REDUCTION OF PRODUCTION LEAD TIME FOR SHEET CASTING OF POLY(METHYL METHACRYLATE)

Mr. Jirawut Junkasem

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2003

ISBN 974-17-2323-7

E 21694755

Thesis Title:	Reduction of Production Lead Time for Sheet Casting of
	Poly(methyl methacrylate)
By:	Jirawut Junkasem
Program:	Polymer Science
Thesis Advisors:	Asst. Prof. Pitt Supaphol
	Mr. Yothin Vanichvarakij

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

Superplase.

(Asst. Prof. Pitt Supaphol)

(Mr. Yothin Vanichvarakij)

Anuvatorwal

(Aspc. Prof. Anuvat Sirivat)

oneleasu

(Assoc. Prof. Sujitra Wongkasemjit)

บทคัดย่อ

งิระวุฒิ งันเกษม: การลดเวลากระบวนการการผลิตขึ้นรูปแผ่นพอลิเมธิลเมธาคริเลต (Reduction of Production Lead Time for Sheet Casting of Poly(methyl methacrylate)) อ.ที่ปรึกษา: ผศ. คร.พิชญ์ ศุภผล และ นายโยธิน วานิชวรากิจ 76 หน้า ISBN 974-17-2323-7

พอลิเมธิลเมธาคริเลตเป็นอะคริลิคพอลิเมอร์ที่มีความความสำคัญมากที่สุด โดยทั่วไป . ปฏิกิริยาการสังเคราะห์มักจะอาศัยกลไกการเกิดปฏิกิริยาแบบลูกโซ่ผ่านตัวกลางแบบอนุมูลอิสระ (Free-Radical Polymerization) ซึ่งจะใช้สารเปอร์ออกไซค์หรือสารประกอบเอโซเป็นตัวริเริ่ม ปฏิกิริยา ในกระบวนการสังเคราะห์พอลิเมธิลเมธาคริเลตในอุตสาหกรรมมักจะใช้กระบวนการ ผลิตแบบบัลค์หรือแบบแบทช์ ซึ่งเป็นกระบวนการผลิตที่ง่ายที่สุดและสามารถกระทำการปรับ ปรุงหรือปรับเปลี่ยนกระบวนการผลิตได้ง่าย กลไกลการเกิดปฏิกิริยาภายในแม่แบบของพอลิเม ธิลเมธาคริเลตได้ถูกทำการศึกษาในระบบที่ใช้น้ำเป็นตัวกลางและระบบที่มีการอบในเตาอบ เพื่อ ทำการถคระยะเวลาการผลิตในการผลิตแผ่นพอลิเมธิลเมธาคริเลตชนิคใสที่มีความหนาเป็น 5 8 และ 10 มิลลิเมตร และแผ่นสีที่มีความหนา 3 มิลลิเมตร การพิจารณาหาระยะเวลาการผลิตที่ เหมาะสมในแต่ละผลิตภัณฑ์นั้นต้องมีการพิจารณาถึงผลกระทบของความหนา ความเข้มข้นเริ่ม ด้นของตัวริเริ่ม และประเภทของสี ซึ่งในการศึกษาผลกระทบจากปัจจัยต่างๆนั้นจะต้องมีการทำ การวัคค่าความสัมพันธ์ระหว่างอุณหภูมิในแม่แบบกับเวลา อัตราการเกิดปฏิกิริยา ความแข็งที่ผิว ความทนแรงกระแทก และน้ำหนักโมเลกุลเฉลี่ย ผลจากการศึกษาพบว่าสีบางสีมีผลทำให้ระยะ เวลาการผลิตเพิ่มขึ้น ซึ่งสามารถแก้ไขได้โดยเพิ่มอุณหภูมิในการทำปฏิกิริยาหรือเพิ่มปริมาณ ้ความเข้มข้นของตัวริเริ่ม แต่อย่างไรก็ตามผลจากการศึกษาพบว่าประเภทของส์ ความหนาของชิ้น ้งาน และความเข้มข้นเริ่มต้นของตัวริเริ่ม ไม่ส่งผลกระทบถึงความแข็งที่ผิว และความทนแรง กระแทกของชิ้นงาน

ABSTRACT

4472005063 : POLYMER SCIENCE PROGRAM
Jirawut Junkasem: Reduction of Production Lead Time for Sheet
Casting of Poly(methyl methacrylate).
Thesis Advisors: Asst. Prof. Pitt Supaphol and Mr. Yothin
Wanichavarakij, 76 pp. ISBN 974-17-2323-7
Keywords : Poly(methyl methacrylate)/Casting/Simulate

Poly(methyl methacrylate) (PMMA) is one of the most important unmodified acrylic materials. PMMA is usually produced by free-radical polymerization using a peroxide or azo compound as an initiator. Typically, bulk polymerization, or cell-casting, is widely used in the industry due to its simplicity and high flexibility. The kinetics of the polymerization reaction in the cell-casting PMMA process, based primarily on water and water-air system, was studied to minimize the production time for making 5, 8, and 10-mm thick transparent PMMA sheets and 3-mm thick colored PMMA sheets. In order to optimize the production time, the effects of sheet thickness, initiator concentration (specific for each thickness), and type of colorant on the production time and mechanical properties of the as-prepared sheets were studied by observing the temperature-evolution profile, monomer conversion, surface hardness, impact strength, and molecular weight averages. It was found that the use of some types of colorant resulted in longer production times. This was solved by increasing the polymerization temperature or the initiator concentration. However, the type of colorant, sheet thickness, and initiator concentration had no effect on the mechanical properties of the as-prepared sheets.

ACKNOWLEDGEMENTS

The author is grateful for the partial scholarship and partial funding of the thesis work provided by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PTT Consortium).

The author would like to give his appreciation to the PAN ASIA Industrial Co., Ltd. for full support of raw materials, equipment and very helpful knowledge.

Ministry of University Affair supported scholarships.

Asst. Prof. Pitt Supaphol, his advisor, who gave him many supportive suggestions and a lot of motivation. He always enthusiastically came up with very practical ideas.

The MTEC who supported GPC for this thesis.

The PPC staffs and friends whom without their unselfish support.

TABLE OF CONTENTS

			PAGE
	Title Pag	je	i
	Abstract	(in English)	iii
	Abstract	(in Thai)	iv
	Acknowl	edgements	v
	Table of	Contents	vi
	List of Ta	ables	ix
	List of Fi	igures	xi
CHAPTE	CR		
Ι	INTROI	DUCTION	1
II	LITERA	ATURE SURVEY	3
III	EXPERI	IMENTAL	12
	3.1 Mate	erials	12
	3.2 Equi	pment	12
	3.2.1	Heating-Water Bath	12
	3.2.2	Heating-Air Oven	13
	3.2.3	Glass Mold and PVC Gasket	14
	3.2.4	Temperature Data Collector	14
	3.2.5	Zwick Pendulum Impact Tester	14
	3.2.6	Hardness Measurement	14
	3.2.7	Gel Permeation Chromatography (GPC)	14
	3.3 Meth	nodology	15
	3.3.1	Preparation of Poly (methyl methacrylate)	
		Syrup Solution	15
	3.3.2	Preparation of Glass Mold	15
	3.3.3	Preparation of Poly (methyl methyacrylate)	
		Casted Sheet	16

	3.4 PMM/	A Casted Sheet Characterization	17
	3.4.1	PMMA Yield Measurement	17
	3.4.2	Mechanical Characterization	18
	3.4.3	Molecular Weight and Molecular Weight	
		Distribution Determination	18
	3.5 Model	ing of the PMMA Sheet-Casting Process	18
IV	RESULT	AND DISCUSSION	19
	4.1 Effect	of the Thickness on the Observed Reaction Time	19
	4.1.1	Fixed Initiator Concentration (vary thickness)	19
	4.2 Effect	of the Initiator Concentration at Each Thickness	22
	4.2.1	The 5 mm Thickness Samples	22
	4.2.2	The 8 mm Thickness Samples	28
	4.2.3	The 10 mm Thickness Samples	31
	4.3 Effect	of the Pigments on the Observed Reaction Time	33
	4.3.1	Fixed AIBN at 0.15% by weight	34
	4.3.2	Fixed ADVN at 0.038% by weight	38
V	CONCLU	SIONS	43
	REFERE	NCES	44
	APPEND	ICES	46
	Appendix	A Temperature profiles of colored PMMA	
		sheets with 0.15% AIBN	46
	Appendix	B Temperature profiles of colored PMMA	
		sheets with 0.038% ADVN	53
	Appendix	C Molecular weight average of 5 mm	
		thickness PMMA sheet	64

CHAPTER

PAGE

Appendix D	Surface hardness of the selected samples	
	in Scale-M unit	71
Appendix E	Impact resistant of the selected samples	
	in kJ / m ² unit	74

.

CURRICULUM VITAE

76

LIST OF TABLES

TAB	BLE	PAGE
3.1	Experimental conditions used for preparing PMMA sheets	17
4.1	Maximum peak temperature and the observed reaction	
	time of samples, thickness 5, 8, and 10 mm, with 0.010%	
	and 0.015% polymerized at 60°C	22
4.2	Maximum peak temperature and the observed reaction	
	time of 5 mm thickness samples with 0.015%, 0.018%,	
	and 0.022% polymerized at 60° C and annealed at 120° C	24
4.3	Effects of initiator concentration on average molecular	
	weights	27
4.4	Effects of reaction temperature (T_0) and initiator	
	concentration (M_o/I_o) on average molecular weights (after	
	Scali et al., 1995)	27
4.5	Maximum peak temperature and the observed reaction	
	time for 8 mm samples with 0.008%, 0.011%, and 0.013%	
	ADVN polymerized at 60°C and annealed at 120°C	29
4.6	Maximum peak temperature and the observed reaction time	
	for 10 mm samples with 0.004%, 0.006%, and 0.008%	
	ADVN polymerized at 60°C and annealed at 120°C	32
4.7	Ingredients of selected colored PMMA sheets with 0.15%	
	AIBN	35
4.8	The observed reaction time and maximum temperature of	
	each selected colored sheet with 0.15% AIBN	
	polymerized and annealed at 60°C and 120°C, respectively	36
4.9	Ingredients of selected colored PMMA sheets with	
	0.038% ADVN	39
4.10	The observed reaction time and maximum temperature of	
	each selected colored sheet with 0.038% ADVN	
	polymerized and annealed at 60°C and 120°C, respectively	40

TABLE

Dl	The surface hardness of 5 mm thickness with 0.015%,	
	0.018%, and 0.022% ADVN polymerized at 60°C and	
	annealed at 120°C	71
D2	The surface hardness of 8 mm thickness with 0.008%,	
	0.011% , and 0.013% ADVN polymerized at $60^{\circ}C$ and	
	annealed at 120°C	71
D3	The surface hardness of 10 mm thickness with 0.004%,	
	0.006%, and 0.008% ADVN polymerized at 60°C and	
	annealed at 120°C	71
D4	The surface hardness of 3 mm selected colored samples	
	with 0.15% AIBN polymerized at 60°C and annealed at	
	120°C (the first experiment samples)	72
D5	The surface hardness of 3 mm selected colored samples	
	with 0.15% AIBN polymerized at 60°C and annealed at	
	120°C (the second experiment samples)	72
D6	The surface hardness of 3 mm selected colored samples	
	with 0.15% AIBN polymerized at 60° C and annealed at	
	120°C (the third experiment samples)	73
D7	The surface hardness of 3 mm selected colored samples	
	with 0.038% ADVN polymerized at 60°C and annealed at	
	120°C	73
E1	The impact resistance of 3 mm selected colored samples	
	with 0.15% AIBN polymerized 60° C and annealed at	
	120°C	74
E2	The impact resistance of 3 mm selected colored samples	
	with 0.038% ADVN polymerized 60°C and annealed at	
	120°C	75

LIST OF FIGURES

FIGUR	URE	
2.1	Conversion profile for MMA polymerization depicting	
2.1	different phase of reaction at 90°C and 0.30%AIBN (Soh	
	and Sundberg. 1982)	3
2.2	Conversion dependence of molecular weight averages for	
	MMA polymerization, $\bigoplus \overline{M}_n$, $\bigcirc \overline{M}_w$, $\Box \overline{M}_z$, $\bigtriangleup \overline{M}_{z+1}$, at	
	90°C and 0.3%AIBN (Soh and Sundberg, 1982)	4
2.3	μ_n vs. reaction time for an isothermal batch reactor	
	(Vaid and Gupta, 1991)	6
2.4	Monomer conversions vs. reaction time for an isothermal	
	batch reactor (Vaid and Gupta, 1991)	7
2.5	Typical SPI exothermic curve for MMA (Ramaseshan et	
	al., 1993)	8
2.6	Overlay plot of temperature profile and present conversion	
	for samples polymerized at 60°C with 0.038% ADVN	9
2.7	Temperature profile of samples polymerized at 60, 62, 65,	
	68, 70°C with 0.038% ADVN in water medium	10
2.7	Temperature profile of samples polymerized at 60, 62, 65,	
	68, 70°C with 0.038% ADVN in air medium	11
3.1	The diagram of water bath	13
3.2	The diagram of hot-air oven	13
3.3	The molds and PVC gaskets before clamping	15
3.4	The mold after assembly	16
4.1	Temperature profile of the sample polymerized at 60° C	
	with 0.030% ADVN (3mm)	19
4.2	Temperature profiles of samples polymerized at 60°C with	
	0.015% ADVN, the thickness is 5, 8, and 10 mm	20

PAGE

4.3	Temperature profiles of samples polymerized at 60°C with	
	0.010% ADVN, the thickness is 5, 8, and 10 mm	21
4.4	Temperature profiles of 5 mm thickness samples	
	polymerized at 60°C with 0.015%, 0.018%, and 0.022%	
	ADVN using 1-step process	23
4.5	Temperature profiles of 5 mm thickness samples	
	polymerized at 60°C and annealed at 120°C with 0.015%,	
	0.018%, and 0.022% ADVN using 2-step process	23
4.6	The relationship between the surface harness and	
	monomer conversion of 5 mm thickness with 0.015%,	
	0.018%, and 0.022% ADVN polymerized and annealed at	
	60°C and 120°C, respectively	25
4.7	Temperature profiles of 8 mm thickness samples	
	polymerized at 60°C with 0.008%, 0.011%, and 0.013%	
	ADVN using 1-step process	28
4.8	Temperature profiles of 8 mm thickness samples	
	polymerized at 60°C and annealed at 120°C with 0.008%,	
	0.011%, and 0.013% ADVN using 2-step process	29
4.9	The relationship between the surface harness and	
	monomer conversion of 8 mm thickness with 0.008%,	
	0.011%, and 0.013% ADVN polymerized and annealed at	
	60°C and 120°C, respectively	30
4.10	Temperature profiles of 10 mm thickness samples	
	polymerized at 60°C with 0.004%, 0.006%, and 0.008%	
	ADVN using 1-step process	31
4.11	Temperature profiles of 10 mm thickness samples	
	polymerized at 60°C and annealed at 120°C with 0.004%,	
	0.006%, and 0.008% ADVN using 2-step process	32

4.12	The relationship between the surface harness and	
	monomer conversion of 10 mm thickness with 0.004%,	
	0.006%, and 0.008% ADVN polymerized and annealed at	
	60°C and 120°C, respectively	33
4.13	Temperature profiles of transparent 3 mm thickness with	
	the different type and concentration of initiator	
	polymerized and annealed at 60°C and 120°C,	
	respectively	34
4.14	The surface hardness of the 3 mm thickness selected	
	colored PMMA sheets with 0.15% AIBN polymerized and	
	annealed at 60°C and 120°C, respectively	37
4.15	The impact resistance of the 3 mm thickness selected	
	colored PMMA sheets with 0.15% AIBN polymerized and	
	annealed at 60°C and 120°C, respectively	38
4.16	The surface hardness of the 3 mm thickness selected	
	colored PMMA sheets with 0.038% ADVN polymerized	
	and annealed at 60°C and 120°C, respectively	41
4.17	The impact resistance of the 3 mm thickness selected	
	colored PMMA sheets with 0.038% ADVN polymerized	
	and annealed at 60°C and 120°C, respectively	42
Al	Temperature profiles of transparent sheets with the	
	different type and concentration of initiator polymerized	
	and annealed at 60°C and 120°C, respectively	46
A2	Temperature profiles of P-018 sheets with the different	
	type and concentration of initiator polymerized and	
	annealed at 60°C and 120°C, respectively	47
A3	Temperature profiles of P-102 sheets with the different	
	type and concentration of initiator polymerized and	
	annealed at 60°C and 120°C, respectively	47

PAGE

A4	Temperature profiles of P-115 sheets with the different	
	type and concentration of initiator polymerized and	
	annealed at 60°C and 120°C, respectively	48
A5	Temperature profiles of P-136 sheets with the different	
	type and concentration of initiator polymerized and	
	annealed at 60°C and 120°C, respectively	48
A6	Temperature profiles of P-137 sheets with the different	
	type and concentration of initiator polymerized and	
	annealed at 60°C and 120°C, respectively	49
A7	Temperature profiles of P-235 sheets with the different	
	type and concentration of initiator polymerized and	
	annealed at 60°C and 120°C, respectively	49
A8	Temperature profiles of P-302 sheets with the different	
	type and concentration of initiator polymerized and	
	annealed at 60°C and 120°C, respectively	50
A9	Temperature profiles of P-327 sheets with the different	
	type and concentration of initiator polymerized and	
	annealed at 60°C and 120°C, respectively	50
A10	Temperature profiles of P-348 sheets with the different	
	type and concentration of initiator polymerized and	
	annealed at 60°C and 120°C, respectively	51
A11	Temperature profiles of P-373 sheets with the different	
	type and concentration of initiator polymerized and	
	annealed at 60°C and 120°C, respectively	51
A12	Temperature profiles of P-422 K sheets with the different	
	type and concentration of initiator polymerized and	
	annealed at 60°C and 120°C, respectively	52

PAGE

A13	Temperature profiles of P-433 S sheets with the different	
	type and concentration of initiator polymerized and	
	annealed at 60°C and 120°C, respectively	52
Bl	Temperature profile of transparent sheet with the different	
	type and concentration of initiator polymerized and	
	annealed at 60°C and 120°C, respectively	53
B2	Temperature profile of P-018 sheet with the different type	
	and concentration of initiator polymerized and annealed at	
	60°C and 120°C, respectively	54
B3	Temperature profile of P-102 sheet with the different type	
	and concentration of initiator polymerized and annealed at	
	60°C and 120°C, respectively	54
B4	Temperature profile of P-115 sheet with the different type	
	and concentration of initiator polymerized and annealed at	
	60°C and 120°C, respectively	55
B5	Temperature profile of P-136 sheet with the different type	
	and concentration of initiator polymerized and annealed at	
	60°C and 120°C, respectively	55
B6	Temperature profile of P-137 sheet with the different type	
	and concentration of initiator polymerized and annealed at	
	60°C and 120°C, respectively	56
B7	Temperature profile of P-202 sheet with the different type	
	and concentration of initiator polymerized and annealed at	
	60°C and 120°C, respectively	56
B 8	Temperature profile of P-212 sheet with the different type	
	and concentration of initiator polymerized and annealed at	
	60°C and 120°C, respectively	57

B9	Temperature profile of P-235 sheet with the different type	
	and concentration of initiator polymerized and annealed at	
	60°C and 120°C, respectively	57
B10	Temperature profile of P-302 sheet with the different type	
	and concentration of initiator polymerized and annealed at	
	60°C and 120°C, respectively	58
B11	Temperature profile of P-327 sheet with the different type	
	and concentration of initiator polymerized and annealed at	
	60°C and 120°C, respectively	58
B12	Temperature profile of P-348 sheet with the different type	
	and concentration of initiator polymerized and annealed at	
	60°C and 120°C, respectively	59
B13	Temperature profile of P-373 sheet with the different type	
	and concentration of initiator polymerized and annealed at	
	60°C and 120°C, respectively	59
B14	Temperature profile of P-402 sheet with the different type	
	and concentration of initiator polymerized and annealed at	
	60°C and 120°C, respectively	60
B15	Temperature profile of P-422 K sheet with the different	
	type and concentration of initiator polymerized and	
	annealed at 60°C and 120°C, respectively	60
B16	Temperature profile of P-433 S sheet with the different	
	type and concentration of initiator polymerized and	
	annealed at 60°C and 120°C, respectively	61
B17	Temperature profile of P-502 sheet with the different type	
	and concentration of initiator polymerized and annealed at	
	60°C and 120°C, respectively	61

B18	Temperature profile of P-522 sheet with the different type	
	and concentration of initiator polymerized and annealed at	
	60°C and 120°C, respectively	62
B19	Temperature profile of P-531 sheet with the different type	
	and concentration of initiator polymerized and annealed at	
	60°C and 120°C, respectively	62
B20	Temperature profile of P-814 sheet with the different type	
	and concentration of initiator polymerized and annealed at	
	60°C and 120°C, respectively	63
B21	Temperature profile of P-993 sheet with the different type	
	and concentration of initiator polymerized and annealed at	
	60°C and 120°C, respectively	63
C1	GPC results of sample 5 mm thickness PMMA sheet with	
	ADVN 0.015% polymerized at 60°C	65
C2	GPC results of sample 5 mm thickness PMMA sheet with	
	ADVN 0.018% polymerized at 60°C	66
C3	GPC results of sample 5 mm thickness PMMA sheet	
	with ADVN 0.022% polymerized at 60°C	67
C4	GPC results of sample 5 mm thickness PMMA sheet	
	with ADVN 0.015% polymerized at 60°C and annealed	
	at 120°C	68
C5	GPC results of sample 5 mm thickness PMMA sheet	
	with ADVN 0.018% polymerized at 60°C and annealed	
	at 120°C	69
C6	GPC results of sample 5 mm thickness PMMA sheet	
	with ADVN 0.022% polymerized at 60°C and annealed	
	at 120°C	70