CHAPTER 1L ?“
© THEORY
2.1 Basic Theory

The equivalent conductance J\ ~of completely dissociated
electrolytes at low concentrations is- found to be a decreasing linear.
function of the square root of concentration. Extrapolation to zero

o
concentration yeilds the limiting equivalent conductance A . Thus,

)
A = A-alu (1)
as was first observed by Kohlrausch. Most of the uni - univalent elec-
trolytes and certain bi and tri - univalent electrolytes in agueous
solution were found to exhibit the linear relation (1). The theoretical
prediction of the constant A was made by Onsager, from which he found

that

A = Ao-(-Bj\?f 132)./M (2)
1

known as the Onsager limiting law. In the equation (2)
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of the cation and anion, respectively.

For data at higher concentration, Onsager's limiting form is no
longer adequate. Shedlovsky observed that for completely dissociated
1:1 electrolytes with M & 0.1 the deviation of the conductance from
the Onsager.predictioﬁ is a linear function of the concentration, with

o
the intercept equal to A That is

~
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where B is a constant

Rearranging (2),

AN = (A +~B1/‘M)/(1'B2/M)

Substitution into (3) and rearrange, hence
1
o B, /M (4)
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where 14? -is known as Shedlovsky extrapolation function. For highly
valent or unsymmetrical eiectrolytes, certain deviations from equation
(4) are expected. To account for the deviation, explicit interpreta-
tion of these constants becomes essential. The ion size parameter was
introduced into the conductance equation, initially to fit the calcu-
late& and the observed conductances. Considerable improvement was
achieved, however the equations are still restricted to a dilute con-

centration range and are mostly successful for simple electrolytes.

The complete.representatiorn of the transport properties of elec-
trolytes involves the limiting value of the tramsport properties at in-
finite dilution, the electrophoretic part, and the relaxation contri-

bution.

The two main effects causing interaction between ions are the

electrophoretic effect, and the relaxation effect.

The 'electrophoretic effect' arises from the viscous drag of the
medium in the vicindity of any given ion j 1in the solution. The effect
will therefore be the retardation of the motion at the other ions which
have opposite charge to that of the ion i. The effect is clearly con-
centration dependent. The computation of this effect requires the use
of the distribution function and the equation of electrostatic théory.
For solutions in equilibrium, the 'ionic atmosphere' (the whole assem-
blage of ions outside the central one chosen) is on a time average dis-
tributed with spherical symmetry. In electrical conduction experiments,
the motion of ions under the influence of external forces will disturb
this symmetrical distribution of ions. The central ion j may then move
to an off-centre position and experiences a restoring force due to dis-
symmetry of the ionic atmosphere. The average restoring force exper-

ienced by the central ion is called the 'relaxation effect'. This effect



also tend to decrease the velocity of the central ion. If X is the in-
tensity of the applied field in x-direction, the relaxation field AX

will act in the same directdion but in opposite sense. The computation
of A X involves a combination of the interionic interaction theory with
the equation of hydrodynamic continuity, and is mathematically the most

difficult part of electrolyte theory.

The evaluation of the terms imvolved in conductance equations
(relaxation and” electrophoretic terms) follows the general procedure

summarised as follows

Appropriate expressions for charge density (,Lg;), potential (yﬁ ),
pair distribution function ( fii)’ force (X) etc., are derived according
to the model and the situation (equilibrium or non-equilibrium) consi-
dered. The electrical forces and potentials are integrated overall space
using spherical polar coordinates. The total pair distribution function
is the summation of the pair distribution function of all the species
in solution. Using an iteration procedure, the pair distribution, func-
tion and forces are expressed in terms of a correlation functiqn G).
These equations are then rearranged to the form that can be solved by
the Laplace transform. This gives the solution of the correlation funcw
tion (G), which is normally in terms of integral functions. Certain
bonndary conditions are then imposed on the limit of the values of fji’
R and thus G with respect to a distance oﬁ.app;oach between ions, r.
This allows the integration constants (A) of the integration functions
to be evaluated. Substitution of G and A into the former equations of
fji’ ’Cji and X.giyes thg explicit expressions of these terms which
contribute to .the complete conductance equations. The system is firstly
considered under an equilibrium situation in the absence of external
field. The equilibrium expressions of the time average functions such
ji"fji R /Dﬂi and thus Gji are then obtained by the general pro-

cedure outlined above.

as n

. A non-equilibrium situation is then considered when an external
field X is applied to the system. A perturbafion method of'solving the
Onsager continuity equation (5) is used.

divl (fji. Vji) + d1v2. jf'vji) =0 (5)



where y_  is the average velocity of an ion i at dr, in the vicinity

ji 2

of an ion j at dr1 with respect to the external frame of reference

(see Fig. 2.5). For example, the pair distribution function fj{ in the

perturbed case then,
o /
.. = f, +f,,
Ji ji ji
° ° /

where f.,, = n,,n.. in the equilibrium case and f,_
ji jiji ji
perturbation of f;i due to the applied field X.

(r, ®) is the

2.2 TIon in Solution and Ion Association

The organisation of ions and solvent molecules in electrolyte
solutions is dependent upon interactions of four types; dipole-dipole,
ion-dipole,ion-ion and ion-dipole-ion forces. These interactions arise
from coulambic forces which depend on the molecular and electrostatic
nature of the ion‘and solvent. On'this basis, the system of ions in

polar solvent is generally understood as follows.

For a given isolated ion in very dilute solution, the organi-
sation of the solvent surrounding it will vary with distance, Being de-
pendent on the relative strengths of two opposing forces, ion-dipole
and dipole-dipole. Ion-dipole interactions will:cause solvent molecules
in direct contact with the ion to be strongly aligned and polarised by
the intense electric field at its surface and some or all of these mo-
lecules will move with the ion as it travel through the solution. At
large distances from the central ion, dipole-dipole forces will pre-
dominate and the solvent molecules will remain part of the bulk solvent
structure. An ingermediate "disorganised" region will exist in which
neither force is predominant and hence solvent molecules will be partially
aligned by the field of the ion, but will not move with it through the
solution; they will not, however, be part of the bulk solvent structure.
Random translational motion of the sovated ion can arise from the thermal
energy of the ion. This motion changes the strength of the ion-solvent
and solvent-solvent forces between the sovent molecules in the inter-
mediate region behind and ahead of it. The three solvent regions about

an ion are shown in Fig. 2.1



Fig 2.1 Organisation of solvent at site of an ion.

In a more concentrated solution. ion-ion interactions become

significant. Two types of interactions are involved (5, 6, 7)

(@YD) Loﬁg—range Coulombic Forces:

when two .ions are far-apart they interact as though they are two
point charges in a dielectric continuum. Thus the coulombic force ex-

erted between the ions i and j of charges.e, and ej separated by a dis-

i
tance r in solvent with a dielectric constant D, is

2 0
F=e e /Dr” = ei]% (r) = (r)

Vji

o 2 :
where y% = ej/Dr an electrostatic potential produced by ion j.
(2) Short-range Forces:

As two ions approach, various short-range interactions become
significant. They arise from the effects of size and structure of ion

and solvent molecules.

(2.1) Polarisation Effects: Two ions in close proximity tend to
polarise each other, giving rise to an extra attractive force between

the two ions (u>1/r5). This may give rise to a-contact ion—pair'(CIP).

(2.2) Effects due to Dielectric Saturation abodt the Ions: The
solvent molecules in the region of the dielectric saturation about an
ion will interact with those of the nearby ion, giving rise to extra

repulsive forces between ions (o l/rs).
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for a pair of oppositely charged ions i and j.
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(2.3) Hard Core Interaction: This is due to interelectronic

repulsive forces (oo I/rn , n = 8-10).

(2.4) TIon-induced Dipole-ion Forces: When ions are only 2-3
solvent molecules apart, the discrete molecular structure of the solvent
becomes important, and attractive forces due to mutual polarisation of

ions occur. This gives rise to a solvent separated ion pair (SSIP).

The potential of average forces between two oppositely charged
ion is therefore (5)

o o . *
wji(r) = eiyﬁ(r) + Vji (r)

where V;i is the short range potential arising from short range inter-
actions mentioned above. Plots of these potentials as a function of a
distance r are given in Fig 2.3 as a general case. The behaviour of

L

Vji is system specific, mainly due to the ion-solvent-ion compoment of
Vgi. The formation of SSIP between two oppositely charged ions may be
considered to give rise to species 1 or 2 shown in Fig 2.2, with one or
two solvent molecules separating the two ions. These formations may be
kinetically and spectroscopically evident. The stability of these SSIP
depends on the polarising power of Mn+ and X" ions and on the polarisa-
bility of solvent molecules. Small or highly charged ions have the
greatest polarising power. Solvents of low dielectric constant rein-
force the formation of SSIP type 2. The relative stability of these
SSIP'S and the contanct ion pair (CIP), thus, results in a discontinuous
function of w;i(r) shown in Fig 2.4. The relative depths and heights of
the potential wells A,B and C depend on the relative stability of CIP,
SSIP type 1 and SSIP type 2, respectively.

In ion association, a similar situation applies (7). When the
ions are small or highly éharged and the solvent molecules are reaaily
polarisable, a semistable SSIP of type 2 will be formed. Depending on
the balance of coulombic, thermal, and solvation forces, the SSIP type 2
may break up or one of the solvent molecules may be forced out, and SSIP
type 1 is formed. The relative probability of either alternative de-
pends on the depth of the potential well C and the heights‘of the poten-
tial barriers on either side of it. In many cases C will be shallow

and SSIP type 1 will be the first stable species to be formed.



12

A
o ",
o]
W;
v
Fig 2.4 Potential of Average Force ng vs. distance r
. for ion-pairing.
X 4 .
re ~ ’
dry W:(r)
. o
) (2 _‘f" \
k | J-- W < VVSn
J J
. le? [ dn
dr, ] Y
‘ .
P > J
-
i
<\
T2
7’ > Z
7

Fig 2.5 Reference frame for distribution of ioms i,

j and k with respect-to solvent in solution.:



The distribution of ion in solution may be considered with re-
ference to Fig. 2.5, where ion j in the volume element drland ion 1
in the volume element dr2 are at a distance o (= r). Since each ion
in solution will attract ions of opposite charge and repel those of like
charge, the time average charge density about a given ion will be of
opposite sign to that of the central ion itself. A general plot of the
pair distributidn function f with r is given in Fig 2.6. fJi gives
the probability of finding an ion of species i in volume element dr

2

(see Fig. 2.5) and an ion of species.- j in dr1 simultaneously where dr1

and dr2 are at a distance Ty (= r)laggrt, and fji = nj nji where nji
is the local concentration (in ion cm ~) of ionic species i in volume
element dr - The initial increase in f with decreasing Iy is due to

the attractlve coulombic force between the two ions. As r21 is less

than the sum of the anionic and cationic crystal radii, f, j1 decreases
rapidly to zero because of the hard core repulsion. When only long-range
coulombic and hard core interactions are considered fji will represented
by plot 1. When there is a possible formation of SSIP's, a plot type 2

is to be expected.

Although many features of complex models of electrolyte solutions
have been identified,'there still remains the difficulty in representing
these features in mathematically solvable expressions in electrolyte
theories. Early electrolyte theories (2, 16) were therefore based on
a simple model of ions in solutions whereby certain approximations.
were made, and the mathematical expressions were simplified. Their
application was therefore limited to systems where the assumptions
applied. Certain modifications of the modelsand theories have recently
(5, 6, 7) been made to provide a more realistic representation of the

system.

2.3 Lee and Wheaton Conductance Equation

A summary of the derivation of the conductance equations based

on a chemical model developed by Lee and Wheaton is given here.

A chemical model (5, 6, 7)

The model is developed to represent the picture of ions in solu-

tions close to the physical reality. The concept of Gurney : cosphere
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used by Fuoss for the treatment of simple electrolytes was extended to

a general case.

As: shown in Fig 2.1, an ion is assumed to be a rigid symmetrical
sphere of a radius aj and charge ej surrounded by alsolvent shell of
width (bj - aj) and very low dielectric constant. Such an assembly
moves in solution as a single entity with a hydrodynamic radius bj . In
this region solvent molecules are strongly aligned and polarised by ion-
dipole forces. This solvated ion is further surrounded by another solvent
shell of width (Rj - bi) referred to as the domain of the ion. In this
region modification of the dielectric constant is assumed, and the solvent
molecules are partially aligned. Rj is the radius of the Gurney cos-
phere of the ion j. Outside Rj’ the solvent is considered as a struc-
tureless dielectric continuum and only long range coulombic interaction
are significant. All oppositely charged pairs of ions whose domains/

cospheres overlap|or contact are defined as associated.

Therefore, the model consists of a system of spherically sym-
metric ionic cospheres of radius Rj moving in a dielectric continuum

and interacting through long range coulombic forces only. A parameter Rji

is the distance of closest approach between*the cospheres/domains of two ions

of species i and j 1'e*Rji;Jg*Ri‘ When this occurs, two ions are

considered to reach a stable or semistable configuration (contact ion-
pair (CIP) or solvent separated ion pair (SSIP) and form a new species.
As a consequence of this imposed model, the following condition of charge

density (/%i)’ pair distribution function (fji)’ forces (V i) and poten-

]

tial of average forces between ions (wji) hold.

(o]
(i) /ﬁi(r) = o0 for rr< R (R = Rji)
(ii) fﬁ/(r) = 0 for r ¢ R
(iii) Yﬁ (r) = O for r< R

That is for r ) R, all short range forces rapidly become zero, mainly due

to ion-dipole-ion forces. It follows that

o
¢ =y f r> R
Wji(l’) i (r) or >

(iv) Since the formation of a stable ion-pair of r = R

requires a minimum in the potential energy curve (see Fig. 2.4), thus

o

du, . (r) /Jdr = O at r =R

ji
011271
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It follows that

ji (r) /dr =0 r =R

o
since the existence of minimum in WJ (r) at R gives rise to a maximum

in f (r) at this point (see Fig. 2.6).

For unsymmetrical electrolyte i.e. 'eil # Iejl , where there
are possible association equilibria such as
b = wt
+ _ i
and M + X = MX2

a newly formed MX+ is therefore counted separately as another conducting
entity, and thus the above conditions still apply. A simplifying assump-
tion that, all the cation cospheres have the same radius, and all the ..

anion cospheres have the same radius, is made where more than:two species

are present.

Using the boundary conditions (i), (i1) (iii) above andthe assumption

*
that Vji becomes infinite at some point r = aj , 1.e.

*
(v) Vv (r) = o= when r £ a

ji -

With the new model, fji =0 for r € R and R 1is the distance
at which the effect of the short range interaction becomes significant

4
enough to cause a maximum to occur in f

ji

. They, thus proposed a boun-

dary condition,

/
(vi) dfji/dr =0 at r =R

In deriving the relaxation field A X acting on an ionic species
j in a solution containing s species, the Onsager continuity equation

(5), is used in the region r Y R.

1f Vig T W O H
where wi = the time average solvent velocity at the site of the i-ion,
mi is the mobility of the i-ion, and HJi is the force acting on 'the
i-ion, then

'vji’ - -‘wi + wi [Xe i- ¢ - KT V2in(fj1)]
where Xei? "is the force due to the external field

(along x-axis).
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Vz ¢ji is the force due to the local electrostatic

field at dr2,

containing two parts; (i) due to the action of the field of the j-ion,

(i1) due to the total ion atmosphere about the i-j pair.
ktvzln (fji) is the force due to thermal motion.

The relaxation field is then considered as AXJ_ = E AXJ(t) (t =0, 1, 2)
fhe correlation function G(t) is solved using Lap;:;Z transforms. The
boundary conditions (vi) and f — 0 as r — o are used to obtain
the limit in G(t) with r, and the integration constants are then evaluated.
The general expression of the relaxation field term AX; £) is therefore
obtained in terms of a constant C, an integration constant A( t) Indivi-

dual relaxation terms are then determined separately, whereby

A X(O) is the term arising from exteranl field effects
A x(l) is the hydrodynamic relaxation term
and A X§2) is the local electrostatic term.

(1)

The hydrodynamic part of the relaxation term, A;XJ » however, requires
knowledge of solvent velocities. The hydrodynamic velocity field about
(1)

a given ion is therefore examined to obtaln expressions for AXL , and

the electrophoretic retarding velocity, uje' Lee and Wheaton have

derived the time averaged velocity of the solvent at a distance r relative -
to the j-ion wj (r) from the effects of (i) the motion of the i - and

j - ions through the solvent, and (ii) the volume forces, and found

that in the limit of r — o used to derive Wy (r),the-term due to the
motion of the j-ion through the solvent rapidly approaches zero in this
limit. Hence the expression of Wy (r) is redeced to the electrophoretic

retarding velocity arising from volume forces. Following the general

procedure, AX.J,(I) is finally obtained.
The drift velocity of the central ion uj consists of 3 com-
ponents,
u, = u, +u, + u, (6)
h| js je jR :

where ujS is the drift velocity of the j-ion in the absence of the in-

terionic effects.

uje is the electrophoretic velocity,
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and UjR is the velocity due to the relaxation field.
In the calculation of the electrophoretic velocity, uje’ the force F

per unit volume acting on the solvent at r from the central j-ion is

considered, where

s
F = F
22 M5 Yy
1=1
where nji = the local concentration (ion cm—j) of i-ions at r
and Fi = average force on a single i-ion at r.
Similar to the derivation of A;%,
~
P omxed - e g W@ -k Yyl ()
where Y = the potential due to the j-ion and its atmosphere

0 / 2
( Hﬁ = yg t+ yﬁ ). Neglecting all termsewX” and those not giving rise to

directed motion ‘and letting

o _p©@ L (D @
the expression for F(O), F(l) and F(z) are obtained, ‘which are’assigned
to the corresponding u(O) s ugl) and ugz) where

- je je je

N I

je je je je
and ujg) is the leading term arising from the external field
effect.

u}i) is the asymmetric electrophoretic term arising from
the potential due to the j-ion and its atmosphere
and u?i) is the diffusion term due to thermal motion.

These terms are cvaluated separately from each force term, following

the general procedure. The terms ujS and ujP are derived to be
N\
u = Xle.|w, (7)
oyl = Hegly
u, = AX|e,|w. (8)
‘ JRI IJI j '

In deriving the relaxation field and the electrophoretic velo-
o

city, Lee and wheaton initially used only the first four terms in fji’

which has its full expression as, kr , .
N et T B B PN €2 (-LO RN GRY-LY
ji i MDkT T 1
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-K
where M = ¢ R (14KR) and S, (kr) is the function of the integrals

1
of the exponential inKr. Evaluation of the final term in f;i gives
additional contributions to A Xj and uje wh_ich consist of a termx (4K)
and another termea (AK)  and K(bji) (bJ,i is Bjecrrum parameter).
The factor K(bji) which is a power series in bji/(1+Kr) rapidly pre-
dominates when bji is large whereby ion association is to be expected
(This term is referred to as the pseudo ion association term by Fuoss).
The inclusion of this term makes the explicit introduction of the concept
of ion-pairing unnecessary. In the new model the distribution function
f;i in its full exponential form implicitly allows for the effects of
ion pairing by a sharp increase at a distance close to the j-ion when bji
is large . Therefore, to avoid counting the same effect twice, Leg and

Wheaton exclude the terms with K (bji)'s from the final conductance

equation (6, 7).

The complete conductance equation is then assembled by collec-
ting terms in the relaxation and electrophoretic effects. By definition;

the eqivalent conductance of a given ion j is

)d = Fuj

where uj is theclectrical mobility of the j-ion under unit applied field,

i.e. u, = |u.|/x
o€ J l J'
From equation (6) thus
N, = Flu, +u, +u, |/
3 je jR jsl 7%

substitution gives

A QF. el w, (1+84X./X) + TFRu, e.| /Xe,

] glCJIJ(AJ) §Je|3| J

where % is the conversion factor (v- > e.s}u.) and = 1/299.7925.

°
Since A = F g lej! wj
(]
v o= A (14AX, /X)) + ) 9
therefore Aj J( j/ ) >\el,3 9)
= F g . h t tributi
where ‘Ael,j F gtﬁe lejl /Xej s ;he ele?trop oretic contribution,
. (Q)n) (2,&1) ¢ ! '

N=el n=1
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where n 1is the number of iterations used in the detailed derivation.

For all ions in solution, thus
s

A= R lgIM N/ cC
. J J
1=1

where Mj is the molar concentration of a given free ion j and C isithe

stoichiometric equivalent concentration of the solution.

Correction for some errors in the Lee and Wheaton equations have

been made, and are given in Appendix:B:
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