REFERENCES

- Alger, M.S.M. (1989). Polymer Science Dictionary. London: Elsevier Science.
- Baumgarten, P.K. (1971). Electrostatic spinning of acrylic microfibers. Journal of Colloid and Interface Science, 36(1), 71-28.
- Buer, A., Ugbolue, S.C., and Warner, S.B (2001). Electrospinning and properties of some nanofibers. <u>Textile Research Journal</u>, 71(4), 323-328.
- Bucko, C.J., Chen, L.C., Shen, Y., and Martin, D.C. (1999). Processing and microstructural characterization of porous biocompatible protein polymer thin films. <u>Polymer</u>, 40, 7397-7407.
- Chen, J.C. and Harrison, I.R. (2002). Modification of polyacrylonitrile (PAN) carbon fiber precursors via post-spinning plasticization and stretching in dimethyl formamide (DMF). <u>Carbon</u>, 40, 25-45.
- Chun, I., Reneker, D.H., Fong, H., ang Fang, X. (1999). Carbon nanofibers from polyacrylonitrile and mesophase pitch. <u>Journal of Advanced Materials</u>, 31 (1), 36-40.
- Deitzel, J.M., Kosik, W., McKnight, S.H., Beck Tan, N.C., DeSimone, J.M., and Crette, S. (2002). Electrospinning of polymer nanofibers with specific surface chemistry. <u>Polymer</u>, 43, 1025-1029.
- Doshi, J. and Reneker, D.H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35, 151-160.
- Dzenis, Y.A. (2001). U.S. Patent 6 265 333.
- Emig; D. (2002). U.S. Patent 6 395 046.
- Endo, M., Kim, Y.A., Takeda, T., Hong, S.H., Matusita, T., Hayashi, T., and Dresselhaus, M.S. (2001). Structural characterization of carbon nanofibers obtained by hydrocarbon pyrolysis. <u>Carbon</u>, 39, 2003-2010.
- Fong, H., Chun, I., and Reneker, D.H. (1999). Beaded nanofibers formed during electrospinning. <u>Polymer</u>, 40, 4585-4592.
- Formhals, A. (1934). US patent 1 197 504.
- Gibson, P.W., Schrender-Gibon, H.L, and Rivin, D. (1999). Electrospun fiber mats: Transport properties. <u>AICHE Journal</u>, 45(1), 190-195.

- Gibson, P., Schrender-Gibson, H., and Ravin, D. (2001). Transport properties of porous membranes based on electrospun nanofibers. <u>Colloids and Surfaces</u>, A: Physicochemical and Engineering Aspects, 187-188, 469-481.
- Hohman, M.M., Shin, M., Rutledge, G., and Brenner, M.P. (2001). Electrospinning and electrically forced jets. II. Application. <u>Physics of Fluids</u>, 13(8), 2221-2236.
- Huang, L., Hagapufi, K., Aparian, R.P., and Chaikof, E.L. (2001). Engineered collagen-PEO nanofibers and fabrics. <u>Journal of Biomaterials Science</u> Polymer Education, 12(9), 979-993.
- Jaeger, R., Schönherr, H., and Vancso, G.J. (1996). Chain packing in electrospun poly (ethylene oxide) visualized by atomic force microscopy. <u>Macromolecules</u>, 29, 7634-7636.
- Kim, J. and Reneker, D.H. (1999). Polybenzimidazole nanofiber produced by electrospinning. <u>Polymer Engineering and Science</u>, 39(5), 849.854.
- Larrondo, L. and Jone Manley, R. (1981). Electrospinning fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. <u>Polymer Physics Edition</u>, 19, 909-920.
- Larrondo, L. and Jone Manley, R. (1981). Electrospinning fiber spinning from polymer melts. II. Examination of the flow filed in an electrically driven jet. <u>Polymer Physics Edition</u>, 19, 921-932.
- Liu, J., Wang, P.H., and Li, R.Y. (1994). Continuous carbonization of polyacrylonitrile-based oxidized fibers aspects on mechanical properties and morphological structure. <u>Journal of Applied Polymer Science</u>, 52(7), 945-950.
- MacDiarmid, A.G., JonesJr, W.E., Norris, I.D., Gao, J., JohnsonJr, A.T., Pinto, N.J., Hone, J., Han, B., Ko, F.K., Okuzaki, H., and Llaquno, M. (2001).
 Electrostatically-generated nanofibers of electronic polymers. <u>Synthetic Matals</u>, 119, 27-30.
- Norris, I.D., Shaker, M.M., Ko, F.K., and MacDiarmid, A.G. (2000). Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polethylene oxide blends. <u>Synthetic metals</u>, 114, 10-114.

- Reneker, D.H. and Chun, I. (1996). Nanometre diameter fibers of polymer, produced by electrospinning. <u>Nanotechnology</u>, 7, 216-223.
- Sánchez-Soto, P.J., Avilés, M.A., del Río, J.C., Ginés, J.M., Pascual, J., and Pérez-Rodríguez, J.L. (2001). Thermal study of the effect of several solvents on polymerization of acrylonitrile and their subsequent pyrolysis. <u>Journal of</u> <u>Analytical and Applied Pyrolysis</u>, 58-59, 155-172.
- Shin, Y.M., Hohman, M.M., Brenner, M.P., and Rutledge, G.C. (2001). Experimental characterization of electrospinning: the electrically forces jet and instabilities. <u>Polymer</u>, 42, 9955-9967.
- Torres, B. (2001). Ultrafine fibers of polystyrene dissolved in tetrahydrofuran prepared using the electrospinning method. Proceeding of National Conference on Undergraduate Research 2001, University of kentucky, Lexington, Kentucky.
- Reneker, D.H., Yarin, A.L., Fong, and H., Koombhongse, S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. <u>Journal of Applied Physics</u>, 87(9),4531-4547.

Vyakarnam, M.N. (2001). U.S. Patent 6 306 424.

Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B.S., and Chu, B. (2002). Structure and process relationship of electrospun bioabsorbable nanofiber membranes. <u>Polymer</u>, 43, 4403-4412.

APPENDICES

APPENDIX A Influence of concentration on fiber diameter

Table A1 Diameter of electrospun PAN fiber (in nm) as a function of PANconcentration in DMF (Conditions for electrospinning process: applied voltage of+20 kV, collection distance of 15 cm, nozzle radius of 0.47 mm and stationarycollection screen)

No. of	Concentration of PAN solution in DMF (wt%)									
Fiber	4.0	5.9	7.8	9.5	11.2	12.9	14.4	15.9	17.4	
1	56	81	102	151	339	297	273	382	773	
2	90	102	166	143	243	310	307	339	730	
3	79	100	88	285	270	254	328	386	680	
4	66	100	140	236	189	289	340	397	819	
5	66	134	130	186	242	301	336	419	832	
6	53	98	172	191	269	314	302	426	796	
7	72	107	145	151	265	408	320	394	738	
8	66	107	114	129	230	288	345	302	670	
9	63	100	107	158	203	352	260	461	676	
10	78	106	106	182	251	339	328	404	837	
11	51	112	134	180	229	306	395	316	745	
12	58	92	158	167	189	314	316	392	661	
13	61	88	139	205	219	351	334	392	732	
14	49	100	114	138	170	322	350	426	731	
15	66	86	136	191	237	317	313	432	771	
16	86	92	151	252	209	400	268	416	737	
17	19	72	204	176	221	352	313	462	657	
18	72	97	196	282	247	334	330	417	650	
19	47	95	170	151	216	355	326	396	789	
20	68	108	130	271	220	334	314	420	742	
21	55	122	122	267	226	346	334	439	733	
22	75	75	158	175	226	329	319	406	850	
23	106	103	151	179	216	288	340	426	733	
24	74	88	156	238	145	293	282	367	757	
25	70	88	132	143	195	292	305	425	694	
26	43	92	188	221	246	278	344	426	738	
27	37	97	137	168	230	311	381	378	814	
28	69	74	184	112	277	366	358	463	856	

Cont....

No. of	Concentration of PAN solution in DMF (wt%)								
Fiber	4.0	5.9	7.8	9.5	11.2	12.9	14.4	15.9	17.4
29	44	50	295	156	160	378	284	444	811
30	79	81	155	216	208	322	325	365	726
31	64	56	139	188	315	215	370	389	647
32	67	67	149	147	246	334	303	346	714
33	83	81	127	186	178	341	370	394	662
34	44	93	198	178	252	325	337	396	717
35	71	100	149	223	232	286	320	442	776
36	107	88	130	213	243	208	320	391	826
37	112	106	119	150	177	271	315	393	676
38	59	72	126	139	480	272	361	398	847
39	71	101	140	57	346	282	329	420	691
40	74	92	130	176	386	311	290	390	698
41	78	113	114	139	368	272	298	417	626
42	83	76	155	128	407	310	309	417	786
43	71	71	166	184	385	285	374	432	664
44	67	71	145	88	437	305	291	445	642
45	72	108	144	273	349	261	294	428	766
46	50	103	213	146	303	314	325	441	676
47	53	83	161	151	168	364	193	372	876
48	89	96	135	170	224	330	341	410	772
49	69	83	124	176	108	302	323	410	713
50	90	103	135	160	241	323	298	418	741
51	69	113	158	175	235	294	299	397	722
52	101	97	145	221	310	351	388	374	655
53	75	63	182	194	245	300	482	389	713
54	80	101	223	168	254	311	321	426	695
55	67	107	92	204	200	372	340	418	778
56	67	106	132	168	235	322	280	407	697
57	80	107	126	135	247	336	365	372	709
58	48	106	196	210	196	286	406	429	754
59	71	94	115	179	257	267	336	477	631
60	64	92	109	177	321	396	340	467	705
61	84	98	128	169	240	331	332	373	639
62	88	92	133	183	266	326	338	378	637
63	67	88	186	232	273	378	309	432	752
64	69	88	124	314	218	236	371	363	639
65	80	72	135	124	212	321	356	468	758
66	67	95	148	172	235	352	333	387	748
67	64	108	321	271	211	300	354	416	837
68	63	97	243	153	241	357	354	415	825

Table A1 (Continued)

Cont.....

No. of	Concentration of PAN solution in DMF (wt%)								
Fiber	4.0	5.9	7.8	9.5	11.2	12.9	14.4	15.9	17.4
69	76	102	146	202	209	348	322	413	692
70	64	77	143	188	196	217	305	396	771
71	88	80	133	155	271	308	332	395	764
72	76	120	126	151	262	311	325	375	784
73	59	100	107	230	208	283	317	393	735
74	75	102	132	178	166	283	362	423	650
75	59	92	142	98	126	385	329	438	709
76	52	121	141	107	253	358	350	444	710
77	64	108	158	177	219	362	400	398	679
78	62	133	109	149	275	264	326	404	767
79	83	97	134	157	211	342	345	385	720
80	80	101	146	64	188	303	322	384	723
81	52	148	145	159	171	404	280	415	788
82	80	110	107	166	229	226	369	435	692
83	64	106	151	275	200	329	360	404	733
84	69	94	217	155	268	303	392	443	589
85	71	92	93	237	208	373	295	396	684
86	64	97	149	142	232	310	359	405	723
87	79	137	117	173	230	266	295	439	597
88	59	87	93	267	260	325	324	372	792
89	56	127	161	115	241	375	253	406	886
90	59	87	151	141	247	306	304	400	592
91	57	122	151	155	228	309	342	388	739
92	63	89	158	129	202	242	342	423	705
93	71	94	144	145	349	388	376	376	771
94	71	95	126	216	198	314	299	390	695
95	56	100	188	320	193	373	315	417	651
96	67	88	141	277	243	311	344	372	814
97	80	102	158	179	305	302	411	406	737
98	82	95	145	151	220	302	345	392	703
99	82	87	144	196	203	297	482	401	779
100	67	100	213	204	215	350	319	340	773

Table A1 (Continued)

		Concentration of PAN solution in DMF (wt%)									
Statistics	4.0	5.9	7.8	9.5	11.2	12.9	14.4	15.9	17.4		
N Valid	100	100	100	100	100	100	100	100	100		
Missing	10	10	10	10	10	10	10	10	10		
Mean	69	96	148	181	243	317	332	402	730		
Std.Error of Mean	1.46	1.63	3.75	5.02	6.16	4.18	4.05	4.99	6.43		
Median	68.50	97.00	143.50	175.50	232.00	312.50	328.50	404.50	730.50		
Mode	67	92	158	151	208	311	340	426	676		
Std.Devia- tion	14.60	16.32	37.54	50.18	61.58	41.75	40.51	49.92	64.29		
Variance	213.2	266.4	1409.3	2518.5	3792.5	1743.4	1641.4	2491.9	4133.7		
Skewness	0.062	0.170	1.864	0.532	1.317	-0.170	0.656	-5.030	0.157		
Std.Error of Skewness	0.241	0.241	0.241	0.241	0.241	0.241	0.241	0.241	0.241		
Kurtosis	1.528	1.264	5.698	0.559	2.790	0.167	3.630	38.749	-0.286		
Std.Error of Kurtosis	0.478	0.478	0.478	0.478	0.478	0.478	0.478	0.478	0.478		
Range	93	98	233	263	372	200	289	468	297		
Minimum	19	50	88	57	108	208	193	9	589		
Maximum	112	148	321	320	480	408	482	477	886		
Sum	6883	9624	14844	18079	24254	31656	33176	40210	72985		
a.Mul	tiple mo	des exis	st. The s	mallest	value is	shown					

 Table A2
 Statistics of fiber diameter at various concentrations

APPENDIX B Influence of applied voltage on fiber diameter

Table B1 Diameter of electrospun PAN fiber (in nm) as a function of appliedvoltage.(Conditions for electrospinning process: PAN concentration of 9.5 wt%,collection distance of 15 cm, nozzle radius of 0.47 mm and stationary collectionscreen)

No. of		Applie	ed voltag	ge (kV)	
fiber	10	15	20	25	30
1	120	163	203	195	170
2	127	146	153	107	165
3	126	151	186	203	213
4	140	172	198	183	179
5	174	163	158	241	152
6	108	177	195	211	202
7	115	146	217	196	269
8	92	171	141	188	180
9	125	140	181	237	238
10	138	158	181	211	137
11	115	146	203	323	234
12	125	139	183	232	182
13	155	160	155	211	258
14	118	146	151	205	195
15	151	172	130	192	214
16	118	153	79	177	166
17	150	163	162	199	147
18	155	190	83	151	151
19	151	151	192	173	213
20	145	147	238	199	155
21	135	169	202	181	202
22	138	169	151	232	232
23	150	182	221	219	153
24	142	177	198	156	213
25	133	175	127	251	239
26	119	167	179	209	182
27	115	167	153	184	239
28	150	160	220	245	188
29	139	199	170	225	178
30	144	183	248	184	143
31	103	161	214	290	138

Table B1 (Continued)

No. of	Applied voltage (kV)						
fiber	10	15	20	25	30		
32	107	139	195	208	186		
33	161	150	232	189	204		
34	144	192	133	217	202		
35	149	216	247	212	204		
36	151	246	213	203	148		
37	128	161	171	163	175		
38	143	237	188	183	230		
39	122	169	219	271	179		
40	165	153	184	186	191		
41	153	166	204	197	178		
42	160	159	198	203	182		
43	128	166	134	273	160		
44	134	175	220	219	266		
45	124	161	150	211	375		
46	130	153	219	173	255		
47	115	163	155	194	166		
48	169	139	179	198	218		
49	150	145	211	224	190		
50	124	158	230	192	230		
51	234	146	269	233	213		
52	114	158	213	256	194		
53	149	143	204	139	204		
54	144	151	194	194	336		
55	159	153	167	224	202		
56	103	189	226	263	221		
57	133	155	261	196	191		
58	127	183	213	213	178		
59	142	149	232	175	151		
60	144	151	257	193	206		
61	153	143	221	213	135		
62	140	141	191	188	169		
63	153	166	257	204	177		
64	103	180	288	238	195		
65	105	168	179	179	196		
66	155	166	189	244	179		
67	113	205	238	207	222		
68	127	117	84	271	214		
69	129	173	189	197	207		
70	148	183	179	237	171		
71	123	194	181	196	246		

Cont....

Table B1 (Continued)

No. of		Applie	ed voltag	ge (kV)	
fiber	10	15	20	25	30
72	130	192	179	163	226
73	130	196	180	246	321
74	118	149	221	176	201
75	122	158	198	186	227
76	150	158	189	188	190
77	149	130	186	217	143
78	109	156	240	230	188
79	132	173	114	131	230
80	153	168	124	189	200
81	106	176	208	182	209
82	112	158	184	206	288
83	126	268	161	234	205
84	112	167	213	188	168
85	161	167	211	163	194
86	136	174	156	199	183
87	130	133	158	169	211
88	139	169	213	246	243
89	144	145	196	204	185
90	135	213	179	195	149
91	133	195	163	182	211
92	115	188	188	143	184
93	115	151	185	196	149
94	132	151	250	238	202
95	145	159	213	202	199
96	148	155	179	182	235
97	125	153	214	242	228
98	145	160	204	202	211
99	124	145	207	158	157
100	125	176	208	175	117

Ct at			Applied voltage (kV)							
Stati	ISTICS	10	15	20	25	30				
N	Valid	100	100	100	100	100				
	Missing	10	10	10	10	10				
Me	ean	134.72	166.08	191.07	204.18	199.27				
Std. E	rror of ean	1.98	2.33	3.86	3.38	4.17				
Mee	dian	133.0	162.0	193.0	199.0	195.5				
Mo	ode	115	151	179	188	202				
Std. De	eviation	19.76	23.34	38.63	33.82	41.67				
Vari	ance	390.43	544.92	1492.09	1143.89	1736.28				
Skew	vness	1.161	1.598	-0.456	0.434	1.285				
Std. E Skew	rror of ness	0.241	0.241	0.241	0.241	0.241				
Kur	tosis	5.138	4.382	0.835	1.412	3.505				
Std. E Kurt	rror of tosis	0.478	0.478	0.478	0.478	0.478				
Rai	nge	142	151	209	216	258				
Mini	mum	92	117	79	107	117				
Maxi	mum	234	268	288	323	375				
Su	ım	13472	16608	19107	20418	19927				
2	a.Multiple	e modes e	exist. The	e smallest	value is	shown				

 Table B2
 Statistics of fiber diameter at various applied voltages

APPENDIX C Influence of collection distance on fiber diameter

Table C1 Diameter of electrospun PAN fiber (in nm) as a function of collectiondistance.(Conditions for electrospinning process: PAN solution concentration of9.5 wt%, applied voltage of +30 kV, nozzle radius of 0.47 mm and stationarycollection screen)

No. of		Collecti	on dista	nce (cm)
fiber	10	15	20	25	30
1	230	173	216	311	204
2	188	196	216	212	216
3	183	166	230	167	196
4	143	190	202	203	213
5	232	248	179	192	133
6	205	234	238	191	194
7	192	92	210	179	174
8	186	193	120	183	253
9	145	175	113	179	188
10	153	206	169	242	202
11	205	202	178	160	160
12	216	100	275	266	171
13	169	178	157	206	182
14	158	186	211	216	188
15	211	367	194	172	207
16	214	185	301	176	194
17	188	202	226	278	160
18	145	178	182	253	182
19	200	299	226	175	227
20	115	205	373	213	182
21	157	186	206	198	199
22	179	275	265	219	202
23	175	181	182	179	194
24	261	266	218	157	193
25	151	222	178	270	164
26	179	146	178	188	205
27	195	195	143	163	188
28	177	227	195	216	163
29	216	186	252	198	158
30	230	198	226	342	251
31	206	214	199	326	265

Table C1 (Continued)

No. of		Collectio	on dista	nce (cm)	
fiber	10	15	20	25	30
32	232	125	188	146	134
33	168	263	211	168	161
34	142	221	167	213	208
35	174	168	210	178	193
36	165	190	199	177	161
37	188	185	184	197	181
38	234	221	157	180	170
39	211	99	247	179	175
40	191	204	153	134	140
41	249	151	166	266	169
42	188	224	204	198	237
43	188	224	221	195	202
44	168	160	143	188	279
45	195	159	189	211	114
46	177	230	194	200	156
47	202	198	160	172	170
48	221	194	214	161	185
49	207	153	255	136	233
50	207	177	143	173	199
51	238	269	253	214	188
52	189	261	212	183	172
53	140	207	228	230	204
54	115	181	193	181	165
55	227	200	178	203	202
56	204	253	203	181	150
57	286	169	299	169	148
58	194	186	181	213	172
59	240	202	205	202	150
60	177	212	136	232	188
61	199	206	180	197	134
62	216	169	173	238	189
63	188	181	200	173	270
64	186	192	190	184	188
65	202	261	219	223	206
66	212	197	200	188	205
67	197	213	221	228	185
68	177	207	199	201	152
69	269	181	181	279	202
70	261	179	185	169	188
71	261	205	153	192	151

Table C1 (Continued)

No. of		Collection	on dista	nce (cm))
fiber	10	15	20	25	30
72	207	162	230	198	194
73	181	211	195	161	140
74	192	216	191	172	314
75	169	187	209	171	178
76	181	208	296	182	179
77	206	358	179	188	188
78	205	313	251	226	154
79	169	196	222	170	161
80	255	202	136	184	189
81	109	208	219	165	216
82	173	254	218	234	114
83	375	261	130	68	246
84	208	228	169	184	171
85	190	221	222	82	189
86	143	210	204	220	188
87	325	163	205	214	241
88	154	194	247	169	179
89	170	163	210	155	153
90	279	204	229	194	133
91	164	152	149	224	156
92	182	202	238	245	268
93	268	215	172	156	161
94	338	124	237	179	198
95	184	179	152	244	179
96	131	200	179	171	179
97	213	311	160	209	217
98	156	242	170	192	297
99	243	190	155	229	208
100	189	185	194	174	196

 Table C2
 Statistics of diameter of electrospun PAN fiber at various collection

 distances

C. A. S. A.		Collecti	on dista	nce (cm))
Statistics	10	15	20	25	30
N Valio	1 100	100	100	100	100
Missir	1g 7	7	7	7	7
Mean	198.48	203.07	200.2	197.42	188.7
Std. Error of Mean	4.42	4.56	4.11	4.13	3.65
Median	191.3	199.0	199.2	191.3	187.2
Mode	188	202	178	179	188
Std. Deviatio	n 44.24	45.69	41.06	41.27	36.49
Variance	1957.5	2087.2	1685.7	1703.6	1331.4
Skewness	1.136	0.856	0.910	0.646	0.900
Std. Error of Skewness	0.241	0.241	0.241	0.241	0.241
Kurtosis	2.804	2.601	2.618	2.793	1.546
Std. Error of Kurtosis	0.478	0.478	0.478	0.478	0.478
Range	266	275	260	274	200
Minimum	109	92	113	68	114
Maximum	375	367	373	342	314
Sum	19848	20307	20020	19742	18870
a	Calculated	from g	rouped d	ata.	

APPENDIX D Influence of electrode polarity on fiber diameter

Table D1 Diameter of electrospun PAN fiber (in nm) as a function of concentration when the positive electrode was attached to the nozzle tip.(Conditions for electrospinning process: applied voltage of 20 kV, collection distance of 15 cm, nozzle radius of 0.47 mm and stationary collection screen)

No. of	Concentration of PAN solution in DMF (wt%)								
Fiber	5.9	7.8	9.5	11.2	12.9	14.4	15.9	17.4	
1	95	125	206	293	333	620	455	605	
2	92	142	221	317	366	660	513	603	
3	96	248	207	333	389	522	474	656	
4	78	172	225	356	371	456	440	660	
5	123	258	198	263	333	620	413	579	
6	94	176	189	370	390	496	904	598	
7	111	139	199	336	317	410	548	627	
8	98	184	213	301	358	411	421	598	
9	71	139	228	288	331	472	558	627	
10	94	138	239	166	395	647	440	601	
11	95	143	209	325	388	359	510	720	
12	125	122	175	357	343	382	433	627	
13	79	162	215	299	459	415	536	652	
14	107	130	228	401	369	491	471	660	
15	92	128	217	329	375	505	591	571	
16	76	145	208	412	385	467	509	869	
17	102	150	204	301	184	564	526	604	
18	83	149	215	375	423	503	616	574	
19	60	147	216	288	356	490	711	643	
20	124	168	182	270	412	429	424	625	
21	92	142	223	240	364	500	608	797	
22	102	149	213	321	452	518	536	643	
23	83	124	161	297	385	631	492	608	
24	75	161	231	350	340	561	526	647	
25	79	159	197	295	311	388	448	608	
26	95	155	176	326	370	474	604	647	
27	92	143	208	415	404	434	480	608	
28	96	160	227	267	354	668	424	854	
29	107	157	246	287	313	404	450	630	
30	123	155	190	312	334	461	594	672	
31	78	151	206	421	334	567	459	571	

No. of	Concentration of PAN solution in DMF (wt%)								
Fiber	5.9	7.8	9.5	11.2	12.9	14.4	15.9	17.4	
32	94	140	229	292	358	509	398	751	
33	111	157	198	277	441	479	408	536	
34	98	168	188	328	363	581	540	607	
35	71	166	232	300	359	432	425	607	
36	92	180	187	279	355	436	464	630	
37	95	168	238	366	372	597	544	634	
38	94	163	210	378	345	526	810	627	
39	78	170	218	318	503	448	487	684	
40	89	182	216	342	483	451	442	757	
41	89	155	153	305	310	386	411	643	
42	59	142	214	328	333	475	455	624	
43	95	162	196	421	372	439	487	717	
44	86	181	231	385	328	581	500	709	
45	95	161	228	280	328	401	521	716	
46	66	178	247	391	325	356	483	650	
47	78	204	177	660	367	420	500	498	
48	82	130	329	377	358	452	536	628	
49	66	147	204	292	374	196	482	605	
50	86	255	260	424	513	455	543	603	

Table D1 (Continued)

Statistics			Concen	tration	of PAN	solution	in DMI	F (wt%)	
Stat	ISTICS	5.9	7.8	9.5	11.2	12.9	14.4	15.9	17.4
N	Valid	50	50	50	50	50	50	50	50
	Missing	5	5	5	5	5	5	5	5
M	ean	90.82	160.6	212.54	333.08	368.5	482.9	511	644.2
Std. E M	error of	2.2018	4.1624	3.889	9.9557	7.6538	12.824	13.641	9.942
Me	dian	92	156	213	323	363.5	473	489.5	627.5
M	ode	95	142	228	288	333	581	536	627
Std. De	eviation	15.569	29.433	27.499	70.398	54.121	90.679	96.459	70.3
Vari	iance	242.4	866.29	756.21	4955.8	2929	8222.7	9304.4	4942.1
Skev	vness	0.2475	1.8649	1.272	1.9193	0.1974	-0.101	2.1249	1.3265
Std. E Skev	error of vness	0.3366	0.3366	0.3366	0.3366	0.3366	0.3366	0.3366	0.3366
Kur	tosis	0.1436	4.2593	5.7135	8.7532	3.0226	1.0095	6.0568	2.6307
Std. E Kur	rror of tosis	0.6619	0.6619	0.6619	0.6619	0.6619	0.6619	0.6619	0.6619
Ra	nge	66	136	176	494	329	472	506	371
Mini	mum	59	122	153	166	184	196	398	498
Maxi	imum	125	258	329	660	513	668	904	869
Sı	ım	4541	8030	10627	16654	18425	24145	25550	32210
	a.	Multipl	e modes	exist. T	he small	est value	is show	'n	

 Table D2
 Statistics of fiber diameter at various concentrations when positive
 electrode was used

Table D3 Diameter of electrospun PAN fiber (in nm) as a function of concentration when the negative electrode was attached to the nozzle tip (Conditions for electrospinning process: applied voltage of -20 kV, collection distance of 15 cm, nozzle radius of 0.47 mm and stationary collection screen)

No. of	Concentration of PAN solution in DMF (wt%)							
fiber	5.9	7.8	9.5	11.2	12.9	14.4	15.9	17.4
1	138	144	191	244	305	469	436	605
2	72	125	168	259	317	441	574	603
3	114	146	255	275	309	487	486	656
4	98	120	198	292	316	490	444	660
5	104	175	219	239	312	536	494	579
6	105	199	284	269	328	362	445	598
7	105	157	219	254	282	452	550	627
8	98	146	287	248	409	531	522	598
9	96	288	401	277	310	448	509	627
10	96	155	243	254	323	480	500	601
11	134	172	308	494	386	474	451	720
12	64	205	202	268	347	442	488	627
13	128	125	204	275	319	483	565	652
14	111	139	238	264	370	589	481	660
15	91	142	194	254	197	905	547	571
16	127	248	280	272	231	539	452	869
17	91	172	206	297	240	498	441	604
18	78	258	271	327	254	415	519	574
19	76	139	215	267	235	802	466	643
20	106	138	197	280	259	501	453	625
21	127	143	231	309	208	431	397	797
22	83	184	240	288	197	494	479	643
23	92	176	254	311	182	508	440	608
24	90	132	235	333	221	426	610	647
25	131	137	259	247	205	451	503	608
26	83	206	208	214	141	572	460	647
27	79	205	141	248	197	393	474	608
28	59	151	197	294	245	594	401	854
29	81	167	182	275	264	715	491	630
30	65	268	197	310	251	457	499	672
31	90	200	245	297	283	377	441	571
32	110	169	264	311	276	448	469	751
33	151	155	257	293	336	879	444	536
34	81	173	221	328	196	439	489	607

Cont.....

No. of		Concentration of PAN solution in DMF (wt%)							
fiber	5.9	7.8	9.5	11.2	12.9	14.4	15.9	17.4	
36	110	186	283	322	295	526	488	630	
37	115	158	276	248	274	368	518	634	
38	110	134	196	294	293	499	580	627	
39	96	159	336	269	250	477	501	684	
40	115	115	297	306	255	555	479	757	
41	106	122	232	242	236	483	530	643	
42	88	186	255	255	216	433	663	624	
43	104	153	236	253	232	461	528	717	
44	101	181	274	249	297	472	524	709	
45	131	153	258	253	314	491	463	716	
46	90	184	295	296	289	350	453	650	
47	106	169	216	276	227	427	524	498	
48	84	140	293	289	278	511	457	628	
49	107	183	250	275	288	455	560	605	
50	116	164	314	323	232	472	536	603	

Table D3 (Continued)

		Concen	tration	of PAN	solution	in DMI	F (wt%)	
Statistics	5.9	7.8	9.5	11.2	12.9	14.4	15.9	17.4
N Valid	50	50	50	50	50	50	50	50
Missin	g 5	5	5	5	5	5	5	5
Mean	100.26	167.42	242.54	282.04	269.7	499.28	492.94	631.18
Std. Error of Mean	2.8638	5.367	6.6464	5.786	7.7707	15.916	7.4223	19.436
Median	99.5	158.5	239	275	269	475.5	488	596
Mode	90	125	197	275	197	448	441	554
Std. Deviation	20.25	37.951	46.997	40.914	54.947	112.54	52.484	137.43
Variance	410.07	1440.2	2208.7	1673.9	3019.2	12666	2754.5	18888
Skewness	0.2423	1.3382	0.7206	2.8611	0.2037	2.1911	0.8301	2.5753
Std. Error of Skewness	0.3366	0.3366	0.3366	0.3366	0.3366	0.3366	0.3366	0.3366
Kurtosis	-0.18	1.9965	1.4682	13.954	0.0279	5.487	1.2063	8.5026
Std. Error of Kurtosis	0.6619	0.6619	0.6619	0.6619	0.6619	0.6619	0.6619	0.6619
Range	92	173	260	280	268	555	266	835
Minimum	59	115	141	214	141	350	397	415
Maximum	151	288	401	494	409	905	663	1250
Sum	5013	8371	12127	14102	13485	24964	24647	31559
	a. Multipl	e modes	exist. T	he small	est value	is show	'n	

Table D4 Statistics of fiber diameter at various concentrations when negative
 electrode was used

APPENDIX E Influence of take-up speed on fiber diameter

Table E1 Diameter of electrospun PAN fiber (in nm) as a function of take-up speed when the positive electrode was attached to the nozzle tip.(Conditions for electrospinning process: of 14.4 wt% PAN solution, appied voltage of +20 kV, collection distance of 10 cm, nozzle radius of 0.47 mm and adjustable speed rotationally collection screen)

No. of		Take-1	up speed	l (rpm)	
fiber	1500	1750	2000	2250	2500
1	338	299	317	281	317
2	328	354	294	305	342
3	390	303	313	315	367
4	401	390	291	312	379
5	339	388	380	276	321
6	350	274	316	324	243
7	299	328	294	308	333
8	373	391	291	377	363
9	438	420	325	321	241
10	346	417	305	324	285
11	364	300	281	274	212
12	310	377	337	260	292
13	318	267	244	331	321
14	358	327	310	258	328
15	392	306	364	281	270
16	337	363	247	263	264
17	288	291	296	305	370
18	339	345	277	296	322
19	327	463	346	276	313
20	390	356	399	295	298
21	409	359	297	310	414
22	413	242	439	224	299
23	399	462	207	356	322
24	338	367	283	292	339
25	345	300	385	327	236
26	361	221	218	280	357
27	317	369	370	317	327
28	331	303	347	334	354
29	361	274	284	302	387
30	306	328	218	322	333

Table E1 (Continued)

No. of	Take-up speed (rpm)							
fiber	1500	1750	2000	2250	2500			
31	41	344	270	211	328			
32	361	299	375	386	399			
33	260	303	334	302	253			
34	288	361	358	309	317			
35	345	363	370	349	231			
36	314	274	280	320	395			
37	349	334	308	221	264			
38	409	391	261	313	299			
39	324	385	246	344	317			
40	405	339	356	294	282			
41	377	342	341	313	312			
42	357	339	313	263	299			
43	370	336	289	250	280			
44	345	350	348	302	292			
45	390	339	370	306	293			
46	370	381	292	341	247			
47	345	370	370	296	227			
48	391	309	319	256	263			
49	236	337	346	332	352			
50	347	349	364	341	337			
51	373	540	301	269	313			
52	408	445	288	239	405			
53	345	360	313	346	352			
54	317	281	228	320	281			
55	270	288	238	269	213			
56	327	431	300	306	310			
57	413	334	346	300	249			
58	455	317	261	306	327			
59	318	228	273	313	277			
60	356	347	277	264	281			
61	392	386	354	287	346			
62	345	401	349	314	381			
63	417	333	277	229	304			
64	377	395	354	354	306			
65	307	345	356	300	327			
66	377	363	388	295	324			
67	405	350	340	367	358			
68	370	308	238	315	369			
69	410	263	352	341	226			
70	357	296	256	357	374			

Table E1 (Continued)

No. of	Take-up speed (rpm)								
fiber	1500	1750	2000	2250	2500				
71	385	227	408	291	249				
72	444	384	374	274	289				
73	325	398	402	356	261				
74	346	327	341	328	243				
75	381	402	352	247	278				
76	344	430	316	345	238				
77	300	417	267	338	238				
78	361	356	283	317	294				
79	431	345	357	362	278				
80	435	326	372	285	323				
81	373	245	258	299	341				
82	409	363	301	292	273				
83	327	372	254	342	211				
84	345	337	296	373	218				
85	282	382	329	305	279				
86	333	291	344	231	291				
87	295	354	348	414	280				
88	293	324	291	398	306				
89	391	272	367	346	313				
90	392	360	317	321	267				
91	379	313	281	282	329				
92	402	402	336	321	386				
93	339	243	361	321	286				
94	374	311	322	292	342				
95	345	355	306	315	305				
96	347	313	346	367	260				
97	427	284	372	337	264				
98	312	334	317	359	285				
99	338	341	345	299	261				
100	306	381	277	338	310				

Statistics		Ta	ke-up s	peed (rp	m)	
	0	1500	1750	2000	2250	2500
N Valid	100	100	100	100	100	100
Missing	8	8	8	8	8	8
Mean	403.95	353.29	342.29	317.14	308.81	303.57
Std. Error of Mean	4.77	5.31	5.46	4.71	3.89	4.76
Median	396	349.5	343	316.5	309.5	304.51
Mode	381	345	363	277	321	264
Std. Deviation	47.66	53.08	54.56	47.12	38.93	47.63
Variance	2271.1	2817.8	2977	2220.1	1515.6	2268.9
Skewness	0.383	-2.028	0.337	-0.103	-0.095	0.137
Std. Error of Skewness	0.241	0.241	0.241	0.241	0.241	0.241
Kurtosis	0.892	11.016	1.107	-0.426	0.223	-0.513
Std. Error of Kurtosis	0.478	0.478	0.478	0.478	0.478	0.478
Range	269	414	319	232	203	203
Minimum	283	41	221	207	211	211
Maximum	552	455	540	439	414	414
Sum	40395	35329	34229	31714	30881	30357
a. Multip	le modes	exist. T	he small	est value	e is show	'n

Table E2 Statistics of fiber diameter at various take-up speeds when positive
 electrode was used

APPENDIX F Influence of nozzle radius on fiber diameter

Table F1 Diameter of electrospun PAN fiber (in nm) as a function of nozzle radiuswhen the positive electrode was attached to the nozzle tip.(Conditions forelectrospinning process: 14.4 wt% PAN solution, applied voltage of +15 kV,collection distance of 15 cm and stationary collection screen)

No. of		N	ozzle rad	dius (mr	n)	
fiber	0.81	0.71	0.64	0.56	0.51	0.47
1	448	390	318	398	282	321
2	442	391	370	339	308	372
3	388	345	345	282	337	363
4	455	274	310	267	344	349
5	365	334	291	285	338	303
6	264	338	310	288	273	372
7	405	392	281	327	308	284
8	385	277	346	334	341	263
9	463	336	277	293	385	308
10	381	381	275	283	381	270
11	444	472	281	296	317	327
12	363	417	282	310	292	327
13	390	391	363	299	347	272
14	350	363	358	303	317	317
15	337	476	325	321	330	272
16	420	324	246	305	337	304
17	453	401	363	256	367	317
18	465	361	359	318	382	263
19	442	321	374	302	369	329
20	345	442	305	270	417	302
21	449	408	305	338	298	321
22	391	462	410	260	327	317
23	398	367	363	299	436	302
24	329	333	331	331	399	315
25	382	354	321	344	322	312
26	385	384	282	282	329	357
27	402	314	285	263	426	333
28	385	432	380	343	285	338
29	538	321	308	320	299	282
30	534	381	329	314	281	276
31	462	410	300	261	312	312

Cont....

Table F1 (Continued)

No. of		Nozzle radius (mm)							
fiber	0.81	0.71	0.64	0.56	0.51	0.47			
32	438	352	281	267	308	308			
33	370	293	328	304	285	314			
34	388	388	310	289	285	339			
35	479	423	313	271	310	328			
36	580	362	338	236	292	295			
37	499	333	361	296	321	315			
38	409	331	308	306	361	322			
39	500	398	374	278	426	285			
40	407	313	367	358	388	321			
41	350	373	321	299	345	309			
42	430	336	288	287	346	341			
43	391	310	292	355	282	317			
44	487	425	326	302	281	377			
45	333	328	337	304	352	270			
46	385	317	310	329	180	292			
47	485	283	309	329	275	285			
48	451	313	312	311	333	310			
49	565	392	389	284	272	374			
50	418	317	272	273	291	312			
51	426	345	361	317	244	336			
52	355	425	367	299	365	260			
53	244	364	374	287	248	297			
54	462	398	280	305	345	338			
55	356	360	337	328	315	324			
56	445	438	300	382	_409	308			
57	313	292	317	334	310	322			
58	308	417	300	277	281	372			
59	377	334	297	308	305	333			
60	426	339	379	334	327	357			
61	463	317	295	345	306	304			
62	349	365	409	393	349	334			
63	353	350	338	350	367	287			
64	514	367	345	281	399	308			
65	398	455	326	293	_407	264			
66	345	337	339	321	388	333			
67	462	377	272	276	321	337			
68	359	444	322	336	405	264			
69	356	401	327	390	339	356			
70	321	346	321	310	321	310			
71	414	448	325	327	372	293			

_

Table F1 (Continued)

No. of	Nozzle radius (mm)									
fiber	0.81	0.71	0.64	0.56	0.51	0.47				
72	345	337	336	299	270	306				
73	416	349	341	313	354	333				
74	628	327	382	324	349	356				
75	459	327	321	282	358	331				
76	385	401	299	309	270	317				
77	374	282	329	325	299	299				
78	346	297	356	275	338	295				
79	363	297	447	345	314	367				
80	506	434	349	348	309	305				
81	579	345	356	363	328	306				
82	331	363	375	321	270	252				
83	374	328	393	270	324	317				
84	455	333	334	291	390	292				
85	384	358	317	322	245	337				
86	427	322	310	333	267	313				
87	365	306	318	308	313	338				
88	420	374	333	341	396	345				
89	361	390	293	312	322	395				
90	410	379	391	305	306	321				
91	363	373	299	340	340	269				
92	405	321	215	309	333	240				
93	384	350	345	327	331	382				
94	462	345	367	323	340	357				
95	317	359	337	289	301	308				
96	399	500	277	298	369	310				
97	586	361	356	314	354	304				
98	372	350	358	292	359	310				
99	407	367	248	296	255	272				
100	455	402	356	285	321	305				

Statistics		Nozzle radius (mm)								
		0.81	0.71	0.64	0.56	0.51	0.47			
N	Valid	100	100	100	100	100	100			
	Missing	2	2	2	2	2	2			
Mean		411.49	363.75	327.98	309.61	328.67	315.33			
Std. Error of Mean		6.86	4.78	3.87	3.05	4.60	3.12			
Median		400.50	359.50	326.00	307.00	327.00	313.50			
Mode		385	345	310	299	321	317			
Std. Deviation		68.56	47.80	38.73	30.52	45.98	31.22			
Variance		4700.03	2285.12	1500.00	931.45	2114.28	974.43			
Skewness		0.674	0.519	0.102	0.508	0.000	0.121			
Std. Error of Skewness		0.241	0.241	0.241	0.241	0.241	0.241			
Kurtosis		0.899	-0.064	0.423	0.536	0.329	-0.068			
Std. Error of Kurtosis		0.478	0.478	0.478	0.478	0.478	0.478			
Range		384	226	232	162	256	155			
Minimum		244	274	215	236	180	240			
Maximum		628	500	447	398	436	395			
Sum		41149	36375	32798	30961	32867	31533			

 Table F2
 Statistics of fiber diameter at various nozzle radiuses when positive
 eletrode was used

APPENDIX G Definitions of electronically terms used in electrospinning

G1 Electrical Charge

The electrical charges referred to in electrospinning are the excess charges, whose electrical fields at long distances are not cancelled by nearby counterions (Reneker, 2000). The common assumption that charge moves instantaneously through a metal is not appropriate for ionic conductivity in a moving fluid. In an uncharged ionic solution, there are the same number of positive and negative ions in each volume element of the solution and no external field is applied to the solution, the positive and negative electrode. The difference in the number of positive and negative and negative ions in a particular region is often called the excess charge or, simply, the charge. For example, a volume element of the fluid near the negative electrode will then contain more positive ions than negative ions. The excess charge establishes an electrical field that extends for large distance. Adding a soluble salt, which dissociates into equal numbers of positive and negative ions, increases the excess charge. The higher conductivity may, however, shorten the time required for the excess charge, in the form of ions, to the electrical field, or in the shape of a segment of the jet.

G2 Ion Mobility

The mobility of ions through the polymer solution around 10-6 m2/Vs.was reported by Bailey (1998) and Chang (1995)(Reneker, 2000). The value of the electric field, determined by dividing the applied potential by the distance between the surface of the pendent drop and the collector plate, was typically 100 000 V/m. The drift velocity of ions inside the jet is then estimated to be 0.1 m/s. The velocity of the segment at the end of the straight segment of the jet was observed to be about 1 m/s in the experiment of Reneker *et al.* (2000) and about 5 m/s in the work of Waner *et al.* (1998). In many cases it is useful to simplify this by assuming that the ionic charge is fixed in the fluid and moves with the jet.

G3 Formation of Bending Instability

During the electrospinning of an aqueous solution of high molecular weight polyethylene oxide, a straight jet was formed, as a consequence of electrical forces, from a conical protrusion, often called a Taylor cone, on the surface of a pendent drop of solution. The electrically charged jet travels for a few centimeters in a straight line. At the end of this straight segment, a diaphanous shape, also conical, with its vertex at the end of the straight segment, was seen when proper illumination was provided. This cone is the envelope, in space, of the complicated set of paths taken by jet during the observation time. Images obtained with short expose times by Baumgarten and by Wanner *et al.* indicated that the jet was continuously bending for as far as it could be followed after it entered the envelope cone.

CURRICULUM VITAE

Name:Ms. Jutawan SutasinprompraeDate of Birth:February 25, 1979Nationality:ThaiUniversity Education:

1997-2001 Bachelor Degree of Science in Chemistry, Faculty of Science, Chiangmai University, Chiang Mai, Thailand

Plublication:

 Pipattanatornkul, J., Sutasinpromprae, J., Worakitkanchanakul, W., and Supaphol, P. (2000) Cyclic Olefin Copolymers (in Thai). <u>Materials Technology</u>, 29, 51-56 (October-December).

Presentations:

- Sutasinpromprae, J., Supaphol, P., and Nithitanakul, M. (2002) Influence of Polyacrylonitrile Concentration on Appearance of Resulting Electrospun Nanofibers, The 2002 International Conference on Advanced Fiber Materials (ICOAFM2002) (Shanghai, China, September 13-15), Dong Hua University
- Mit-uppatham, C., Sutasinpromprae, J., Supaphol, P., and Nithitanakul, M. (2002) Mechanism for Fiber Formation in Electrospun Nanofibers: Case Studies from Nylon-6 and Polyacrylonitrile, the 28th Congress on Science and Technology of Thailand (Bangkok, Thailand, October 24-26), The Science Society of Thailand (SST)