
CHAPTER III

PATH INTEGRAL APPROACH TO THE DENSITY OF STATES 
OF A TWO-DIMENSIONAL ELECTRON GAS

Introduction

In this chapter we present a straightforward evaluation of the density of states of 
a two-dimensional electron system in the presence of a transverse magnetic field and a 
disorder potential by using the Feynman path integral method. In our model we 
consider an electron in a system of very dense, random and weak scatterers. In this 
manner, the scattering potential can be represented by a gaussian random potential with 
finite correlation length L and then we can treat the correlation L as one adjustable 
parameter. The comparison of our numerical results with the direct measurement of 
Kukushkin and Timofeev will be seen in the the last section, the conclusion and 
discussion will be contained in chapter IV.

The Density of States

It is convenient to consider the density of states in the form defined by

ท(ร) = (1 /V )< I  ô( E - Ej ) >, (3.1)i=l

where Ei is the energy of the ith eigenstates of a Hamiltonian, V is a container of N
scatterers in d dimensions, and where the angular bracket <..... > indicates an average
over an ensemble of the scatterer positions. Similar to that of (2.81), one can verify that 
(3.1) can be rewritten in the form
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ท(E) = ( V / 2 n f t )  J K(0,0;T) e(i/^)ET dT, (3.2)
*oo

where K(0,0;T) is the average propagator of an electron.

Path Integrals of a Two-Dimensional Random Model

To evaluate the propagator K mentioned in the preceding section, we first 
consider a simple model which can be conveniently expressed in terms of Feynman-like 
path integrals. The model is that of an electron in a system of very dense, random, 
weak scatterers. If p is the density of the scatterers, and v(r) is the scattering potential, 
then the model is obtained by taking the limit p-»°o, v(r)—0 and pv2(r)—finite. To 
begin the calculation, we first consider a propagator K(r ",r';T,{Ri}) for an electron in
the presence of N scatterers at the fixed positions {Rj I i= l, 2,..... }. It is obvious that
this propagator must depend explicitly on the positions of the scatterers. Since the 
scatterers are randomly distributed, such properties of the system as the density of 
states are obtained from the average propagator K(r ", r';T), the average of K over the 
random scatterer positions.

For the model of two-dimensional N scatterers, in the presence of a transverse 
magnetic field, the Hamiltonian of the electron is

H( { Ri } )  = Ho + 2  V(r-Ri ) ,  (3.3)

where Ho = (l/2m*) ( P  + (e/c)Â ) 2, (3.4)



58

Â is the vector potential with ÿxÂ = Ë, m* is the effective mass of the electron and 
v(r-Ri ) is the scattering potential at position r. The position Ri of the scatterers are 
taken to be random. The probability for the scattering centers to be Ri is, therefore

P({Ri)) = 1/SN, (3.5)

where ร is the area of the system. The propagator of such a system satisfies 

[ i t f j f -  H({Ri}) ] K (fV ;T ,{R i}) = i/z8(r r 05(T). (3.6)

In path integral representation, the propagator is expressed as

K(?', ?;T, {Ri} )
T

= I D[f(t)]exp[(i/Æ)J*dt{(m/2)(x2+ÿ2+Q(xÿ+yx) )
-I .v (f(t)-R i) }]. (3.7)

The average propagator is thus

K( r ", โ ' ;  T) = < K(?'/;t;{Ri}) >
= (l/S)NJl.JndRiK(?7'T;{Ri}). (3.8)

Since (3.8) implies that the average propagator K is the usual Green' ร function, K can 
be thought to describe the propagation of a particle, even though it does not correspond 
to a physical electron in a specific configuration. The function K can also be considered 
as a propagator describing the motion of a ficitious average electron in the average
system.
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As pointed out first by Edwards and Gulyaev (32), the average of (3.8) can be 
explicitly obtained because the set of {Ri} is random. Therefore, since the scattering 
potentials v(r(t) - Ri ) are independent random variables, the average propagator 
becomes

T
K(r",r';T) = 1 D[r(t)] exp [ ( x m j l f i )  j (x 2+ y2 + Q(xy+yx))dt0

+ p 1 dR{exp[ { - m  jdtv(r(t)-R ) ] - ! } ] ,  (3.9)

where the density p = N/S. In the limit of p — « 1 V — 0 and pv2 — finite, we can 
expand the exponential of V and then keep only the linear and quadratic terms. The 
average potential

Eo = p J dRv(r(t) - R), (3.10)

becomes infinite in the limit mentioned above. However, we are free to choose our 
energy origin as the average energy for removing the infinity. Now we consider the 
quadratic term

(-p/2/22)J dR } I dtdov(r(t)-R)v(r(a)-R)0 0
(-p/2/z2) J j dtdaW(r(t) - V( ๙ ) ) , (3.11)

where the correlation function

พ (r(t) - ?(g)) = 1 dRv(f(t)-R)v(f(a)-R). (3.12)

From (3.9), (3.12) and after taking Eo = 0, we obtain
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K(F',P; T) = J D[r(t)] exp[(im/2Æ) I  (x2 + y2 + Q . ( x ÿ  - yx))dt0TT
- ( p / 2 f p )  j j  dtdoW(r(t) - F(o)]. (3.13)

We note that the correlation function (3.12) depends explicitly on the scattering potential 
employed and (3.13) can be formally written in terms of an action ร as

To compute the density of states (3.2), the propagator (3.14), must be known. 
However, the propagator (3.14) containing the correlation function พ (f(t)-r(a)) is very 
complicated, and is presently impossible to work out directly. Therefore we can 
evaluate the propagator only by approximating. To approximate such a propagator we 
begin with a zero order model, a free electron in the xy-plane under the influence of a 
perpendicular magnetic field B. The corresponding zero order action is

K(r', r ; T) = 1 D[f(t)] e (i/fi)S[r(t)]5 (3.14)

TT

First Cumulant Approximation

So
T

(m/2) J  ( X2 + y2 + Q(xy - yx) )dt. (3.16)

The zero order propagator is
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K0(?'/;T ) = j  D[r(t)] exp [ ( i / f i ) S 0  ]. (3.17)

Then we express K in terms of Ko as

K(?',?;T) = Ko(f",?';T)<exp [ m  {ร-ร o) ] > 0  . (3.18)

and the average part is regularly defined by

< O >o = I D [rftllOexpl ( พ ) ร 0  ] .
J D [f(t) ]exp[(i/fj) ร0]

(3.19)

The propagator K0 can be evaluated exactly (see Chapter I), and the average 
part can be evaluated approximately by the cumulant expansion, as was pointed out by 
Kubo (33),

< ex > = exp [ <x> - (1/2!){ <x2> - <x>2 }+..... 1]. (3.20)

Since we are only interested in the difference (S-So), the kinetic and magnetic 
terms in ร and So drop out and we only have to consider the correlation term,

T T

Now we approximate (3.18) by the first cumulant, and (3.18) reduces to

K!(?',?;T) = Ko(?",?';T) exp [(-p/2^2) J J <พ (F(t)-F(a)) >0dtda], (3.22)

(S-So) (3.21)
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The Gaussian Random Model

In order to find (3.22), we assume the scattering potential due to impurities to 
be a gaussian form,

v(r-R) = (u/7tl2)exp[- lr-Rl2/l2], (3.23)

where น is the strength of the scattering potential. We find that for the potential (3.23), 
the correlation function becomes

พ (f(t)-f(a)) = (น2/7tL2)exp[ - lf(t) - r(a)l2/L2 ], (3.24)

where L denotes the correlation length of the random system related to 1 by

L2 = 212 . (3.25)

In order to calculate พ , we write

พ (x) = (1/2ti)2 /  d2kV(lc)exp[ ilc.x ]. (3.26)

where V(K) is the Fourier transform of พ (x). For a gaussian potential, V(fc) is given 
by

V(£) = น2 expf-l^L 2̂ ] .  (3.27)

If ones inserts (3.27) into (3.26), one has
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พ (f(t)-f(a)) = (1/2ท)2น2J d2k exp[ -k2L2/4+i£.(r(t)-r(a)) ] . (3.28)

After substituting (3.28) into (3.22), we obtain

K!(?',?;;T) = Ko(r ",r';T) exp [- 2 ^ 2 k ) ^  d  d  d2kdtdaexP[~k2L2/4l
. < e i£(r(t)-r(a) >0 ]. (3 29)

The evaluation of < ei£-(r(t)-r(a))>0 can be performed exactly (see Appendix A ), and 
after the integration of k is completed, one finds

Ki(0,0;T) = Ko(0,0;T)exp[ - 7tJ J  dtdotBCUa)]-1 ], (3.30)

where B(T,t,o) = ^feM (^2)(T -(t-a))]sin [(n /2)(t-^
4 (mQsin[QT/2])

(3.31)
We note that the expression B(T,t,a) has the property

B(T,t,๙) = B(T,T-(t-o)), (3.32)

so that (3.31) reduces to

Ki(0,0;T) = Ko( 0 ,0 ; T ) e x p [ - ( ^ ^ 7 t T [  dx[B(T,x)]-l ]. (3.33)

พhere B(T,x) .  £  + « Si n [ y ) r r ;x)]sin[(Qg)x]
4 (mQsin[(Q/2)T])
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The Density of States of a Two-Dimensional Random System

Before applying (3.2) to (3.34) to obtain the density of states, we follow 
Halperin and Lax (34) by defining EL = 2mL2) as the energy associated with
localizing an electron within the correlation length, = pu2/(ttL2) as the magnitude of 
the variance and X  = ท £ l /E ] _ 1. Then from (3.2) and (3.34) we obtain for both spins of an 
electron

ท(E) = ( ร / ท ท )  JdT Ko(0,0;T)exp[ i E T / ท  - ( เ ^  )Tjdy [G(T,y)]-l ], (3.35)_oo 2nz Q

where G(T,y) = ■ (3.36)

and Ko(0,0;T) = ( m )( O l  ) .
2jrifzT 2sin(QT/2)

The integration of X  in the exponential term of (3.35) can be evaluated exactly,then 
(3.35)becomes

oo
ท(E) = ( ร / ท ท ) I dTKo(0,0;T) exp [ iET//z

-0๐

- (6xT)sin(m72) tan-1 { Vafx,าท-!.tan(flT/4) } ], (3.37) 
2ÆOVa(x,T)2-l ATa(x,T)+l

where a(x,T) = (x/4i)sin(OT/2) - cos(OT/2). (3.38)

The density of states in (3.37) can not be evaluated analytically due to the complicated 
part in the exponential terms. A numerical method must be used in such a complicated 
integration. However, we now wish to find the density of states for the ground state 
energy. According to the uncertainty principle the limit of ground state energy implies 
the limit of large time. In this limit we make the following approximation
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sin(Qx/2) = elQx/2-e-lQx#  = (1/2 i)eiQx/2( 1_e'i&x) —(1 /2i)ei^x/2, (3.39)

.ei^x/2+e-iQx/2 (1+e-iQx)
cot(Qx/2) = 1 (lie-iilx)- -  i> (3.40)

_  (eiQx/2_e-i(2x/2ueiQ(T-x)/2_e-iQ(T-x)/2'\sin(Qx/2)sinf(f2/2)(T-x)l = (l/2 i)1-------- - --------- eไ!2T/2^.4iTO,----------- -------

sin(QT/2) n_e-i£2 = ท/ ? \ v  " (1-e- l̂).
From (3.37), (3.38), and the large T limit, (3.37) becomes

= (./2i)(l ^ f ^ P ) -< 1 /2 0 . (3.41,

ท(E) = nc/A Snr2)-!^2 I  expl -(1/2ÏÏ E - En)2 ไ. (3.42)n=0
r 2

where nG m/jr/i2’ (3.43)

with Er (ท + 1/2 ) m , (3.44)

and the width parameter is r^B , L) = £1 l[ (4+x)]- (3.45)

The ท(E) in (3.42) is clearly a sum of Gaussians centered at the Landau energies En. 
One can verify that (3.42) can be reduced to (3.43) when the magnetic field B goes to 
zero(see Appedix B). The width of the Gaussian r  is a function of B, through X =
(2e//i2c)BL2 and of L through = pu2/ttL2. Clearly as r  —- 0, n(E) reduces to a sum
of delta funcdons, ท(E)=n0/îOZ Ô(E-En). Typical observed values of r  (6-13) are r= lท
(m eV T -^ B 1/2 or r=2meV at B-5T (See Fig. 11).

Limits of r  are interesting. For low B or short L so that X < 4, r 2— ̂ l x /4  and r  
is approximately proportional to y / B ,  as observed. Since L̂X is independent of L, the
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magnitude of r  is determined chiefly by magnitude of the potential fluctuation at 
moderate B. For large B and long L where X »  4, r — and r  becomes independent 
of B. The present ท(E) in (3.42) can display a substantial density of states between 
Landau levels depending upon the value of L. The value of L depends upon the origins 
of the disorder. If it is due to screened, charged impurities L will be approximately 
equal to the screening length . This is of the order of 100 Â in heterojunctions (2). The 
role of L here is to set the energy scale via EL = /z2/2mL2. For L = 100 Â, El -  ก.4 eV. 
Let us assume, just to set scales, that El = 1 meV. It is convenient to represent ท(E) in 
dimensionless units with all energies scaled by El, i.e. we define

ç L = (^l)/(El2), V = e /e l , r 2 = fty (  1+4/x) = r2/EL2
so that

ท(v) = n0x(27tr'2)'1/2 X exp โ -(1/21 fv - (ri+l/2)xl2 ๅ. (3.46)
ท=0

r'2
With El = ImeV and for 1< B < 10 T (corresponding to integer filling factors 8 < v 
<1), X takes values 1<X<15. For T - 2 meV and El= 1 meV, T '  and ^L are of order 1 
to 10.

The dependence of the density of states for adjacent Landau levels on X for '̂l 
= 1 is shown in Fig. 13. The density of states between Landau levels is essentially zero 
at X = 4 but increases substantially as X decreases to 2 (B=1.5T). Basically, as the 
spacing between Landau levels decreases a significant density of states between Landau 
levels develops. In Fig. 14 the dependence of ท(E) on '̂l for X = 5. As £3' L  increases 
from 1 to 5 a substantial density of states between the Landau level develops.

We may make an approximate comparison with experiment by noting that the 
density of states in Fig. 13 for £3' L  = 4 and X = 5 is very similar to that extracted from de 
Haas-van Alphen measurements by Eisenstein et al. ( shown in Fig. (12)). At B = 5T
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(J i Q  =  8.7 meV) they obtain r  =ะ 2.2 meV. Using Ç'l = 4 and the relation r 2 = 
E l 2^ 'l /(1 + 4 /x ) we obtain a value of E l -1 .3  meV, which corresponds to L=50 Â, 
needed to reproduce experiment. Using a some what larger value of X = ÆQ/El in Fig- 
14 (e.g. X = 8) would require a larger Ç'l and a larger L to make the correspondence. 
Thus, we can reproduce Landau level broadening and the observed density of states 
between Landau levels from the simple model for physically reasonable values of L.

Recent experiments (35) have observed oscillations in the Landau level widths 
as the function of B. When the Fermi level, Ep, lies between two Landau levels, 
impurity charges are poorly screened and the potential fluctuations are large (14). 
When Ep lies on a Landau level, impurities are well screened and พ (L) is small. This 
effect can be treated in the present model by representing v(r) by a screened coulomb 
potential (2) and determining, Ep, the screening v(r) consistently as Sritrakool et al.(23) 
have done for optical absorption in three dimensions.

Fig. 12 Comparison of the model density of states (solid line) 
fits 2DES data for B = 5T and the SCBA short-range 
theory (dashed line). At B = 5T, f iO . = 8.7 meV. The 
widths of the Landau levels are shown. (Figure from

which 
interaction 
rms half- 
Ref. 13)
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Fig. 13 Density of states from Eq.(3.46) 
for £1'L =1 and 2<x<4.

ENERGY V
Fig. 14 Density of states from Eq.(3.46) 

for X = 5 and 1 <^'L< 5.

Numerical Results and Comparisons with Experiments

As we have seen in the preceding section, for large-T approximation, it is found 
that the density of states of a 2D electron placed in a transverse magnetic field 
constitutes a sum of gaussians centered at the Landau energies En with a constant width 
parameter as

r2 = ^L~4
^Ll+222/L2 ’ (3.47)
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where I  and L are the magnetic length and the correlation length respectively. As 
shown in Fig. 12-14, we are able to reproduce the density of states lying between 
Landau levels using some appropriate gaussian variance and correlation length L. 
However, the width and height of the peak of every Landau level is equal which seems 
to contradict the direct measurement of Kukushkin and Timofeev as shown in Fig.9. In 
their experimental results, the width and height of the peaks of the Landau levels 
depend on the quantum number N and the filling factor V. For integer filling of 
electrons, the width r  may be in the form (36, 37)

r2 -  K 4 N + W  <3-48>

where Q is the fluctuation amplitude, d is the linear scale of the fluctuation and N 
represents the Landau index. Certainly, the Q“ appearing in (3.48) corresponds to
in (3.47) and the linear scale d in (3.48) is identical to the correlation L in our 
expression. Clearly, (3.48) becomes (3.47) when N = 0, this means that the ท(E) 
expression in (3.41) strictly describes only the lowest few Landau levels. It is almost 
certainly a result of using the long time limit that we obtain the value r  which is 
independent of the Landau index N. To avoid such an unreasonable approximation , a 
numerical method can be used in the complicated integration of (3.37), and then the 
comparison with experiment must be done to justify our ท(E) expression.

It was known that there are various methods used to determine the density of 
states under condition of complete filling of the Landau levels (when the quatum Hall 
effect is observed(18)). However, all methods may be classified into two different 
experiments, the thermally activated m agnetoconductances(6-13) and 
magnetooptics(16). It must be borne in mind that different quantities are studied by 
these two methods. Whereas optical spectroscopy of 2D electrons makes it possible to
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study the entire ท(E) dependence and yields n(Ep), in all other experiments one 
determies only thermodynamic DOS, i. e., the quantity dn/dEp, which is in general not 
equal to n(Ep). At the same time it can be expected that in the case when Ep lands at the 
minimum of n(Ep), the values of ท(Ep) and dn/dEp should be equal (38), so that it is 
more reasonable to compare our numerical result with the magnetooptic experiment.

This magnetooptic experiment was performed by Kukushkin and Timofeev 
(16), they studied ordinary metal-oxide-semiconductor transistors fabricated on the 
(100) surface of p-type silicon with a boron concentration of 8 .3xl014 cm~3. The 
structures have an annular geometry (they are Carbino disks), the thickness of the 
insulator is 1300 Â, and the maximum mobility of the 2D electron is p =3 m2/(V.s) at ท 
= 2 .7xl012 cm'2 and T = 1.6 K. For the study they used an optical cryostat with a 
solenoid (B up to 8 T). The spectral instrument is a double monochromator with a 
dispersion of 10 A/mm in the working region. The emission is observed in the Voigt 
geometry and is detected under photon-counting conditions with a subsequent built up 
of the signal. Furthermore, on their experiments, all the spectroscopic and 
magnetotransport measurements were carried out simultaneously.

We now turn to the quantitative determination of ท(E) from the radiative 
recombination spectra. This method is based on a comparison of the radiation spectrum 
measured in a magnetic field for complete filling of the N Landau levels, on the one 
hand, and the emission spectrum measured at the same electron density ท and B = 0. 
The energy distribution of the radiation intensity 1(E) is determined by the convolution 
of the electron distribution function,

Fe(E) ท(E)f(E), (f(E) = 9(E-Ep) ) (3.49)
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with that of the holes Fh(E), and the width of Fh(E) ร 10 K, which is much less than 
the characteristic electron energies Ep. We have therefore

1(E) = An(E). (3.50)

To determine the constant that relates the intensity with the DOS, we recall that at B = 0
the shape of the 2D line is that of a step function of the energy, a reflection of the 
constancy of the DOS of 2D electrons at n(E) = 2 ^ 2  = n°- "This circumstance enables

us to establish on the intensity scale an absolute value of the DOS, equal to n0, and then 
determine quantitatively the function ท(E), by comparing the radiation spectrum 
obtained in a magnetic field with the spectrum measured at the same 2D-electron 
density but at B = 0. The spectra compared must have equal integrated intensities, since 
the value of ท is the same in both cases.

To calculate the density of states, from (3.35) and (3.36), we write (see 
Appendix C)

ท(E) = ท0(2/rc)Z JdtRe e  2i(v/x-(n+l/2))t+F(t)> (3 .5 1 )ท=0 0
where

f(t) = "2ijT^Lj dy[(x/4i)sint-cost + cosy] ’ (3-52)
with Ç'l = and v = E/Ep. The integration in (3.52) can be performed
analytically. We take t = ttN + 0 (-tc/2< 0 < ท / 2 ) ,  so that (3.52) becomes

ท(E) = n0 £  K(v - x(n+l/2)), (3.53)ท =0
where
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K(■ ง) = (2/jt) JdtRe e  [2ivt/x + f(t) ]J (3 .54)

with
f(t) - 5 ^ = -  [7tN+2tan-l(

(x/4i)sin8- COS0, la - v"a2-l|< 1.

tan(9/2)], (3.55)

and a (3.56)

The time integral is then performed by Gaussian quadrature (42). The computer 
programs will be seen in Appendix D.

Fig, 15a shows the recombination-radiation spectra found for ท=2.7x1 o^cm'^
in the absence (curve 1) of a magnetic field and in the presence (curve 2) of a magnetic
field B = 7T. At B=0, the emission spectra reflect the constancy of the DOS and have a
width equal to the Fermi energy of the 2D electrons with the density ท= 2.7x l0^ cm-2.
In a transverse magnetic field B = 7T and ท = 2.7xl0^cm '2 (■0 _ 16); we clearly see
four equidistant line of spectrum, corresponding to four Landau levels split by the
cyclotron energy M 2 = 4 meV, which corresponds to a cyclotron mass m* = 0.20m.
We see that the spin and valley splittings of the levels are not resolved under these
conditions. To demonstrate the two-dimensional nature of the electron system under
study, they used the method of rotation of the magnetic field. The angle (0) is the%
deviation of the magnetic field from the normal to the 2D layer, with 0 = 60°, and 
B=7T, the filling factor exactly doubles, and eight Landau levels turn out to line under 
the Fermi surface. Fig. 15b (solid line) shows the spectrum of the recombination 
radiation found under these conditions. In this spectrum we can clearly see eight 
Landau levels, whose splitting is half that in Fig. 15a. This is unambiguous proof that 
the DOS of 2D electron is being seen in the recombination spectra.
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From Eq. (3.51), by choosing an appropriate parameter ^L = 6.8 meV^ with L
j  _ #2 .= 97 A corresponding to El = 2m *^2 = ^ meV (using m*:=0.20m as in the experiment

o f Kukushkin and Tim ofeev on the MOS inversion layer), our numerical results o f  the 
DOS are in good agreement with experiments as shown in Fig. 15 (dashed line).The 
numerical result show that the width r  tends to decrease while increasing the Landau 
index N, the density o f states between Landau levels is not exponentially small and is 
an appreciable fraction o f  ท(E) at B = 0. Although our result o f  the DOS between  
Landau L evels seem s to be a little lower than that obtained by experiments from the 
m agnetooptic method, it can be acceptable because the tendency o f  peak-height 
increasing and peak-width decreasing when the Landau index increases, are in good 
agreement.

The points in the upper part o f  Fig. 15a shows the energy positions o f the 
Landau level in magnetic fields of 7, 5.6, and 4 T, at which respectively four, five, and 
seven levels are com pletely filled at ท = 2 .7 x 1 0 ^  cm '2. The extreme points in the 
splitting fan determines the positions o f the Fermi energy Ep and the band bottom Eq.

In summary, we are able to reproduce the density of states observed in a typical 
tw o-dim ensional electron gas, such as shown in Fig. 14 using a sim ple m odel of  
disorder having gaussian variance ^L with finite correlation length L ~ 100 A.
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Fig. 15 a) Curves 1 and 2 show the emission spectra o f  2D electrons found 
for T = 1.6K and B = 0 (spectrum 1) or B = 7T, ftQ, = 4 meV(spectrum  
2). Curve 3 (dashed line) shows numerical result for the DOS using ^L= 
6.8 meV^ with L = 97 Â.The magnitude of the DOS at B = 0, ท0 = 
l . ôx io1 ^cm^meV"1, was found by equating the integrated emission 
intensity in spectra 1 and 2.
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Fig. 15 b) Emission spectrum found at the angle between the magnetic field 
and the normal to the plane of the 2D layer is 60°(fzQ = 2 meV). The 
dashed line shows numerical result for the DOS with = 6.8 meV^ and 
L = 97Â.
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