binder, K. A guide to Monte Carlo simulations in statis-

tical physics. Cambridge : Cambridge University Press, 2000.

Newman, M. E. J., and Barkema, G. T. Monte Carlo methods in statistical
physics. Oxford : Oxford University Press, 1999.



[28]

[29]

[31]

72

Bulnes, F. M., Pereyra, V. D., and Riccardo, J. L. Collective surface diffusion:
N-fold way kinetic Monte Carlo simulation. Phys. Rev. E 58 (1998): 86—
92.

Serebrinsky, S. A. Physical time scale in kinetic Monte Carlo simulations of

continuous-time Markov chains. Phys. Rev. E 83 (2011) : 037701.

Barabasi, A.-L., and Posfai, M. Network Sciences. Cambridge : Cambridge
University Press, 2016.

van Kampen, N. G. Stochastic process in physics and chemistry. North-

Holland, Amsterdam, 1981.

Castillo-Chavez, C., Feng, Z., and Huang, W. On the computation of Ro
and its role on global stability. In C.Castillo-Chavez, S.Blower, P.van
den Driessche, D.Kirschner, and A.-A.Yakubu (eds.), Mathematical ap-
proaches for emerging and reemerging infectious diseases: models, methods

and theory, pp. 229-250, New York : Springer-Verlag New York, 2002.

van den Driessche, P., and Watmough, J. Reproduction numbers and sub-
threshold endemic equilibria for compartmental models of disease trans-

mission. Math. Biosci. 180 (2002) : 29-48.

Chowell, G., and Brauer, F. The Basic Reproduction Number of Infectious
Diseases: Computation and Estimation Using Compartmental Epidemic
Models. in G.Chowell, J.M.Hyman, L.M.A.Bettencourt, and C.Castillo-
Chavez (eds.), Mathematical and Statistical Estimation Approaches in Epi-
demiology, pp. 1-30, Dordrecht : Springer, Dordrecht, 2002.

van den Driessche, P., and Watmough, J. Further Notes on the Basic Re-
production Number. In F.Brauer, P.vanden Driessche and J.Wu (ed.),
Mathematical epidemiology, pp.19-80. Berlin : Springer-Verlag Berlin Hei-
delberg, 2008.

Newman, M. E. J. Networks: An Introduction. New York : Oxford University
Press, 2010.



[42]

73

Newman, M. E. J. The structure and function of complex networks. SIAM

Review 45 (2003) : 167-256.

Fronczak, A., Fronczak, P., and Holyst, J. A. Average path length in random
networks. Phys. Rev. £ 70 (2004) : 056110.

Newman, M. E. J., Strogatz, S. H., and Watts, D. J. Random graphs with
arbitrary degree distributions and their applications. Phys. Rev. E 64
(2001) : 026118.

Watts, D. J,. and Strogatz, S. H. Collective dynamics of ‘small-world’ net-
works. Nature 393 (1998): 440-442.

Strogatz, S. H. Exploring complex networks. Nature 410 (2001) : 268-276.

Gross, T. Interplay of network state and topology in epidemic dynamics. In:
Boccaletti S, Latora V, Moreno Y (eds) Handbook of biological networks.
World Scientific, Singapore, (2009): 417-436

Risau-Gusman, S. and Zanette, D. H. Contact switching as a control strategy

for epidemic outbreaks. J. Theor. Biol. 257 (2009): 52-60.

Marceau, V., Noél, P.-A., Hébert-Dufresne, L., Allard, A. and Dubé, L. J.
Adaptive networks: Coevolution of disease and topology. Phys. Rev. E
82 (2010): 036116.

Shaw, L. B. and Schwartz, I. B. Enhanced vaccine control of epidemics in

adaptive networks. Phys. Rev. E 81 (2010): 046120.

Schwartz, 1. B., Shaw, L. B. and Shkarayev, M. S. Adaptive network
dynamics-Modeling and control of time-dependent social contacts. Pro-
ceedings of Fusion 2011, the 14th International Conference on Information

Fusion.

Zanette, D. H. and Risau-Gusméan, S. Infection spreading in a population

with evolving contacts. J. Biol. Phys. 34 (2008): 135-148.



[48]

[49]

[50]

[51]

[52]

74

Taylor, M., Taylor, T. J. and Kiss, I. Z. Epidemic threshold and control in a
dynamic network. Phys. Rev. E 85 (2012): 016103.

Guo, D., Trajanovski, S., van de Bovenkamp, R., Wang, H. and
Mieghem, P. V. Epidemic threshold and topological structure of
susceptible-infectious-susceptible epidemics in adaptive networks. Phys.

Rev. E 88 (2013): 042802.

Rand, D.A. Correlation equations and pair approximations for spatial ecolo-
gies. edited by Jacqueline M. McGlade. CWI Quarterly, Vol. 12 (3&4),
(Centrum Wiskunde & Informatica, Wiley-Blackwell, 1999), p. 329

Zschaler, G. Adaptive-network models of collective dynamics. Eur. Phys. J.
Spec. Top. 211 (2012): 1-101.

Kiss, I. Z., Miller, J. C. and Simon, P. L. Mathematics of Epidemics on
Networks: From Fxact to Approzimate Models. Springer, Switzerland,

2010.

Shaw, L. B. and Schwartz, 1. B. Fluctuating epidemics on adaptive networks.

Phys. Rev. E 77 (2008): 066101.

Piankoranee, S. and Limkumnerd, S. Effects of local rewiring on SIS epidemic

adaptive networks. Manuscript submitted for publication.

Allen, L. J.S. An Introduction to Stochastic Epidemic Models. In F.Brauer,
P.vanden Driessche and J.Wu (eds.), Mathematical epidemiology, pp.81—
132. Berlin : Springer-Verlag Berlin Heidelberg, 2008.

Fennel, P. G., Melnik, S. and Gleeson, J. P. Limitations of discrete-time ap-
proaches to continuous-time contagion dynamics. Phys. Rev. E 94 (2016):

052125.

Van Mieghem, P. Performance Analysis of Complex Networks and Systems.
Cambridge: Cambridge University Press, 2014.



75

[53] Piankoranee, S. and Limkumnerd, S. Effects of global and local rewiring in
epidemic adaptive networks. Journal of Physics: Conference Series 1144

(2018): 012080.



76

Vitae

Miss Suwakan Piankoranee was born on 24 April 1980 in Bangkok, Thailand. She
received her Bachelor degree of Science in Physics from Chulalongkorn University
in 1999. She continued studying and received Master’s Degree of Science in Physics

from Chulalongkorn University in 2004.

Publications:

2018 Piankoranee, S., and Limkumnerd, S. Effects of global and local rewiring
on SIS epidemic adaptive networks. (accepted for publication in Journal

of Physics: Conference Series).

Conference Presentations:

2017 Piankoranee, S., and Limkumnerd, S. Role of mutual information in dis-
crete and continuous time Markov chains. Siam Physics Congress 2017,

Rayong, Thailand (24-26 May 2017).

2018 Piankoranee, S., and Limkumnerd, S. Effects of global and local rewiring
on SIS epidemic adaptive networks. Siam Physics Congress 2018, Pisan-

ulok, Thailand (22-24 May 2018).



	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	List of Figures
	CHAPTER I Introduction
	CHAPTER II The Adaptive Epidemic Networks
	2.1 Compartmental SIS model
	2.1.1 Mathematical approach to SIS model
	2.1.2 Basic results of the SIS model

	2.2 Complex networks
	2.2.1 Network definitions
	2.2.2 Erdős-Rényi random network
	2.2.3 Network dynamics

	2.3 The SIS model on adaptive networks
	2.3.1 SIS model on networks
	2.3.2 Describing the SIS adaptive network model


	CHAPTER III Analysis and modelling method
	3.1 An adaptive SIS model with local rewiring
	3.2 Analytic approach
	3.3 Kinetic Monte Carlo simulation

	CHAPTER IV Results and Discussions
	4.1 Effects of local rewiring method
	4.1.1 Dynamics on topological networks
	4.1.2 Epidemic dynamics with local rewiring
	4.1.3 Summary

	4.2 Bifurcation diagrams
	4.3 Phase diagram

	CHAPTER V Conclusions
	References
	Vitae



