CHAPTER V

THE LORENZ MODEL FOR ATMOSPHERIC CIRCULATION

In this chapter we will study about some applications of the Lorenz model for
the atmospheric circulation. In this study we will regard the flow of the atmosphere as a
guasi-stationary circulation of large scale on which are superimposed transient wave
and vortex disturbances of smaller scale originating as instabilities of the mean flow and

interacting with it.

Model Equations

The actual atmosphere is of course baroclinie, but all of the phenomena to be
considered have their counterparts in the simpler barotropic atmosphere. Thus questions
involving topographic forcing, resonance and nonlinear interaction via the advective
terms in the equations of motion may be studied barotropically. For example, the
prototypical quasi-equilibrium phenomenon of blocking has been found by Egger
[Egger 1978] in numerical simulations of the flow of barotropic atmosphere over
topography. It is true that such phenomena as baroclinie instability and vertical
propagation of energy are not present in a barotropic model, but the former occurs on
scales that are smaller than those we wish to study, and the latter does not occur when
the waves are trapped vertically as by easterlies or strong westerlies [Chamey and
Drazin 1961, Charney 1969]. Baroclinie instability may be important in the present
context only as additional forcing of the planetary-scale motions.

We will therefore take our model as a homogeneous (3-plane atmosphere with a

free surface of height H +1 and the mean height H confined between zonal walls of a
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distance nL. The lower boundary elevation will be denoted by h (x, y), where Xis the
eastward directed coordinate and y is the northward directed coordinate.
Since the motions will be on large scale, they will be quasi-geostrophic and

therefore governed by the conservation of potential vorticity [Charney and Devore

1979]

d (o2 b L4 h Dg
o Avan R IR R HAVAA VAR SRR 8 | R fo =E ]
AR EER AR BT S B
A A
(5.1)
with the boundary condition;
Vo (x,0 = V(7L = o0, (5.2)
where is the eastward component of
V is the northward component of
V is the horizontal gradient operator,
J is the Jacobian operator,
J(F CA = d(F»G) dFdG  dG dF_
d(x, y) =~ dx dy dx dy

fO is the Coriolis parameter ( fO = 2fJsin<])0),

2D cos €O «2 gH
P = oo y A = ; where

fo

D is the angular speed of the Earths rotation,
a is the radius of the Earth,
49 is a central latitude,
De is the Ekman depth (De = V2 VE/fo ; where
VE is the bulk eddy viscosity in the frictional boundary layer),

V is a stream function which satisfies

- . d_ and vV = dX ) (5.3)
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In deriving Eq.(5.1), we assumed that |i) « H and that 7tL « 2a. The motion is
retarded by a frictionally induced vorticity sink given by -fOwEH, where WEis the
Ekman pumping, v 2. It is accelerated hy the momentum source ( , V) giving rise

to the vorticity source

dv du L DeM *

UT - 37 = Ifm)vyv ' (5'5)
In a baroclinie atmospheric ( , V) would be the thermal wind driven by the
radiation field.

We now rewrite the variables of the problem in terms of non-dimensional
variantes as follows

f =10t X =x/L, y =y/L h="hH V = ¥/L2A0 and Y" = V*/L2A0.
By the introduction of these transformations into Eq.(5.1) we obtain the non-
dimensional equatio

Y
ai,—\X/ tlvvv~ + +p~T + kv (v-V¥ =
(56)
where = (L/a) cot g, =N,
p = (Lfa) cot o X2
k = M - IW1:  where E is the Ekman number.

By omitting the notation ' in Eq.(5.6), it becomes
I R T LV A N R O R R

(5.7)
To simplify the Eq.(5.7) further, we expand ¥, Y and h in orthogonal trigono-
metric functions. This procedure closely parallels that of Lorenz [Lorenz 1963] who
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derived similar spectral equations for a two-layer channel flow model. Our equations

differ from his only in applying to a single layer and in including the effects of topo-
graphy, driven force and variations of the Coriolis parameter. Like Lorenz, the expan-

sion of Y had been truncated to include a total of three terms only. Accordingly, in this
study we let

Y = YiFi+ YaF2+ Y3p3, (5.8)
where Yi. Yz arxd Ys are functions of time alone,
Fi- flcosy, F2 = 2c0s (nX) sin'y, Fa = 2sin (nx) siny;
IS a positive integer.

Likewise, we can obtain that

Y* = Y*Fit+ Y2 + YaFa» (5.9)
and

h = hiFi+ li2F2 + h3F3. (5.10)

When expressions (5.8), (5.9) and (5.10) are substituted into Eq.(5.7), we
obtain the equations

dd)t( = -knO(x - yl) + MO(hZ - h3Y) 7
dd\t( = km(y - Yl) - (anlx - Pm)Z - I (3X - hiZ),

U = dm( -y + (@nX - PM)Y 4 50l (hiy - N2X)

Where X = Yy Y = Y2 Z H Y3
nﬁO' : hm = - fl
an = —p3 ', i = (- D------\(L/a) cot oo,
2814 X i = 5 Dy (L) ot oo
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Eq.(5.11) is so-called the “Lorenz Model for Atmospheric Circulation”. What
can such a simple model possibly tell US about the real atmosphere? Certainly it cannot
yield much quantitative information. It may serve principally in examining existing
hypotheses and formulating new ones. Often we draw conclusions about the general
circulation on the hasis of qualitative reasoning. Sometimes we can apply similar
reasoning to the model, and, in addition, we can solve the equations of the model. If the
solution fits the reasoning, it will give US added confidence in our reason-ing regarding
the real atmosphere. If it reveals a flaw in the reasoning, it will indicate where our
reasoning in the atmospheric case needs reexamination.

Analysis of the Model

Assuming the topographical effect of the stretching and compression of the
vortex tubes of the Earth’s rotation to be confined to the toposphere, we set H = 104m
as an approximation to the height of the topopause. If it were desired to simulate
accurately as possible the phase velocity of the dominant free or forced Rossby wave
modes in a baroclinie atmosphere with the observed vertical density structure, the
acceleration of gravity g should be chosen so as to give the correct equivalent height
for the actual atmosphere. In the case of traveling free Rossby waves the results of
Diky and Golitsyn [Diky and Golitsyn 1968] suggest 4 Q2a2/gH = 8.8, or g=3.6 m
sec'2for H = 104 m. It will be more convenient to set g — <o and a2 =0, i.e,, t0
replace the upper free surface by arigid horizontal boundary.

For simplicity and to ensure that we are dealing with large topographic scales,
we consider only wavelike topography mode 2. Thus

h = hk = ")os()siny, (5.12)

where  hO is arbitrary.
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Topogroeph lc he lght
-0.40 -0.24 -0.08 0.00 2.25

Figure 5.1 Wavelike topography for =2 and hf/H =0.20 ; h =0.40 cos 2x sin y.

Substituting this expression into Eq.(5.11), we obtain the equations

A

-knO(x -V J + hn0Z,

dd\{ kni(y - y2) - (oxmX - p,i)z, (5.13)

kni(z - y3) + (aniX - Pni)Y - hnjX,

Here hro = h A = WO(A) and ol = hthz = Iyl( ™).

We now examine some properties of the Eqs.(5.13) by splitting them into some
special cases as follows

A. Conservative Flow

We first consider the conservative case by setting y* and k equal to zero. Then
the system will be governed by

dd)t( *noZ ,
dy (aniX - Pni)z, (5.14)
07

i (anlx - Pm)Y - hnlX,
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Some properties of Eqs.(5.14) are examined as follows:

1. Divergence of the Flow; D
By introduction of the divergence; D, into Eqs.(5.14) we find that D = 0. Thus
re = r(o), (5.15)
where I (0) is an element of phase-space volume at the time t =0,
I (t) isanelement of phase-space volume at the time t.
Hence the expansion rate change of phase-space volume equal to zero.

2. Steady-state Solutions or Equilibrium States
We now consider steady-state solutions of Eqs.(5.14). Equating the time
derivatives to zero. We find that
Y0= hnXq * jX0 - Pn)) and Zq=10,
where  Xo is arbitrary, and
(X0, Y0, Zq) is a steady-state solution or an equilibrium state of the system.

Table 5.1 Equilibrium states of a conservative flow for L/a= 1/4, and =2

&  h(H X0 Yo 20

55> 0.0 0.100000 0.000 0 0.0000
0.05 0.100 0 0.055989 0.0000
0.20 0.100000 0.223957 0.0000
0.25 0.1000 0.28 26 0.0000
0.30 0.1000 0.336015 0.0000
0.35 01 0 0392 4 0.00 00
0.40 0.100000 0.447993 0.000 0

Streamfunction fields satisfying the spectral model in Eq.(5.8) for some exam-
ples of equilibrium states of a conservative flow will be shown in Fig.(5.2).
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3. Stability of the Equilibrium States

From the linearized transformation (See Appendix C), the stability matrix of an
equili-brium state (Xg, Y0, Zg); Mg, will be obtained

0 0 hno .
Mo = 0 0 ot | (5.17)
Bl bnl 0

and  Bnl = OnlYO - bnl.
and thus, in greater detail;

X1 = 0, and 723 = Pnlhnohni 1 bnl
bn
Here are eigenvalues of the matrix Mg (i = 1, 2and 3).

To examine the stability property of the equilibrium states, we need to know the values
of 7, We then can examine the stability of the equilibrium state as follows:

Case i If bn1> 0 and Pnihnohni > ™1, we find that 723 = + M-Here p is a

positive value and

Pnlhnohnl- 1 bn]
bl

Hence that the equilibrium state (Xg, YO, z0) is a hyperbolic one.

Case ii:  If 1> 0and Pn)hnohni < bn], we find that /23 = + im. Here s a

positive value and

b3, - pnlhnohn]
bl

Hence that the equilibrium state (X0, Y0, Zg) is an elliptic one.

Case in:  Ifbnl< 0, we find that 7-23 = £ ie*. Here (o*is a positive value and

« = « nl Pnlbnghn]
Lonll
Hence that the equilibrium state (Xg, Yg, Zg) is also an eiripric One.
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B. Topographically and Thermally Driven Flow

Introduce zonal driving and dissipation in the first y-mode by setting
\i* = \(j Fi- Here Yi is the driving Rossby number Uo/iflLfo), where Uq s the
dimensional amplitude of the forcing zonal wind profile. Substituting V* into
Eqs.(5.13), the system will be then governed by

< = 1ko(x - If) + hnoz,
dd\t( _ 4mY - (anlx - pm)Z, (5.18)
%% _ kijiz + (aniX - Pm)Y - hnJX,

Some properties of Eqs.(5.18) are examined as follows:

1. Divergence of the Flow; D
By introduction of the divergence; D, into Eqs.(5.18) we find that D = - (k.0 +
2k, ). D is negative since k™ and km are positive. We thus have a contraction of the
form
T(t) = r(0)exp[-(knot 2km) 1] , (5.19)
Hence all trajectories will ultimately become confined to some form of limiting
manifold of volume zero.

2. Steady-state Solutions or Equilibrium States
We now consider steady-state solutions of Eqs.(5.18). Equating the time deriva-
tives to zero. We find that

r hnlbm
bnl+ km

70 hnlkm
\bnl +k*I

X0,

while Xqsatisfies the cubic equation
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(xo - ¥*I)fe + &) + (* * )Xo = 0, (5.20)
Here bnj — otj*Xo - Pnj.

Table 5.2 Equilibria of a topographically and thermally driven flow for o= 45°,
Lia=1/4 =2 k=10-2and ho/H = 0.05.

¥ X0 Yo z0
0.05 0.015253 - 0.016092 - 0. 2457
0.10 0.021497 - 0.028513 - 0. 5552
0.15 0.024955 - 0.038498 - 0. 8843
0.20 0.027221 - 0.046929 - 0.012219
0.080004 0.068762 - 0. 8486
0.181164 0.041285 - 0. 1332
0.30 0.030112 - 0.060821 - 0.019087
0.067618 0.087100 - 0.016434
0.290660 0.036837 - 0.0 661
0.40 0.031949 - 0.072124 - 0.02 29
0.062733 0.1 050 - 0.023852
0.393708 0.035191 - 0.0 445
0.50 0.033259 - 0.081682 - 0.033009
0.059884 0.110495 - 0.031126

0.495247 0.034304 - 0.0 336
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Table 5.3 Equilibria of a topographically and thermally driven flow for 40 = 45°,
Lia=1/4, =2 k=10-2and ho/H = 0.20.

Yl x 0 X0 20
0.05 0.002645 - 0. 7868 - 0.0 837
0.10 0.004790 - 0.015 3 - 0. 1683
0.15 0. 6582 - 0.021572 - 0. 2535
0.20 0. 8113 - 0.027687 - 0. 3391
0.30 0.010619 - 0.038854 - 0. 5114
0.40 0.012608 - 0.048931 - 0. 6846
0.50 0.014245 - 0.058177 - 0. 8585
0.172321 0.167893 - 0. 5791
0.401818 0.140407 - 0. 1735
0.70 0.016814 - 0.074803 - 0.012074
0.127515 0.190741 - 0.010117
0.644061 0.134184 - 0.000989
0.90 0.018773 - 0.089585 - 0.015574
0.110025 0.207954 - 0.013961
0.859593 0.131754 - 00 714

Streamfunction fields satisfying the spectral model in Eq.(5.8) for some exam-
ples of equilibrium states of a topographically and thermally driven flow for 4= 45°,
Lia= 14, =2 k=102 and ho/H =0.05, 0.20 will be shown in Fig.(5.3) - (5.4).
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3. Stability of the Equilibrium States
From the linearized transformation (See Appendix C), the stability matrix of an
equilibrium state (X0, Y0, z0); MO, will be obtained

-kn0 0 hnO
Mo = -cxZo -kni -bni (521)
\ Bni bni -kni/

and the eigenvalues of the stability matrix satisfy the cubic equation

(knO + A-i) (knl (bnl mhnoBnl)(kni +A;) + hnobniOCniZo — 0,

(5.22)
where Al are eigenvalues of the matrix Mo (i = 1, 2and 3),

bni = «ni*0 ' Pni> and Bnl= «MYO - hnl.

Rewrite Eq.(5.23) into the form

A, + 2A; 4 aiA; 4 = o, (5.23)
Here a0 = ~nO~i  kni(blll - hnoBnl) 4 hnobnlttnlZo ,

ai — kni 2 knoknl + bnl - hnoBnl ,
and

a2 — kn0 + 2knl.

To examine the stability property of the equilibrium states, we need to know the values
of  If we let

g = salod ad r = 6(i&-30) - i-a);
the solutions of Eq.(5.23) can be examined as follows:

Case I 1fq3 + r2<0, we find that A]23are all real. Hence that the equilibrium
state (X0, YO, Zq) may be a stable, unstable or hyperbolic one.
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Case ii: Ifq3 + r2=10, we find that Xuzsare all real and at least two are equal -
the case of degenerate roots. Hence that the equilibrium state (X0, Y0, zq) may be a
stable, or unstable improper one.

Case iii:  1fg3 +r2> 0, we find that *1is real and ~23 are a pair of complex
conjugate roots. Hence that the equilibrium state (X0, Y0, Zg) may be a stable, or
unstable spiral one.

Numerical Experiments

To obtain numerically approximate solutions of Eqs.(5.13), we must choose
numerical values of the parameters for our considerate systems. In this study, we will
consider only the topographically and thermally driven flow for d0=45°, =2 k=
1072, L/a = 1/4, ig/H = 0.05 and Yi = 0.20. By substituting these parameters into
Eqs.(5.13) we then obtain

00L(X - 0.20) + 0.1414Z,

001Y - (2262742 X - 0.10) Z, (5.24)

C- 0017 + (2262742X - 0.10)Y - 0.0707 X,

We have used the Euler-backward difference procedure (See Appendix D) for
ob-taining approximate solutions of Eq.(5.24). The value At =0.1 has been chosen for
the dimensionaless time increment. The computations have been performed on a [BM
(PC/AT) 80386-25 compatible computer. For initial conditions we have been chosen a
slight departure from the steady state of the flow. The results which have been prepared
by the computor have been shown in the following tables. It gives the values of N (the
number of iterations), X, Y and z at every 500th for the first 5000 iterations.
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Table 5.4 Numerical solutions of a topographically and thermally driven flow for
Jo=45°, =2 k=102 L/a= 14 hH =005 and \I] = 0.20 with the initial
condition (0.020000, -0.046000, -0.012000)

N X Y Z
0000 0.020 0 - 0.0460 - 0.0120
0500 0.027995 - 0.045885 - 0. 7390
1000 0.029598 - 0.045382 - 0.013664
1500 0.025904 - 0.046741 - 0.013815
2000 0.026558 - 0.047138 - 0.011038
2500 0.027972 - 0.046693 - 0.011958
30 0.027211 - 0.046811 - 0.012816
35 0.026893 - 0.047021 - 0.012114
4000 0.027340 - 0.046921 - 0.012 2
45 0.027316 - 0.046881 - 0.012343
5000 0.027135 - 0.046944 - 0.012267

Table 5.5 Numerical solutions of a topographically and thermally driven flow for
Q=4° =2 k=102 L/a =14 hoH =0.05 and Vi =0.20 with the initial
condition (0.020 1, -0.046 1,-0.012 1).

N X )/ Z

00 0.02 01 - 0.046001 - 0012 1
05 0.027995 - 0.045886 - 0. 7390
10 0.029598 - 0.045382 - 0.013664
1500 0.025905 - 0.046741 - 0.013815
2000 0.026558 - 0.047138 - 0.011038
25 0.027972 - 0.046693 - 0.011958
30 0.027211 - 0.046811 - 0.012816
35 0.026893 - 0.047021 - 0.012114
40 0.027340 - 0.046921 - 0.012002
4500 0.027316 - 0.046881 - 0.012343

5 0 0.027135 - 0.046944 - 0.012267
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Tabic 5.6 Numerical solutions of a topographically and thermally driven flow for
eo=45" =2 k=102 L/a= 14 hOH =005 and Yi =020 with the initial
condition (0.0800 , 0.068762, -0. 8486).

N X Y Z

00 0.080000 0.068762 - 0. 8486
05 0.079968 0.068773 - 0. 8508
10 0.078163 0.069392 - 0. 9662
15 - 0.053494 - 0.035493 - 0.049596
20 - 0.032062 - 0.049911 - 0.015078
25 0.009611 - 0.039906 0.025736
30 0.046977 - 0.036999 0. 2799
35 0.0352 - 0.038013 - 0.027406
40 0.016906 - 0.047641 - 0.016887
45 0.026309 - 0.047277 - 0. 4164
50 0.031712 - 0.045225 - 0.012859

Table 5.7 Numerical solutions of a topographically and thermally driven flow for
90 =45°, =2 k=102 L/a=1/4 hOH =005 and Yi = 0.20 with the initial
condition (0.080 1,0.068763, -0. 8485).

N X % Z

00 0.080 1 0.068763 - 0. 8485
0500 0.080080 0.068733 - 0. 8437
10 0.083966 0.067228 - 0. 6084
1500 0.121695 0.047825 - 0. 5713
2 0 0.139595 0.046824 - 0.0 391
25 0.153683 0.044653 - 0. 2060
30 0.163169 0.043232 - 0. 1708
3500 0.169418 0.042413 - 0. 1334
4 0 0.173572 0.041816 - 0. 1319
4500 0.176202 0.041630 - 0. 1425
5000 0.177905 0.041552 - 0. 1366
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Table 5.8 Numerical solutions of a topographically and thermally driven flow for
so =45°, =2 k=102 La=14 hOH =005 and Yi =020 with the initial
condition (0.181000, 0.041000, -0. 10 ).

N X Y Z

0000 0.181000 0.041000 -0. 10
05 0.180946 0.041346 - 0. 1538
10 0.181024 0.041320 - 0. 1240
15 0.181096 0.041258 - 0. 1365
20 0.181101 0.041308 - 0. 1326
25 0.181134 0.041277 - 0. 1331
30 0.181140 0.041289 - 0. 1335
35 0.181151 0.041284 - 0. 1330
40 0.181156 0.041284 - 0. 1333
4500 0.181159 0.041284 - 0. 1332
5 0 0.181160 0.041284 - 0. 1332

Table 5.9 Numerical solutions of a topographically and thermally driven flow for 40

=45°, =2,k=102 L/a= 14 h()H=005and vi =0.20 with the initial condition
(0.181 1,0.041 1,-0. 1 1)).

N X % Z
00 0.181 1 0.041001 -0.11
05 0.180947 0.041346 - 0. 1537
10 0.181024 0.041320 - 0. 1240
1500 0.181096 0.041258 - 0. 1365
20 0.181101 0.041308 - 0. 1326
2500 0.181134 0.041277 - 0. 1331
30 0.181141 0.041289 - 0. 1335
35 0.181151 0.041284 - 0. 1330
4000 0.181156 0.041284 - 0. 1333
4500 0.181159 0.041284 - 0. 1332
5 0 0.181160 0.041284 - 0. 1332
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