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ABSTRACT
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The prediction of rheological properties using ‘double reptation theory’
of polydisperse branch chain polymers was investigated. High density
polyethylene (HDPE) and low density polyethylene (LDPE) were used as
model branched polymers. Polystyrene (PS) was selected as a standard linear
polymer because the wealth of available data, and the lack of any long-chain
branching. The rheological properties, storage modulus (G’) and loss modulus
(G"), were measured by using a melt rheometer. The molecular weight
distribution (MWD) was characterized by gel permeation chromatography
(GPC). For PS, the double reptation model provides a good agreement with the
experimental data in the terminal regime but a very poor agreement in high
frequency regime. The discrepancy is due to lack of contour-length
fluctuation, dynamic dilution, and Rouse relaxation process. For HDPE, the
theory provides a good agreement with the experimental data in the frequency
range between 1-100 rad/s. The long-chain branching causes a discrepancy in
the low frequency regime. The prediction for LDPE fails in all range of
frequency. The higher degree of long-chain branching in LDPE is found to
cause more deviation in prediction in the prediction of rheological properties
more than HDPE.
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