CARBOXYLATE IONOMER AS BLEND COMPATIBILIZER

Ms. Rungravee Pattanaolarn

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2001

ISBN 974-13-0728-4

Thesis Title:

Carboxylate Ionomer as Blend Compatibilizer

By:

Rungravee Pattanaolarn

Program:

Polymer Science

Thesis Advisors:

Assoc. Prof. Brian P. Grady

Dr. Manit Nithitanakul

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

K. Bunyalint.

College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Commitee:

(Assoc. Prof. Brian P. Grady)

(Dr. Manit Nithitanakul)

(Assoc. Prof. Anuvat Siriwat)

บทคัดย่อ

นางสาวรุ่งรวี พัฒนโอพาร: การใช้คาร์บอกซิเลตไอโอโนเมอร์ เป็นตัวช่วยในการผสมพอลิ เมอร์ (Carboxylate Ionomer as Blend Compatibilizer) อ.ที่ปรึกษา: รศ. คร. ไบรอัน พี เกรคี้ และ คร. มานิตย์ นิธิธนากุล 48 หน้า ISBN 974-13-0728-4

ในการศึกษาผลขององค์ประกอบต่ออสัณฐาน คุณสมบัติทางกายภาพ และคุณสมบัติเชิงกล ของพอลิเมอร์ผสมระหว่างในล่อน 6 และพอลิเอทธิลีนชนิคความหนาแน่นต่ำทุก ๆองค์ประกอบ ทั้ง ชนิคที่ไม่ใช้ตัวเชื่อมประสาน และที่ใช้ตัวเชื่อมประสาน โดยมวลนั้น โดนในด้านคุณสมบัติเชิงกล ของพอลิเมอร์ผสมชนิคที่ไม่ได้ใช้ตัวเชื่อมประสานนั้น จะมีการสูญเสียความแข็งแรงต่อการดึง และ ความแข็งแรงต่อการรับแรงกระแทก เนื่องจากความสูญเสียการยึดเกาะระหว่างพื้นผิว โดยในการเติม ใอโอโนเมอร์ได้แก่ เซอร์ลีน ซึ่งเป็นโคพอลิเมอร์ระหว่างพอลิเอทธิลีนชนิคความหนาแน่นต่ำ และ กรดเมธาไครลิก เป็นตัวเชื่อมประสานนั้นสามารถช่วยในการปรับปรุงคุณสมบัติเชิงกลดีขึ้น เนื่องจาก ความสามารถในการส่งผ่านแรงผ่านระหว่างพื้นผิวดีขึ้น ส่วนคุณสมบัติทางด้านอสัณฐานของพอลิ เมอร์ผสมระหว่างในล่อน 6 และพอลิเอทธิลีนชนิคความหนาแน่นต่ำ ชนิคที่ใช้ตัวเชื่อมประสานนั้น ปริมาณของเซอร์ลีนที่เดิมเข้าไปจะช่วยในการลดขนาดขององค์ประกอบที่กระจายตัวอยู่ในองค์ ประกอบหลัก ปริมาณของเซอร์ลีนที่เดิมมากขึ้นจะยิ่งช่วยในการลดขนาดขององค์ประกอบที่กระจาย ตัวเนื่องจากปฏิกริยาระหว่างส่วนที่มีประจุของไอโอโนเมอร์ และ ส่วนที่มีขั้วของในล่อน 6 ซึ่งการลด ลงของขนาดขององค์ประกอบที่กระจายตัวจะมีมากขึ้นเมื่อองค์ประกอบที่กระจายตัวเป็นในล่อน 6

ABSTRACT

4272012063: POLYMER SCIENCE PROGRAM

Rungravee Pattanaolarn: Carboxylate Ionomer as Blend

Compatibilizer.

Thesis Advisors: Assoc. Prof. Brian P. Grady, Dr. Manit

Nithitanakul, 48 pp ISBN 974-13-0728-4

Keywords: Ionomer; Surlyn[®]; Compatibilization; Nylon; LDPE; Polymer

blend

The effect of composition on resulting morphology, physical property and mechanical properties of uncompatibilized and compatibilized blends of nylon 6 and LDPE were studied in a whole range of weight fraction. The mechanical properties of the uncompatibilized blends showed loss in tensile and impact strength from mixing. This could be due to poor interfacial adhesion between the two polymers. It was found that the addition of Surlyn® ionomer (ethylene-comethacrylic acid) as a compatibilizer can improve mechanical properties. This is because the stress can transfer through the interfacial of the blends. The morphology of the compatibilized blend was found to be significantly dependent on the concentration of Surlyn® in the blend. Adding more Surlyn® into the blend caused greater reduction of the dispersed phase size due to the interaction between ionic part of ionomer and amide groups of nylon 6 especially when nylon 6 is the dispersed phase of the blend.

ACKNOWLEDGEMENT

I greatly appreciate my advisor, Dr. Manit Nithitanakul, for intensive suggestions and vital help throughout this research and also deeply touched Assoc. Prof. Brian P. Grady for his kind help and suggestions.

I appreciate Ube Nylon Co., Ltd. for supplying Nylon 6 and M.C. Industrial Co., Ltd. for supplying Low density polyethytlene material. I would like to give a special thank Du Pont (U.S.A.) Co. for Ionomer compatibilizer.

My special thanks also go to Mr. John W. Ellis and Dr. Pitt Supapol for advices and helps. And special thank to Mr. Polrat and Ms. Pastra for helpfulness in the polymer processing lab and thermal analysis.

Special thanks are due also to all Petroleum and Petrochemical College's staff.

Finally, I would like to thank my friends for their friendship, helpfulness, cheerfulness, suggestions, and encouragement. I am so greatly indebted to my parents for their support, understanding and patience during this work.

TABLE OF CONTENTS

CHAPIER	(PAGE
	Title Page	i
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowledgements	V
	Table of Contents	vi
	List of Tables	ix
	List of Figures	x
1	INTRODUCTION	1
	1.1 Theoritical Background	3
	1.1.1 Low Density Polyethylene	3
	1.1.2 Polyamide	4
	1.1.3 Ionomer	5
	1.1.4 Polymer Blending	7
п	LITERATURE SURVEY	9
	2.1 Blending of Nylon and LDPE	9
	2.2 Ionomer	12
	2.3 Objectives	14
Ш	EXPERIMENT	15
	3.1 Materials	15
	3.1.1 Ionomer	15
	3.1.2 Low Density Polyethylene	16
	3.1.3 Polycaprolactam	16

CHAPTER	÷.	PAGE
	3.2 Experimental Procedures	17
	3.2.1 Blends Preparation	17
	3.2.1.1 Nylon 6/LDPE blend (with out	
	compatibilizer)	17
	3.2.1.2 Nylon 6/LDPE blend (with Surlyn [®]	D
	ionomer as compatibilizer)	17
	3.2.2 Compression Molding	18
	3.2.3 FT-IR Analysis	18
	3.2.4 Testing	19
	3.2.4.1 Thermal Analysis	19
	3.2.4.1.1 Thermal Gravimetric	
	Analysis (TGA)	19
	3.2.4.1.2 Differential Scanning	
	Calorimeter (DSC)	19
	3.2.4.2 Spectrophotometer Analysis	19
	3.2.4.3 Mechanical and Physical Properties	j
	Testing Lab	19
	3.2.4.3.1 Tensile Properties Testing	g 20
	3.2.4.3.2 Impact Property Testing	20
	3.2.4.3.3 Hardness Testing	20
	3.2.4.4 Microstructure Characterization	20
TS 7	DECLUTE AND DISCUSSION	21
IV	RESULTS AND DISCUSSION	21
	4.1 Blend Preparation 4.2 Mechanical Proportion	21
	4.2 Mechanical Properties	22
	4.2.1 Tensile Properties	22

CHAPTER		PAGE
	4.2.2 Impact Property	26
	4.3 Physical Property	28
	4.3.1 Hardness	28
	4.4 Microstructure Characterization	30
	4.5 Fourier Transform Infrared Spectroscopy (FT-IR)	37
V	CONCLUSIONS	39
	REFERENCES	40
	APPENDICES	43
	CURRICULUM VITAE	48

LIST OF TABLES

Γ	ΓABLE		PAGE
	3.1	Mechanical and thermal properties of Surlyn® (9020) ionomer.	15
	3.2	Physical and rheological properties of LDPE (LD 1450J).	16
	3.3	Chemical and rheological properties of nylon 6 (1013B).	16
	3.4	Processing condition of Collin twin screw extruder (T-20) used	
		for blending (with/without compatibilizer).	18
	4.1	Melting temperature and crystallization temperature or raw	
		materials before blending.	21
	Al	Tensile Strength of nylon 6/LDPE blends (without compatibilizer).	43
	A2	Tensile strength of nylon 6/LDPE blends (with compatibilizer).	43
	A3	Tensile modulus of nylon 6/LDPE blends (without	
		compatibilizer).	44
	A4	Tensile modulus of nylon 6/LDPE blends (with compatibilizer).	44
	A5	Impact strength of nylon 6/LDPE blends (without	
		compatibilizer).	45
	A6	Impact strength of nylon 6/LDPE blends (with compatibilizer).	45
	B1	Hardness of nylon 6/LDPE blends (without compatibilizer).	46
	B2	Hardness of nylon 6/LDPE blends (with compatibilizer).	46
	C1	Particle size of dispersed phase of nylon 6/LDPE blends (without	out
		compatibilizer).	47
	C2	Particle size of dispersed phase of nylon 6/LDPE blends (with	
		compatibilizer).	47

LIST OF FIGURES

F	IGURE	PAGE
	1.1 The repeating unit of polyamide (nylon)	4
	1.2 The structure of comonomer units in Surlyn A [®]	12
	4.1 Effect of LDPE content on tensile strength of uncompatibilized	
	nylon 6/LDPE blends.	22
	4.2 Effect of LDPE content on tensile modulus of uncompatibilized	
	nylon 6/LDPE blends.	23
	4.3 Effect of Surlyn® compatibilizer content on tensile strength of	
	compatibilized PA6/LDPE blends.	25
	4.4 Effect of Surlyn® compatibilizer content on tensile modulus of	
	compatibilized PA6/LDPE blends.	26
	4.5 Effect of LDPE content on impact strength of uncompatibilized	
	nylon 6/LDPE blends.	27
	4.6 Effect of Surlyn® content on impact strength of compatibilized	
	nylon 6/LDPE blends.	28
	4.7 Effect of LDPE content on hardness of uncompatibilized nylon	
	6/LDPE blends.	29
	4.8 Effect of Surlyn [®] content on hardness of compatibilized nylon	
	6/LDPE blends.	30
	4.9 Effect of LDPE composition on morphology of nylon 6/LDPE	
	blends at magnification 2000.	31
	4.10 Effect of LDPE content on the particle size of uncompatibilized	l
	nylon 6/I DPF blends	32

FIGURE PAGE

4.11	Effect of compatibilizer on morphology of nylon 6/LDPE blend	
	containing 80 % of nylon 6 and 20 % of LDPE (LDPE as a	
	dispersed phase).	34
4.12	Effect of compatibilizer on morphology of nylon 6/LDPE blend	
	containing 80 % of LDPE and 20 % of nylon 6 (nylon 6 is	
	dispersed phase).	35
4.13	Effect of compatibilizer on morphology of compatibilized nylon	
	6/LDPE blends.	36
4.14	FT-IR spectra of uncompatibilized and compatibilized nylon	
	6/LDPE blends.	37