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## 5571432021: MAJOR COMPUTER ENGINEERING

KEYWORDS: SPATIAL MEMORY SAFETY, BUFFER OVERFLOW, THREAD, CONCURRENCY,

LLVM, COMPILER

SMITH DHUMBUMROONG : BOUNDWARDEN: THREAD-ENFORCED SPATIAL MEMORY

SAFETY THROUGH COMPILE-TIME TRANSFORMATIONS. ADVISOR : Asst. Prof. Dr.

Krerk Piromsopa, 87 pp.

This dissertation presents BoundWarden, a novel runtime spatial memory safety

enforcement technique that comprehensively detects and prevents buffer overflow and

other out-of-bound errors in buffers on stack, heap, and BSS and data segments of mem-

ory. BoundWarden leverages the ubiquity of multi-core processors by offloading most of

the works to a dedicated bound checking thread, which performs bound checking and

manages metadata, thus reducing the runtime overhead. Since BoundWarden stores

base and bound of buffers in a dedicated bound table, the memory layout of programs

remains unchanged, thus preserving compatibility with existing libraries and binaries. Ex-

periments showed that the prototype of BoundWarden is effective at enforcing spatial

memory safety by successfully detected all 850 attacks of RIPE test suite, and 94% (1,092

out of 1,164 tests) of NIST SARD Test Suite 89, while the results from Olden benchmark

showed that on average BoundWarden introduced roughly 2.25x overhead, compared

to the uninstrumented code.
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CHAPTER I

INTRODUCTION
For the past four decades since the idea of an attack based on buffer overflow bugs

was first documented in the 1970s [3] and three decades since the infamous Morris worm
[29], buffer overflow errors still remain one of the major source of security vulnerabilities.
In fact, according to recent data [1] from MITRE Corporation’s Common Vulnerabilities
and Exposures (CVE) database [41], as shown in Figure 1.1, buffer overflow bugs have
been consistently ranked as one of the top three leading cause of vulnerabilities for
the past two decades. Not only that, but the latest data from 2018 showed that buffer
overflow errors finally overtook denial-of-service (DoS) attacks as the second leading
cause of security vulnerabilities. Clearly, these data show that the class of attacks that
exploit buffer overflow errors and other memory corruption bugs is still as relevant and
dangerous today as it has ever been, and likely would remain so in the future for as
long as languages that lack bound checking and allow unrestricted pointer arithmetic/
manipulations, such as C or C++, are in widespread usage.

Various techniques have been proposed over the years to try to prevent or mitigate
exploits based on buffer overflow. However, despite being effective at mitigating or
preventing buffer overflows, very few of these techniques have actually seen widespread
deployment, which is due to the following reasons [40]:

1. The majority of the techniques have high runtime overheads, especially the ma-
jority of pure software-based approaches;

2. Others cause incompatibility issues with existing libraries or binaries; and

3. The rest have significant barriers to adoption: some require users to adopt a new
language or an unofficial extension to a language, while others require new hard-
ware.
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Figure 1.1: Top three types of vulnerabilities according to CVE vulnerability
database over the period of 20 years — from 1999 to 2018 [1].

Clearly, the main challenge is in coming up with a solution that can satisfied the
following three requirements: performance, compatibility, and ease of use. That is, an
ideal solution should be compatible with existing libraries and binaries, while also has
an acceptable overheads and is easy to deploy.

In this paper, we propose BoundWarden, a spatial memory safety enforcement ap-
proach that utilizes a bound checking thread to detect and prevent any buffer overflow
error in a process during runtime.

One of the major design constrained of ours is that we aim to preserve the semantic
of C programming language, as well as maintain compatibility with existing C libraries and
binaries. We achieve this goal by storing base and bound metadata of buffers inside a
dedicated bound table, thus preserving the existing pointer presentation and memory
layout.
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To reduce performance overhead, we exploit the fact that multi-core processors
are now the norm, even among embedded devices, and perform bound checking during
runtime on a dedicated bound checking thread, running on its own CPU core in parallel
to the process’s main thread. We also implemented various optimizations to further
reduce the runtime overhead.

In order to ensure that our proposed solution has the lowest possible adoption
barrier, our approach is purely software-based, requiring no new hardware. We also im-
plement the compiler extension component of BoundWarden prototype of our system
as an LLVM pass, using the standard API, and the runtime component as a static library.
Thus, it is trivial for anyone with access to the Clang/LLCM compiler toolchain [19] to
apply our proposed countermeasure to his or her programs.

1.1 Objectives

The followings are the objectives of our research:

1. To propose a design of BoundWarden, a new, purely software-based runtime
bound checking approach that is capable of preventing buffer overflow attacks;

2. To implement the proposed design of BoundWarden and evaluate its effective-
ness, specifically its performance and protection coverage, against other equiva-
lent bound checking methods.

1.2 Threat Model and Scope

We assume that attackers are trying to exploit memory corruption bugs, such as
buffer overflow or buffer over-read, to either read or write memory. We assume that
the aims of the attackers are to either leak sensitive information or to modify memory
contents to redirect control flow to execute malicious code. This means that we assume
that the attackers will try to induce spatial memory safety violations on the stack, heap,
as well as BSS and data segments.
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We assume that the attackers will try to perform both local and remote attacks,
and that the attackers, if their goal is to hijack control flow, will choose to either inject
code into the application and redirect control flow towards the malicious code or try to
perform attacks based on Return-Oriented Programming technique.

We assume that the attackers are targeting user-space applications, such as web
servers or other services. In addition, we also assume that the underlying OS and the
system libraries are secure, and that the attackers do not have the ability to modify
source code of the applications on the system that they try to attack.

Given the above assumptions, the following are the scope of our work:

1. BoundWarden only works on C source code;

2. BoundWarden only works with Clang/LLVM compiler and toolchain;

3. BoundWarden only prevent buffer overflow attacks that rely on overflowing C’s
arrays, structs, and unions;

4. BoundWarden protects buffers on stack (control data), heap (non-control data), as
well as BSS and data segments;

5. BoundWarden only works with programs in userspace;

6. BoundWarden only support 32-bit and 64-bit computers that are compatible with
the Intel 64/AMD64 instruction set architecture;

7. BoundWarden does not protect against temporal safety violations.

1.3 Contributions

The following are the contributions of our work:

1. A software-based spatial memory safety enforcement approach that utilizes a
thread running on a dedicated CPU core to enforce spatial safety by actively fol-
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lowing the execution of the threads of a program and performing bound checking
on buffers that are being accessed.

2. We showed that the idea of using concurrent threads to detect and prevent buffer
overflows, first proposed in [46], can be extended to cover all buffer in userspace.
Our approach can comprehensively detect and prevents spatial safety violations
in buffers on stack, heap, and BSS and data segments, as well as in buffers that are
allocated inside a structure or a union. Also, in addition to buffer overflows, our
approach can also detect all kind of out-of-bound errors, such as buffer underflow,
buffer over-read, and buffer under-read.

3. We give a very in-depth description of the design and implementation of our sys-
tem and the optimizations that we implemented. We then evaluate the prototype
of our approach using publicly available benchmark and test suites, and describe
the strengths and weaknesses of our design.
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CHAPTER II

BACKGROUND
In this chapter, we begin by first giving a precise definition of buffers and their

bounds in Section 2.1. Next, in Section 2.2, we describe out-of-bound errors and buffer
overflows in terms of the previously defined buffers and bounds, and how they can be
used to craft various kind of exploits. Section 2.3 describes memory safety and how
it relates to the notions of spatial and temporal memory safeties. Section 2.4 briefly
touch on the problems one faced when trying to design the purely software-based
spatial memory safety enforcement technique.

2.1 Buffers and Their Bounds

In this paper, we use the word buffer to refer to either an array, a structure (or
struct), or a union, i.e., a continuous sequence of objects, which are in turn defined as
continuous sequences of one or more bytes, in memory that can be either of the same
or different types [13]. As an example, given the following code snippet:

1 int foo[5] = {1, 2, 3, 4, 5};

Assuming that the above snippet is compiled and ran on a 64-bit machine that is
compatible with the Intel 64/AMD64 instruction set architecture, and that during runtime
the beginning of the array foo is located at memory address 0x7fff6b33cb20, then the
“bounds” of the array foo are located between memory addresses 0x7fff6b33cb20

and 0x7fff6b33cb34 (assuming that the size of the int type on the machine is 4 bytes
and that the compiler didn’t add any additional padding).

2.2 Out-of-Bound Errors

Since the C programming language lacks bound checking, there are two types of
out-of-bound errors that can occur: buffer overflow that occurs when writing operation
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goes out-of-bound, and buffer over-read which occurs when reading operation goes out-
of-bound.

2.2.1 Buffer Overflow

Buffer overflow occurs when either a read or write operation occurs outside the
bounds of a buffer. For example, consider the following code snippet:

1 int bar[7];

2 bar[7] = 42;

In the above example, a buffer overflow occurs because we are trying to assign
a value using an invalid index and thus ended up writing into a memory address which
is outside the bound of the array bar, potentially overwriting other values and causing
errors or undefined behaviors.

The following program shows a more common pattern of buffer overflow vulner-
ability:

1 int main(void) {

2 int alpha = 42;

3 int beta[10];

4 for (int i = 0; i < 11; i++) {

5 beta[i] = i;

6 }

7 printf("The value of alpha is: %d\n", a);

8 return 0;

9 }

Which will produces the following output when executed:

The value of alpha is: 10
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Which is not the result we expected (the value of the alpha variable should be
42).

This error is caused by a bug in the for loop, which causes the loop to go out of
the bound of the array beta during the 11th iteration (when the value of the variable
i is equal to 10), and caused the assignment operator (=) to assign the value 10 to a
memory address that is outside the bound of the array beta (or “overflowing” into
a memory address that is adjacent to the array), thus resulting in the error/undefined
behavior.

We can visualize the sequence of what happen on the stack as follows.

The following figure shows the initial state of the stack when we declare the vari-
ables alpha and beta (lines 2 and 3 from the above code snippet):

42

0

0

0

int a

int b[10]

The next figure shows the state of the stack during the 11th iteration of the for
loop (line 4 and 5 from the code snippet):

int b[10]

int a
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As can be seen from the above figures and code snippets, on the 11th iteration,
the for loop goes outside the bound of the beta array and overwrote the value of the
alpha variable that is located next to the beta array.

2.2.2 Exploiting Buffer Overflow

Traditionally, a classical approach to exploit a buffer overflow error to create an
exploit generally consists of two steps: inject malicious code (e.g., shell code) and utilize
buffer overflow error to modify a function’s return address to point to the injected code
[28]. This approach relies on exploiting the standard layout of a virtual memory address
space of a process on a modern computer system with an MMU, as shown in Figure 2.1.

(Heap)
Dynamic Data

Reserved

Stack

32/64 Bits

St
at

ic
 D

at
a

Data

BSS

Text

Top of Memory

Bottom of Memory

Figure 2.1: Virtual memory address space layout of a process on a modern com-
puter system with an MMU.

As can be seen from Figure 2.1, the virtual address space layout of each process
begins at a certain logical address, e.g., 0, and exists in contiguous memory. At the lowest
segment in the process address space is the text segment, which is a read-only map of
the process’s binary file into memory and contains all the process’s code and other
miscellaneous data such as string literals and the current value of the program counter.

Next is the data and BSS segments, both of which store contents of static and
global variables. The difference is that the BSS segment stores the contents of uninitial-
ized global and static variables, while the data segment stores the contents of global
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and static variables that have been initialized in source code.

The next segment is the heap, which is memory that is dynamically allocated dur-
ing runtime. In C and C++, programmers are required to manually manage the memory
allocated on the heap via API such as malloc and free, while in other languages, such
as Python or Java, the memory on the heap is managed automatically by a garbage
collector.

The topmost segment of the process address space is the stack, which contains
temporary data, such as local (also known as automatic) variables and arguments that
are passed to a function, as well as return addresses. Calling a function pushes a new
stack frame onto the stack. When the function returns, the stack frame of that function
is destroyed.

To better illustrate, consider the following code snippet from a simple program, in
which a main function calls out to the fib function to calculate the Fibonacci number
for n = 40:

1 int fib(int input)

2 {

3 int n = input;

4 if (n < 2) {

5 return n;

6 } else {

7 return (fib(n - 1) + fib(n - 2));

8 }

9 }

10 int main(void)

11 {

12 int fib_input = 40;

13

14 return fib(fib_input);
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15 }

Figure 2.2 shows the state of the stack after the function fib has been invoked by
the function main.

Previous Stack Frame

Bottom of Memory/Top of Stack

argv

ret

argc

sfp
fib_input

input
ret
sfp
n

main()

fib()

Top of Memory/Bottom of Stack

Figure 2.2: The stack frames of the main and fib functions.

As can be seen from the above figure, when a user run the program, the stack
frame of the main function is pushed onto the stack. Then, when the main function
calls out to the fib function, the stack frame of the fib function is the next one that get
pushed onto the stack after the stack frame of the main function. Once the fib function
finishes executing and returns, its stack frame is destroyed in a strict LIFO order as the
control returns to the main function.

Armed with the knowledge of a process virtual address space and how stack frame
works, we are now ready to understand the inner workings of the buffer overflow attack
presented in [28]. Consider the following code, which is the overflow1.c example from
[28] that we have modified slightly:

1 char shell code[] =

2 "\xeb\x1f\x5e\x89\x76\x08\x31\xc0"

3 "\x88\x46\x07\x89\x46\x0c\xb0\x0b"

4 "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c"
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5 "\xcd\x80\x31\xdb\x89\xd8\x40\xcd"

6 "\x80\xe8\xdc\xff\xff\xff/bin/sh";

7 char large_string[128];

8 void main(void)

9 {

10 char buffer[96];

11 int i;

12 long *long_ptr = (long *) large_string;

13 for (i = 0; i < 32; i++)

14 *(long_ptr + i) = (int) buffer;

15 for (i = 0; i < strlen(shellcode); i++)

16 large_string[i] = shellcode[i];

17 /* the following is equivalent to strcpy(buffer,

large_string) */

18 i = 0;

19 while (1) {

20 buffer[i] = large_string[i];

21 if (buffer[i] == '\0') {

22 break;

23 }

24 i++

25 }

26 }

Observe how the two for loops, one in the lines 12 and 13 and another in the
line 14 and 15, are crafting the large_string array into a payload that will be used
later to perform the attack. Specifically, the for loop on the lines 12 and 13 is filling
the array large_string with the addresses of the array buffer, while another for
loop on the lines 14 and 15 is filling the first 2/3 of the large_string array with the
shellcode, leaving the last 1/3 with the addresses of the buffer array that were inserted
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earlier. Then, the large_string array is copied into the buffer array using code that
is equivalent to the strcpy, which lacks bound checking. As Figures 2.3 shows, this will
results in the contents inside the large_string array overflows onto the adjacent
return address on the stack frame of the main function, overwriting it with the address
of the buffer array.

sfp
ret

char buffer[96] Shell Code

&buffer

Stack Frame of the main() Function

After:Before:

Figure 2.3: The stack frame of the main function: before and after the buffer
overflow attack.

Then, once the main function returns, the control will jump to the address of the
buffer array, and execute the shellcode that we inserted earlier to spawn a shell.

As can be seen, by using this technique, an attacker can execute shellcode, or any
arbitrary code with the same privilege as those of the process that has buffer overflow
errors. Also, while the examples of buffer overflow attacks described in [28] require
the following two conditions to be satisfied: (1) injecting malicious code (in this case
shellcode) and (2) redirecting the program control flow to execute that code via buffer
overflow, it is worth pointing out that, as observed by Piromsopa and Enbody [32], the
first condition, injecting code, is not necessary since the attacker can utilize existing code
in the program or shared libraries to perform the attack.

This idea forms the basis of Return-Oriented Programming (ROP) [39], which is a
technique that allows attacker to exploit buffer overflow and other memory errors to
execute arbitrary malicious operations (since it has been shown that the ROP-based
attacks are Turning-complete), without having to inject new code into the address space
of the program by redirecting control flow to existing code in the program’s address
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space.

In addition, the attacks that utilize ROP also render techniques that only protect
against code injection, such as Non-Executable Data [6] ineffective. While probabilistic
defense techniques such as Address Space Layout Randomization (ASLR), which ran-
domize the locations of variables on both stack and heap, can be used to mitigate the
problem, it has been shown that ASLR itself is vulnerable to information leakage attacks
[11].

2.2.3 Buffer Over-Read

Another type of out-of-bound error that is closely related to buffer overflow is
buffer over-read. As it name implies, buffer over-read occurs when a read operation
goes out of the bound of a buffer and reads value of a memory address that is outside
the bound. The following example demonstrates a simple buffer over-read error:

1 int secret = 42;

2 int buffer[5] = {6, 7, 8, 9, 10};

3 int i;

4 for (i = 0; i < 7; i++) {

5 printf("%d\n", buffer[i]);

6 }

Here, the out-of-bound error in the for loop caused the index i to go out of
the bound of the buffer array, causing the print function to erroneously print out the
value of the variable secret that is adjacent to the buffer array.

2.2.4 Exploiting Buffer Over-Read

In general, buffer over-read errors are exploited to leak sensitive data, either by
itself or as a prelude to other attacks. As the example above shown, it is infinitely
easier to exploit buffer over-read, provided that the conditions are right. Making the
matter worse is the fact that most of the modern out-of-bound prevention mechanisms
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in general do not protect against buffer over-read.

2.3 Memory Safety

Memory safety is a state in which all memory access is well defined, i.e., there
are no memory corruption errors that violate either spatial memory safety or temporal
memory safety.

Spatial memory safety means that all memory accesses occur within the bounds
of the object or buffer that is being access. Buffer overflow and buffer over-read errors
are examples of spatial memory safety violations.

Temporal memory safety means ensuring that all pointers point to valid memory
when they are dereferenced. Examples of temporal safety violations include the various
use-after-free vulnerabilities.

Since temporal memory safety lies outside the scope of this dissertation, we will
focus on enforcing spatial memory safety from this point forward.

2.4 Enforcing Spatial Memory Safety

We can prevent spatial memory safety violations, such as buffer overflow and
buffer over-read exploits, by preventing out-of-bound write and read operations from
occurring in the first place. One of the way to accomplish that is by performing bound
checking before all read or write operations in a program. For example, consider the
following trivial program:

1 int main(void) {

2 int i, foo[10];

3 i = 10;

4 foo[i] = 42; /* buffer overflow! */

5 return 0;

6 }
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In order to prevent buffer overflow in the above program, all we need to do is to
insert bound checking code before the assignment operation (=), as the following listing
illustrates:

1 int main(void) {

2 int i, foo[10];

3 i = 10;

4 /* perform bound checking */

5 if (i < 0 || i >= 10) {

6 /* buffer overflow detected, abort! */

7 exit(-1);

8 }

9 foo[i] = 42; /* buffer overflow! */

10 return 0;

11 }

This seemingly simple “solution” to the problem belies the complexity one faced
when trying to design a bound checking technique that is robust enough to be practical.
For example, while performing bound checking before all read and write operations
is the surest way to eliminate out-of-bound errors, the performance overhead could
potentially be prohibitive. The challenge, therefore, lies in how to design a bound
checking technique in such a way as to maximize protection coverage while trying to
minimize runtime overhead and preserve existing semantic as much as possible.

Clearly, this challenge highlights various design decisions that must be made when
designing and implementing a purely software-based spatial memory safety enforcement
mechanism:

• Which type of object should we track and check its bound?

• How and when do we retrieve the base and bound of an object?

• How and where to store the retrieved bases and bounds?
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• How and where to instrument the bound checking code?

In the next chapter, we review related works, with spacial emphasis on the ap-
proaches that aim to enforce spatial memory safety during runtime.
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CHAPTER III

RELATED WORK
In this chapter, we provide an overview of various approaches that have been

proposed to enforce spatial memory safety.

Numerous countermeasure techniques against spatial memory safety violations
have been developed over the years. Since it is impractical to cover all of them, we
focus on the approaches that aim to enforce complete spatial memory safety, which
in general means performing bound checking at every memory access. For a more
comprehensive survey of various memory safety enforcement techniques, we defer the
reader to the following survey papers [32, 40].

3.1 Runtime Spatial Memory Safety Enforcement Approaches

Many techniques enforce spatial memory safety by performing bound checking at
runtime. In recent years, most of these runtime, dynamic approaches also employed
static analysis techniques to help transform and instrument source code in order to
improve detection rate and reduce runtime overhead.

3.1.1 Object-Based Approaches

Many early software-based solutions, such as [43, 18, 45], store the base and bound
of each buffer inside a pointer that points to the said buffer, which almost always involve
changes to how a pointer is represented (into what is called a fat pointer). While this
approach has many benefits, such as low memory and performance overhead, its major
downside is the incompatibility between the code that uses fat pointers that the code
that doesn’t, which is a major concern because in practice it is not possible to recompile
every program and libraries to use the same pointer representation as the instrumented
code.
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This incompatibility problem is the main motivation that gave rise to the approach
that is typically called the object-based approach. In this approach base and bound of
each buffer is stored in a separated data structure, sometimes called a disjointed meta-
data, and the address of a buffer is used to look up its associated bounds information,
which essentially means that we are tracking each buffer directly.

One of the earliest work in the object-based approach is Jones and Kelly [14],
which stores base and bound of buffers in a splay tree, thus preserving memory layout
of a process. Jones and Kelly also proposed a solution to the problem where, in C and
C++, a pointer can go out of bounds of a buffer as long as they are not dereferenced,
which can cause false positives if not handle properly. The solution that Jones and
Kelly came up is to pad each buffer with an extra byte. The overhead of Jones and
Kelly approach was reported to be around 11x and 12x.

CRED [35] improves upon Jones and Kelly’s work [14] by reducing the overhead
to around 2x, but by performing bound checking only on character arrays.

Dhurjati et al. [10] further extend the works of Jones and Kelly [14] and Ruwase
and Lam [35] by proposing to partition buffers into pools during compile time using a
technique called Automatic Pool Allocation [20] and use splay tree to track base and
bound in each pool instead of using one large splay tree for the entire process address
space like in the previous approaches. This technique help reduce overhead down to
around 120%.

One of the notable work in the early object-based approach is the work by Akritidis
et al. [2], which stores allocation bounds instead of precise bounds of each buffer. These
allocation bounds are usually larger than the actual bounds of a buffer, while their size
and alignment are constrained to facilitate efficient bounds lookups, which results in
significant lower overhead during runtime of around 60%.

One recent notable work is Tag-Protector [36]. The key idea of this work is that
since the majority of overhead in both the object-based and pointer-based approaches
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came from the looking up metadata from a table, this work proposed a technique to
completely eliminate this overhead during runtime, by retrieving base and bound of
buffers during compile time and them insert them as tags before and after their re-
spective buffer. Then the bound checking code is inserted, which will lookup base and
bound of each buffer from the buffer’s tags. Thanks to the clever placement of the
tags, this approach also preserve memory layout and compatibility with other libraries,
while greatly reduced runtime overhead. One of the drawback of this approach is that,
in some rare circumstances, the tags might get overwritten or modified. As can be seen,
the local bound checking optimization of BoundWarden is inspired by Tag-Protector.
However, instead of storing base and bound inside the tags, BoundWarden stored them
in the bound table, thus side-stepping the issue of the tags being modified.

Since BoundWarden also associate base and bound to each buffer by the buffer
own address, it can be considered as an object-based approach, but unlike many earlier
object-based approaches, BoundWarden is capable of detecting and preventing out-of-
bound errors in buffers inside structures or unions, thanks to how BoundWarden leverage
how Clang translates C source code into LLVM IR.

3.1.2 Pointer-Based Approaches

However, despite solving the incompatibility issue, the early works in the object-
based approach has its own set of issues, one of which being the fact that since they
associate base and bound to each buffer using the address of the buffer, they cannot
differentiate between a structure and its first element, which makes it impossible to
detect buffer overflows in nested composite types, for example a buffer inside a struct
or a union [22]. In contrast, pointer-based approaches, where base and bound of a buffer
is associate with a pointer that points to the buffer, do not have this restriction.

CCured [25] uses a sophisticated whole-program static analysis technique to iden-
tify pointers that do not require bound checking, thus significantly reduce runtime over-
head. However, CCured introduces incompatibility by using fat pointers to store base
and bound with each pointer.
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In contrast, Deputy [47] avoid having to perform type inference on the whole
program by introducing dependent type that allows programmers to add annotations
that specify relationship between existing data elements, which allows the compiler to
perform bound checking without having to modify process memory layout.

In order to solve this problem, [23, 22] proposes a new scheme, in which the
base and bounds information are again associated with a pointer to a buffer, like the
previous fat pointer approaches. But unlike the fat pointer approaches, [23, 22] stores
the base and bound information of a pointer inside a separated data structured and use
the address of the pointer itself (and not the buffer) to lookup the bound information,
essentially combined the best features of the fat pointer approaches and the object-
based approaches, namely compatibility between instrumented and uninstrumented
code, while also being able to detect overflow in nested composite types.

3.2 Hardware-Based Approaches

One of the major drawback of software-based solution is high performance over-
head. The seemingly obvious solution to this problem is to offload some or all of the
work to hardware (or to use hardware to accelerate bound checking operation). This is
the general idea behind many hardware-based approaches described in this section.

In general, hardware-based approaches, such as [7, 5, 30, 17, 8, 4, 30, 31], have
lower runtime and memory overhead than their software-based counterparts. However,
one of the major disadvantage of the majority of hardware-based approaches is that they
are difficult to deploy, usually require new hardware, new revision of existing hardware,
or even custom hardware. Not to mention that some hardware approaches still suffered
from high runtime and memory overhead, bugs, and design limitations that can only be
fixed by replacing existing hardware with new ones [27]. In contrast, software-based
approaches are more flexible and can be deployed much more easily.

Nevertheless, both approaches complement each other, as in the case of the
infamous Spectre [15] and Meltdown [21] attacks, where the software-based defenses
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were being rolled out globally almost immediately after the attacks became public,
despite the fact that these defenses have considerable runtime overhead, while the
more efficient hardware solutions are being developed.

3.3 Concurrent Monitor Approaches

In recent years, with rise of multi-core processors, a new approach emerged: soft-
ware cruising, a technique that uses concurrent threads to perform bound checking. The
first work that utilizes this technique is Cruiser [46], which uses a monitor thread is used
to monitor the integrity of buffers on heap in userspace. In addition to the idea of using
thread, Cruiser also utilized a novel, custom lock-free data structure and algorithm to
send metadata to the monitor list, which is used by the monitor thread to enforce the
integrity of heap buffers. Another work in this approach is Kruiser [42], which extends
the concept to protecting heap integrity in kernel space.

BoundWarden could also be considered as another work that utilizes software
cruising technique. Indeed, at first glance, the goal and design of BoundWarden very
closely resemble to those of Cruiser. However, the major difference between Bound-
Warden and Cruiser lies in how each approach uses the thread. The monitor thread of
Cruiser works completely independent of the threads of a program, capable of checking
the integrity of any buffers in the program, whether they are the ones that are being
currently accessed or not. This, however, creates a latency problem, where an out-
of-bound error might occurred in one buffer, while the monitor thread was working on
another. In contrast, the bound checking thread of BoundWarden closely follows the
execution of the threads of the program, performing bound checking on buffers that
are being accessed by the running threads. This means that, while BoundWarden also
suffered from the latency problem, the severity is much less than the one that Cruiser’s
encountered. Another different between BoundWarden and Cruiser is that BoundWar-
den protect the integrity of buffers in stack, heap, and BSS and data segments, while
Cruiser only protect the integrity of buffers in heap.

Another technique that exploits the ubiquity of multi-core processors is Multi-
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Variant Environments Execution [37, 38]. The key idea of this approach is that several
slightly different variants of a single program is executed simultaneously, while the MVEE
monitor feeds the variants the same inputs and monitor for any discrepancy. Once the
monitor detects any divergences in behavior, it will halt the execution of the offending
variant. However, this approach is not suitable for multi-threaded programs that utilizing
multiple CPU cores during runtime.
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CHAPTER IV

DESIGN AND IMPLEMENTATION
In this chapter, we describe the design and implementation of BoundWarden. We

start with a high level overview of the design of BoundWarden in Section 4.1, then
describe each component of BoundWarden in detail, with Section 4.2 describes the
compiler extension component, and Section 4.3 contains the in-depth description of
the runtime component.

4.1 Design Overview

BoundWarden consists of two components: a compiler extension and a runtime
component, as seen in Figure 4.1. BounWarden pass, the compiler extension, is respon-
sible for instrumenting the source code and inserting code that initialize the runtime
component, which include spawning the bound checking thread, and code that send
metadata needed to perform bound checking to the bound checking thread. Bound-
Warden runtime, the runtime component is responsible for using the information sent
by the instrumented code to enforce spatial memory safety, as well as managing the
runtime metadata.

4.2 Compiler Extension

The compiler extension of BoundWarden transforms source code of C programs
and insert code that perform the following tasks: retrieve base and bound of each buffer
and send them to the bound checking thread; invoke bound checking thread to perform
bound checking by sending the base of a buffer and an offset to the bound checking
thread; and initialize the runtime component.

We implement BoundWarden compiler extension to the Clang/LLVM compiler [19]
as an LLVM pass, using LLVM C++ API. This means that instead of having to transform C
source code via a source-to-source transformation, a daunting task even with modern

1
8

2
8

3
9

9
1

9
9



 

C
U
 
i
T
h
e
s
i
s
 
5
5
7
1
4
3
2
0
2
1
 
d
i
s
s
e
r
t
a
t
i
o
n
 
/
 
r
e
c
v
:
 
3
0
0
7
2
5
6
2
 
1
4
:
1
7
:
4
6
 
/
 
s
e
q
:
 
1
7

25

Binary

C file

C file

C file BoundWarden Runtime

BoundWarden Pass
...

Clang/LLVM

Figure 4.1: Block diagram showing a high-level design overview of BoundWarden
components: BoundWarden Pass, a compiler extension implemented as an LLVM
pass, and BoundWarden Runtime, which is implemented as a static library and
linked to the binary.

tools due to the sheer complexity of the syntax and semantic of the C programming lan-
guage, we will be performing a transformation on the LLVM Intermediate Representation
(IR) that is created from the original C source code.

BoundWarden follows the objected-based approach practices of using each buffer
own address in the memory, i.e., the address returned by C address-of operator (&), to
associate the buffer with its base and bound and store the metadata inside a separated
data structure. The major advantage of this approach is that no changes to the memory
layout are required, thus preserving compatibility with external libraries and binaries.

Next, we describe the transformations that BoundWarden pass performed to insert
code to capture base and bound of buffers that are allocated on the stack, heap, and
data and BSS segments in Section 4.2.1, 4.2.2, and 4.2.3, respectively. Section 4.2.4
describes how BoundWarden pass inserts code that invoke the runtime component to
perform bound checking as well as manage metadata, while Section 4.2.5 describes the
technique we used to detect out-of-bound errors in composite types. In Section 4.2.6,
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we describe how BoundWarden pass initializes the runtime component.

4.2.1 Retrieving Base and Bound of Buffers on Stack

For buffers that are allocated on the stack region of memory, both its base and
bound can be obtained from the LLVM IR alloca instruction, which is used to allocate
memory on the stack frame of the function currently executing. For example, consider
the following C code snippet:

1 int foo[5];

Which Clang will transform into the following LLVM IR on 64-bit machines:

1 %foo = alloca [5 x i32], align 16

From the above code snippets, we can see that the declaration of the array foo

is transformed into an alloca instruction, with the size of the array and a constant
alignment as the arguments. The alloca instruction returns a pointer to the allocated
memory, which is stored in the %foo local identifier.

In order to record the base address of the array foo at runtime, BoundWarden
pass inserts a call instruction after the alloca instruction that calls out to a C function
named __bw_send with the %foo identifier, which stores the address of the array foo,
and the constant integer value of 20, which is the size in bytes of the array, as the
arguments, as can be seen in the following code snippet:

1 %foo = alloca [5 x i32], align 16

2 call void @__bw_send(i8* %foo, i64 20)

The function __bw_send’s job is to send base and bound of buffers to the run-
time component via the ring buffer. After receiving the base and bound, the runtime
component will store the received metadata in a data structure for later use. The func-
tion __bw_send has the following definition:
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1 void __bw_send(uintptr_t base, uintptr_t offset)

2 {

3 ring_buffer[ring_buffer_head].base = base;

4 ring_buffer[ring_buffer_head].offset = offset;

5 ring_buffer[ring_buffer_head].flag = 0;

6 ring_buffer_head = (ring_buffer_head + 1) % QUEUE_SIZE;

7 }

As can be seen from the definition of __bw_send, the ring buffer is implemented
using an array of structures. We describe the structure of the ring buffer that acts as the
main communication channel between program threads and the runtime component in
detail in Section 4.3.2.

Algorithm 1, shown below, describes the process in which BoundWarden pass
instruments C source code to insert a call to the function __bw_send with appropriate
arguments after each alloca instruction in a program in order to record base and bound
of every buffer on the stack.

Algorithm 1 Retrieving the base and bound of buffers on stack
for all Instruction do

if Instruction has the type AllocaInst then
AI ← Instruction
Base← AI
Bound← AI.getAllocSize()
CallInstArgs← [ __bw_send, Base, Bound ]
AI.insertInstAfter(CallInst, CallInstArgs)

end if
end for

4.2.2 Retrieving Base and Bound of Buffers on Heap

For buffers that are allocated on the heap via malloc or its cousins (e.g., calloc),
we use similar technique to track and record their base and bound, but instead of in-
serting code after each alloca instruction, we instead match all the store instruction,
then check whether its first argument is an identifier that points to a call instruction.
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If it is, then BoundWarden pass will follow the indirection and check whether the call

instruction calls out to the malloc function.

If the call instruction calls the malloc function, BoundWarden pass will insert
code that calls the __bw_send function with the identifier that stores the address
returned by the malloc function call and the argument to the malloc function, which
is the size of the buffer on the heap, as the arguments. This process is described in
Algorithm 2.

Algorithm 2 Retrieving the base and bound of buffers on heap
for all Instruction do

if Instruction has the type StoreInst then
Opd0← Instruction.getOperand(0)
if Opd0 has the type CallInst then

CI ← Opd0
CalledFn← CI.getCalledFunction()
if CalledFn.getName() is “malloc” then

Base← CI
Bound← CI.getArg(0)
CallInstArgs← [ __bw_send, Base, Bound ]
CI.insertInstAfter(CallInst, CallInstArgs)

end if
end if

end if
end for

As an example, consider the following code snippet in C that allocates an array
bar in the heap using the malloc function:

1 double *bar = malloc(sizeof(double) * 7);

Which will be transformed into the following equivalent IR by the compiler:

1 %bar = alloca double*, align 8

2 %8 = call noalias i8* @malloc(i64 56) #3

3 %9 = bitcast i8* %8 to double*

4 store double* %9, double** %bar, align 8
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Following the process described in Algorithm 2, BoundWarden pass will insert a
call to function __bw_send with appropriate arguments after the call to malloc in line
2 to send the base and bound of the bar array to the runtime:

1 %bar = alloca double*, align 8

2 %8 = call noalias i8* @malloc(i64 56) #3

3 call void @__bw_send(i8* %8, i64 56)

4 %9 = bitcast i8* %8 to double*

5 store double* %9, double** %bar, align 8

As can be seen from the above code snippet, a call to the function __bw_send

is inserted after the call to function malloc with the %8 identifier—which contains
the address of the buffer that is being allocated—and the argument to the function
malloc—which is the size of the buffer—as the arguments.

4.2.3 Retrieving Base and Bound of Buffers on BSS and Data Segments

For buffers that are allocated on the BSS and data segments, i.e., global variables
and static variables, we need a different approach to retrieve their base and bound.
Because unlike buffers that are allocated on stack and heap, buffers that are allocated
on the BSS and data segments are stored in an LLVM IR module’s list of global variables,
which can be access via the getGlobalList method of the class Module.

Therefore, we iterate over each variable in the global list, and insert a call to
the __bw_send function with appropriate arguments at the beginning of the program’s
main function to record base and bound of each variable, as described in Algorithm 3.

4.2.4 Invoking Bound Checking Thread to Perform Bound Checking

In order to insert code that invoke the bound checking thread in the runtime
component to perform bound checking into the program’s source code, we leverage
the design of the LLVM IR. Specifically the way address computations when indexing into
aggregate data structures, which in the context of LLVM means either an array, a struct,
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Algorithm 3 Retrieving the base and bound of buffers on BSS and data segments
MFirstBlock ←MainFunction.getF irstBlock()
for all GlobalV ariable in GlobalList do

if GlobalV ariable is not a constant and has initializer then
GV ← GlobalV ariable
GvName← GV.getName()
Base←Module.getNamedV alue(GvName)
Bound← GV.getAllocSize()
CallInstArgs← [ __bw_send, Base, Bound ]
MFirstBlock.insertInstAfter(CallInst, CallInstArgs)

end if
end for

or a union, are performed. That is, in LLVM IR, all address computation are performed
via the GetElementPtr (GEP) operator. Consider the following C code:

1 int baz[10];

2 baz[7] = 42;

Which will be transformed into the following LLVM IR:

1 %baz = alloca [10 x i32], align 16

2 store i32 0, i32* %1, align 4

3 %2 = getelementptr inbounds [10 x i32], [10 x i32]* %baz

, i64 0, i64 7

4 store i32 42, i32* %2, align 4

Notice how the operation that assigns a number 42 to the 8th position in the
baz array using 7 as an index is compiled into two distinct LLVM IR instructions: a GEP

operator that, when given an identifier of the baz array and the index value, calculate the
memory offset needed for indexing into the given buffer; and a store instruction that
actually stores the number 42 into the memory address returned by the GEP operation.
Also, it is worth emphasizing that no memory access occurs when the GEP operator is
performing index calculation.
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Algorithm 4 Performing bound checking before reading or writing buffers
for all Instruction do

if Instruction has the type GEPOperator then
GEPOptr ← Instruction
Base← GEPOptr.getOperand(0)
Bound← GEPOptr
CallInstArgs← [ __bw_check, Base, Bound ]
GEPOptr.insertInstAfter(CallInst, CallInstArgs)

end if
end for

These properties of the GEP operator makes it an ideal candidate for us to insert
code to invoke the runtime component to perform bound checking, which can be done
using a technique similar to the ones we used to insert the code to capture base and
bound of stack and heap buffers.

More specifically, as describes in Algorithm 4, for each and every GEP operator in
an LLVM IR module, we extract the base address of a buffer that is being indexed into
from the first argument of the GEP operator and the associated offset from the identifier
that stores the result of the GEP operator, and insert a call to the function __bw_check,
which invoke the runtime component to perform bound checking, with the base of the
buffer and the offset as the arguments, as shown in the following example in which we
instrumented the earlier C code snipper:

1 %baz = alloca [10 x i32], align 16

2 store i32 0, i32* %1, align 4

3 %2 = getelementptr inbounds [10 x i32], [10 x i32]* %baz

, i64 0, i64 7

4 call void @__bw_check(i8* %baz, i8* %2)

5 store i32 42, i32* %2, align 4

Note how the call instruction that calls out to the C function __bw_check

is inserted after the GEP operator, and that we use the identifier %2 that stores the
memory address computed by the GEP operator as the offset value when performing
bound checking. Also, since the GEP operator is used to calculate memory address
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before both the write operation (LLVM IR store instruction) and the read operation
(LLVM IR load instruction) are performed, all we need to do to ensure that we perform
bound checking before any memory access operations occur is to match and insert a call
to the function __bw_check after all instance of the GEP operator in every translation
unit of a program.

The function __bw_check has the following definition:

1 void __bw_check(uintptr_t base, uintptr_t offset)

2 {

3 ring_buffer[ring_buffer_head].base = base;

4 ring_buffer[ring_buffer_head].offset = offset;

5 ring_buffer[ring_buffer_head].flag = 1;

6 ring_buffer_head = (ring_buffer_head + 1) % QUEUE_SIZE;

7 }

Its job is to send a base address of a buffer and an offset to the runtime compo-
nent to be used to perform bound checking. One of the major difference between the
function __bw_check and function __bw_send is the value of the flag variable. This
variable controls how the runtime component will interpret the data that it received,
with a value of 0 instructs the runtime component to interpret the data inside the struc-
ture as base and bound of a buffer and to store them inside a data structure. On the
other hand, a value of 1 means that the structure contains a base address of a buffer
and an offset for indexing into the buffer, which tells the runtime to perform bound
checking using the base and the offset it received.

4.2.5 Detecting and Preventing Spatial Memory Violations of Buffers Inside Structs
and Unions

It is well-known that one of the drawback of the object-based approaches is that
they cannot protect against out-of-bound errors in buffers that are nested inside either
a structure or a union.
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Consider the following code snippet:

1 struct foo {

2 int a;

3 int b;

4 int c;

5 };

Suppose that the structure foo is located on an address 0x7ffc03715d90 on a
64-bit machine, then it is safe to assume that the variable a, b, and c inside the structure
foo will have the following memory addresses: 0x7ffc03715d90, 0x7ffc03715d94,
and 0x7ffc03715d98, respectively. And here lies the problem: the memory address
of the structure and its first element is the same (in this case 0x7ffc03715d90). This
causes a major problem for most object-based approach, because since object-based
approach associated metadata to a buffer via the memory address of the buffer, this
means that the addresses of the structure and its first element are indistinguishable from
one another and can only be used once, either to map the structure’s bound to the
structure or the first element’s bound to the first element inside the structure. This fact
also holds true for unions as well.

However, it is possible to overcome this problem by leveraging how LLVM trans-
forms the code that involving accessing elements inside either a structure or a union.
Consider the following code snippet:

1 struct foo {

2 int a;

3 int b[7];

4 int c;

5 };

6 struct foo s_foo;

7 s_foo.a = 1;

8 s_foo.b[3] = 42;

1
8

2
8

3
9

9
1

9
9



 

C
U
 
i
T
h
e
s
i
s
 
5
5
7
1
4
3
2
0
2
1
 
d
i
s
s
e
r
t
a
t
i
o
n
 
/
 
r
e
c
v
:
 
3
0
0
7
2
5
6
2
 
1
4
:
1
7
:
4
6
 
/
 
s
e
q
:
 
1
7

34

9 s_foo.c = 3;

Which transforms into the following IR:

1 %s_foo = alloca %struct.foo, align 4

2 store i32 0, i32* %1, align 4

3 %2 = getelementptr inbounds %struct.foo, %struct.foo* %

s_foo, i32 0, i32 0

4 store i32 1, i32* %2, align 4

5 %3 = getelementptr inbounds %struct.foo, %struct.foo* %

s_foo, i32 0, i32 1

6 %4 = getelementptr inbounds [7 x i32], [7 x i32]* %3,

i64 0, i64 3

7 store i32 42, i32* %4, align 4

8 %5 = getelementptr inbounds %struct.foo, %struct.foo* %

s_foo, i32 0, i32 2

9 store i32 3, i32* %5, align 4

Notice how when trying to generate the IR for computing the offset for indexing
into the array b inside the structure foo, Clang/LLVM generates two GEP operators to
perform offset calculation: the first GEP operator calculates the offset into the structure,
while the second GEP operator calculates the offset into the array b.

By leveraging this design decision of LLVM, it is possible to add a support for sub-
object bound checking to BoundWarden. Specifically, we first modify Algorithm 1, 2, and
3 to check whether the type of the buffer being allocated is either a struct or a union.
If it is, then the algorithms will now iterate over each element of a struct or a union
and inserting code that calls a modified version of the function __bw_send in that will
capture and send base and bound of each member of a structure or a union to the
runtime component. Next, we extend Algorithm 4 so that it can differentiate between
a GEP operator that calculate an offset into structures or unions and a GEP operator
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that calculate an offset into buffers inside, so that we can tell BoundWarden pass to
instrument only the GEP operator that calculate an offset into the nested buffers with
a call to the function __bw_check.

4.2.6 Initializing the Runtime Component

BoundWarden pass is also responsible for inserting auxiliary code needed by the
functions __bw_send and __bw_check, and the runtime component, as well as ini-
tializing various parts of the runtime, which consists of a bound table for storing base
and bound of buffers in a program, a ring buffer that acts as a communication channel
between program’s threads and the runtime, and a bound checking thread, which is re-
sponsible for performing bound checking and managing metadata. Specifically, the pass
insert declarations of the functions __bw_send and __bw_check, as well as declara-
tions of variables needed by the instrumented code and the runtime system to function,
such as the bound table and the ring buffer. After BoundWarden pass finished inserting
the declarations into the program’s modules, it will then insert a call instruction at the
beginning of the program’s main function that calls out to the function __bw_init that
initializes the components of BoundWarden’s runtime. The following is the definition of
the function __bw_init:

1 void __bw_init(void)

2 {

3 int status;

4 init_bgdp(&bgdp);

5 if (bgdp == NULL) {

6 /* failed to allocate bound table */

7 abort();

8 }

9 ring_buffer = malloc(sizeof(struct queue_elt) *

QUEUE_SIZE);

10 if (ring_buffer == NULL) {

11 /* failed to allocate ring buffer */

1
8

2
8

3
9

9
1

9
9



 

C
U
 
i
T
h
e
s
i
s
 
5
5
7
1
4
3
2
0
2
1
 
d
i
s
s
e
r
t
a
t
i
o
n
 
/
 
r
e
c
v
:
 
3
0
0
7
2
5
6
2
 
1
4
:
1
7
:
4
6
 
/
 
s
e
q
:
 
1
7

36

12 abort();

13 }

14 status = pthread_create(&bw_tid, NULL, bw_monitor,

NULL);

15 if (status != 0) {

16 /* failed to allocate bound checking thread */

17 abort();

18 }

19 }

Therefore, when we execute the instrumented binary that has been transformed
by BoundWarden pass, the following sequence will happen immediately after the system
calls the main function:

1. The bound table is allocated;

2. The ring buffer is allocated;

3. The bound checking thread is spawn.

Similarly, BoundWarden will also insert a call instruction at the end of the main

function that calls out to the function __bw_cleanup which is responsible for cleaning
up and gracefully wind down the runtime component. The definition of the function
__bw_cleanup is given below:

1 void __bw_cleanup(void)

2 {

3 pthread_cancel(bw_tid);

4 free(ring_buffer);

5 free(bgdp);

6 }
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Thus, when the program finishes executing, the __bw_cleanup will send a can-
cellation request to the bound checking thread, and freeing up all the memory that are
used by the bound table and the ring buffer.

4.3 Runtime

The runtime component of BoundWarden is implemented as a single self-
contained C static library that is linked to the instrumented source code during com-
pilation. This makes it trivial to modify or swap one implementation of the runtime for
another. The runtime component has three parts: the bound table, the ring buffer,
and the bound checking thread. Figure 4.2 shows the architecture of BoundWarden’s
runtime component.

The bound checking thread is responsible for performing bound checking and man-
aging the bound table. It performs actions according to the message it received from
the program’s threads via the ring buffer, such as inserting base and bound of a newly
allocated buffer into the bound table, or using the base of a buffer and the offset to
perform bound checking by comparing the offset with the bound of the buffer that is
stored in the bound table. If the bound checking thread detects an out-of-bound vio-
lation, it will dump debug information and terminate the running process. We describe
the bound checking thread in detail in Section 4.3.3.

The bound table is where metadata of all buffer in a program is stored. It is a
simple key-value table, where the value is the bound of a buffer and the base address
of the buffer itself is used as a key to index into the table. More details on the bound
table can be found in Section 4.3.1.

The ring buffer, explained in-depth in Section 4.3.2, acts as the main communica-
tion channel between the bound checking thread and the program’s threads.
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B
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le

Bound Checking Thread

Ring Buffer

Threads in the Process

Process

BoundWarden Runtime Component

Figure 4.2: The architecture of BoundWarden runtime component, which consists
of three parts: the ring buffer, the bound checking thread, and the bound table.

4.3.1 Bound Table

The bound table is a simple table that maps each buffer to its base and bound via
the address of the buffer. It is used to store base and bound of all buffer in a running
process. The design of our bound table is based on the design of the page table used
by modern 64-bit architectures, such as AMD64 and Intel 64. That is, our bound table is
also hierarchical, where each table contains a pointer that points to the next lower table
in the hierarchy and the (virtual) address/base of each buffer are partitioned/translated
into offsets that are used to index into the table.

We define a table at the lowest level of the hierarchy, called the bound table
entries (bte) table, as an array of uintptr_ts that can be used to store the address
of the bound of a buffer:

1 typedef uintptr_t *bte_t;

The bte table is allocated via the following code snippet:

1 bte_t = calloc(BTE_SIZE, sizeof(uintptr_t));
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The bound table itself is pointed to by a pointer that points to the bdg_t type,
and is allocated and initialized via the init_bgdp function.

Currently, we have three implementations of the bound table, each differentiated
by the number of levels in the hierarchy: 5-Level, 4-Level, and 3-Level.

The 5-Level (5-L) bound table, shown in Figure 4.3a, has five levels (from highest to
lowest): 256-entry Bound Global Directory, 256-entry Bound Upper Directory, 256-entry
Bound Middle Directory, 256-entry Bound Lower Directory, and 65,536-entry Bound Table
Entries.

In this configuration, the base address of a buffer is divided into five fields and are
used to index into the bound table according to the following scheme:

• Bits 63–48 are a signed extension of bit 47, and are discarded.

• Bits 47–40 index into the bound global directory table.

• Bits 39–32 index into the bound upper directory table.

• Bits 31–24 index into the bound middle directory table.

• Bits 23–16 index into the bound lower directory table.

• Bits 15–0 index into the bound table entries table.

The 4-Level (4-L) bound table, shown in Figure 4.3b, has four levels. These are
(from highest to lowest): 512-entry Bound Global, 512-entry Bound Middle Directory,
512-entry Bound Lower Directory, and 2,097,152-entry Bound Table Entries.

Similar to the 5-L bound table, the base address of a buffer is divided into four
fields and are used to index into the bound table based on the following scheme:

• Bits 63–48 are a signed extension of bit 47, and are discarded.
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168888
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Bound Table
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(a) 5-L Bound Table

Bound−Global−
Directory Offset

bgd_t *

Sign Extend
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Directory Offset
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Directory Offset

Bound−Table
Offset

bmd_t *

bld_t *
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bgd bte
21

63 48 47 38 30 29 21 20 0

Bound Table
Pointer to the

Virtual Address
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39

bmd bld

(b) 4-L Bound Table

Bound−Global−
Directory Offset

bgd_t *

Sign Extend

uintptr_t

Bound−Middle−
Directory Offset

bmd_t *

bte_t *

Bound−Table
Offset

bgd bte

63 48 47 38 30 29 0

Bound Table
Pointer to the

Virtual Address

9 9

39

bmd
30

(c) 3-L Bound Table

Figure 4.3: Block diagrams showing the three configurations of the bound table:
5-Level (5-L), 4-Level (4-L), and 3-Level (3-L).

• Bits 47–39 index into the bound global directory table.

• Bits 38–30 index into the bound middle directory table.

• Bits 29–21 index into the bound lower directory table.

• Bits 20–0 index into the bound table entries table.

Figure 4.3c shows the 3-Level (3-L) bound table, which has three levels (from
highest to lowest): 512-entry Bound Global, 512-entry Bound Middle Directory, and
1,073,741,824-entry Bound Table Entries.
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In this setup, the base address of a buffer is divided into three fields, which are
then used to index into the bound table according to the scheme shown below:

• Bits 63–48 are a signed extension of bit 47, and are discarded.

• Bits 47–39 index into the bound global directory table.

• Bits 38–30 index into the bound middle directory table.

• Bits 29–0 index into the bound table entries table.

Each implementation of the bound table is compiled into a static library, which is
later statically linked to other runtime components to produce the static runtime library.
The interface to the bound table is implemented using void pointers to simulate generic
functions in C, therefore switching between each implementation of the bound table is
as simple as recompiling the runtime library with a new bound table library.

4.3.2 Ring Buffer

The ring buffer serves as the main communication channel between running pro-
cess’s threads and the bound checking thread. The ring buffer in our system is imple-
mented as an array of the queue_elt structures, along with two variables that act as
indexes into the array:

1 struct queue_elt *ring_buffer;

2 unsigned long ring_buffer_head = 0;

3 unsigned long ring_buffer_tail = 0;

The ring_buffer_head variable is used as an index into the ring buffer by
the program’s threads, and is incremented only by the functions __bw_send and
__bw_check in order to write and send new data to the bound checking thread. The
ring_buffer_tail variable, on the other hand, is incremented only by the bound
checking thread in order to read data that were sent by the program’s threads. This
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access scheme ensures that the bound checking thread works in tandem with the pro-
gram’s running threads, performing bound checking on buffers that are being accessed,
thus minimizing the “lag” time between when a pointer goes out-of-bound and when
the bound checking thread detects and aborts the offending program. The trade-off of
this approach is that it is possible for the ring buffer to be starved of data, causing the
bound checking thread to become idle when/if the program threads slow down or stall
for whatever reasons.

It is also possible to configure how closely the bound checking thread “follows”
the executions of the program’s threads. That is, we can configure how long the bound
checking thread waits for new data in the ring buffer. This setting also affects the overall
performance of BoundWarden. From preliminary testing, the longer that the bound
checking thread spent waiting for new data, the better the performance, despite the fact
that we pinned the bound checking thread on a separated, dedicated CPU core when
performing the tests. However, the downside of setting the bound checking thread’s
sleeping period too high is that the lag time between the occurrence of spatial memory
safety violations and the time that the bound checking thread detects and aborts them
increase significantly. In the worse case from one of our tests, a buffer overflow bug
caused the entire program to segmentation faulted before the bound checking thread
even had the chance to perform bound checking. This essentially force us to choose
between performance or security.

The default setting we ended up choosing for the rest of this work was to have
the bound checking thread waits as little as possible. That is, we choose to trade perfor-
mance for more security guarantee, in order to ensure that the bound checking thread
is able to detect and prevent spatial safety violations as fast as possible.

The ring buffer is allocated when the main function of a program is called to a pre-
determined size, as shown in the following code snippet from the function __bw_init:

1 ring_buffer = malloc(sizeof(struct queue_elt) *

QUEUE_SIZE);
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The queue_elt structure itself has three elements and is defined as follows:

1 struct queue_elt {

2 uintptr_t base;

3 uintptr_t offset;

4 uint_fast8_t flag;

5 };

The first element of the queue_elt structure is a base address of a buffer, while
the second element can be either a bound (size) of the buffer or an offset for indexing
into the said buffer. The third element of the queue_elt structure is a flag that is
used by the bound checking thread to determine how to interpret the contents of the
queue_elt structure. Its value can be either 0, or 1. We describe how the bound
checking thread will interpret the meaning of this flag in Section 4.3.3.

4.3.3 Bound Checking Thread

The bound checking thread is responsible for managing metadata in the bound
table and performing bound checking. It is implemented using the standard POSIX thread
API. The threads in a running process interact with the bound checking thread through
the ring buffer, either by sending base and bound of a buffer to be inserted into the
bound table or base and offset of an existing buffer to be checked for out-of-bound
error. In essence, the “messages”, i.e., the queue_elt structure, specifically the flag,
in the ring buffer is what control the action and state of the bound checking thread.

The following code snippet shows the main loop of the bound checking thread:

1 struct timespec ts;

2 ts.tv_sec = 0;

3 ts.tv_nsec = 1;

4 while (true) {

5 while (ring_buffer_head == ring_buffer_tail) {

6 nanosleep(&ts, NULL);
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7 }

8 while (ring_buffer_head > ring_buffer_tail) {

9 flag = ring_buffer[ring_buffer_tail].flag;

10 if (flag == 0) {

11 base = ring_buffer[ring_buffer_tail].base;

12 offset = ring_buffer[ring_buffer_tail].offset;

13 bound = base + offset + PADDING_BYTES;

14 btable_update(base, bound, bgdp);

15 }

16 if (flag == 1) {

17 base = ring_buffer[ring_buffer_tail].base;

18 bound = btable_find(base, bgdp);

19 if (bound != 0) {

20 offset = ring_buffer[ring_buffer_tail].offset;

21 if (OOB_CHECK(base, bound, offset)) {

22 abort();

23 }

24 }

25 }

26 ring_buffer_tail = (ring_buffer_tail + 1) % QUEUE_SIZE

;

27 }

28 }

The bound checking thread retrieves a message from the ring buffer by using the
variable ring_buffer_tail to index into the ring buffer. As previously described in
Section 4.3.2, the interaction between ring_buffer_tail and ring_buffer_head

also indirectly controls the bound checking thread, particularly on how often the bound
checking thread is wake up to process messages in the ring buffer. That is, the longer
we allow the bound checking thread to sleep to wait for new messages in the ring
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buffer, the faster the performance will be, and vice versa. On the other hand, setting
the sleeping time too high could potentially introduce lag between the time a spatial
memory violations occur and the time that the bound checking thread find them, in
essence sacrificing security for performance. As previously mentioned, for the rest of
this work, we set choose security over performance and set the sleeping time of the
bound checking thread to be as little as possible.

There are three states that the bound checking thread can be in at any given
moment: The first is a sleeping state, where the bound checking thread sleeps and waits
for new messages in the ring buffer. How long the bound checking thread will remain in
this state is determined by the amount of messages that threads of the program will send
to the ring buffer, as well as how long the bound checking thread sleeps between the
period when there is no new data in the ring buffer. The second is an inserting state, in
which the message that the bound checking thread received via the ring buffer contains
the flag value of 0, which tells the bound checking thread to calculate the bound of
a buffer from the given base and size and insert the base and bound into the bound
table, using the btable_update function. The third state is the bound checking state,
where the value of the flag is 1, indicates that the bound checking thread should use
the given base to lookup the corresponding bound in the bound table, and then use the
base, bound, and offset to perform bound checking by invoking the OOB_CHECK macro,
which has the following definition:

1 #define OOB_CHECK(base, bound, offset) \

2 (offset < base || bound <= offset)

If the test fails, then the bound checking thread immediately halts the program
execution and dump debug information.

After the bound checking thread finishes processing a message in the ring buffer, it
will increment the variable ring_buffer_tail, as shown in the following code snippet:

1 ring_buffer_tail = (ring_buffer_tail + 1) % QUEUE_SIZE;
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Again, note that the bound checking thread does not modify the value of the
ring_buffer_head index, which is used exclusively by the threads in the program.

4.4 Summary

In this chapter, we describe the design and implementation of BoundWarden and
its various components. The key idea of BoundWarden is to leverage the ubiquity of
multi-core processors by offloading the runtime overhead incurred by bound checking
to a dedicated thread. To accomplish this, we split BoundWarden into two components:
the compiler extension and the runtime. The compiler extension, implemented as an
LLVM pass, is responsible for transforming source code and inserting code needed to
invoke the runtime component to perform bound checking, while the runtime com-
ponent, which includes the aforementioned bound checking thread, is responsible to
performing all bound checking during runtime.

To avoid having to modifying memory layout, we use the disjoint metadata tech-
nique [22] and store base and bound of buffers in a separated bound table. We associate
each buffer with its metadata using the buffer’s memory address. This greatly simplified
the transformation needed to perform by the compiler extension. Also, by leveraging
how Clang transforms C source code into LLVM IR, we showed that it is possible to detect
buffer overflows in a buffers inside a structure, which used to be impossible in many
previous object-based approaches.

As can be seen, the majority of the techniques used by the compiler extension
component rely heavily on the semantic and structure of LLVM IR. This means that
currently BoundWarden can only work with Clang/LLVM compiler toolchain. With that
said, there is nothing preventing BoundWarden from working with other LLVM frontends,
provided those frontends generate LLVM IR for accessing and manipulating memory in a
manner that is compatible with BoundWarden pass transformation algorithms.

We try to keep the design and implementation of the runtime component as
simple as possible, mainly to minimize runtime overhead and to maximize portability
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and ease of use.

The first prototype of BoundWarden proved to be effective at enforcing spatial
memory safety. However, the runtime overhead of this first prototype was unacceptably
high: averaging at around 7.5 times slower than the uninstrumented code. In the next
chapter, Chapter 5, we describe the optimization techniques that we implemented to
reduce runtime overhead of BoundWarden.1
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CHAPTER V

OPTIMIZATIONS
Our first prototype of BoundWarden was proven to be effective at detecting and

preventing buffer overflow errors, but it had an unacceptable high runtime overhead:
on average 7.5 times slower than the uninstrumented code. In this chapter, we describe
the three optimizations that we implemented to help mitigate high runtime overhead.
The first optimization that we implemented, inline functions, is explained in Section 5.1.
Section 5.2 describes the local bound check optimization, and the last optimization,
disable checks on local non-composite types, is explained in Section 5.3.

5.1 Inline Functions

The first optimization we implemented was to transform the call instructions that
calls out to the function __bw_send and __bw_check into the equivalent LLVM IR that
performs the same tasks. As can be seen from the function definition of both functions
in Section 4.2.1 and Section 4.2.4, the only difference in the body of both functions is the
value of the flag variable, which is 0 for __bw_send and 1 for __bw_check. This makes
it trivial to create a function insertSentBaseBoundToRingBuffer in BoundWarden
pass that, depending on the arguments passed, generates either the IR that functions
like the __bw_send function or the IR that functions like the __bw_check function.

As an example, consider the following C code:
1 long foo[5];

Which transforms into the following LLVM IR:
1 %foo = alloca [5 x i64], align 16

Normally, BoundWarden pass would insert a call instruction that calls the func-
tion __bw_send after the alloca instruction:
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1 %foo = alloca [5 x i64], align 16

2 %7 = bitcast [5 x i64]* %foo to i8*

3 call void @__bw_send(i8* %7, i64 40)

But with the inline function optimization, BoundWarden pass will call the function
insertSentBaseBoundToRingBuffer with appropriate arguments to generate and
insert LLVM IR that is functionally equivalent to the body of the function __bw_send

after the alloca instruction, as shown in the following code snippet:

1 %foo = alloca [5 x i64], align 16

2 %27 = bitcast [5 x i64]* %foo to i8*

3 %28 = load i64, i64* @ring_buffer_head, align 8

4 %29 = load %struct.queue_elt*, %struct.queue_elt**

@ring_buffer, align 8

5 %bw.gep.ptr15 = getelementptr inbounds %struct.queue_elt

, %struct.queue_elt* %29, i64 %28

6 %bw.gep.ptr16 = getelementptr inbounds %struct.queue_elt

, %struct.queue_elt* %bw.gep.ptr15, i32 0, i32 0

7 store i8* %27, i64* %bw.gep.ptr16, align 8

8 %bw.gep.ptr17 = getelementptr inbounds %struct.queue_elt

, %struct.queue_elt* %bw.gep.ptr15, i32 0, i32 1

9 store i64 40, i64* %bw.gep.ptr17, align 8

10 %bw.gep.ptr18 = getelementptr inbounds %struct.queue_elt

, %struct.queue_elt* %bw.gep.ptr15, i32 0, i32 2

11 store i8 0, i8* %bw.gep.ptr18, align 8

12 %30 = add i64 %28, 1

13 %31 = urem i64 %30, 1000000

14 store i64 %31, i64* @ring_buffer_head, align 8

Obviously, this greatly increase the size of the code, but as we will see later in
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Section 6.2.3 in Chapter 6, in this case the performance gain is well worth the trade-off.

5.2 Local Bound Checking

Another optimization that we implemented is the local bound checking technique.
That is, for some local variables that are allocated on the stack, instead of performing
bound checking by sending the base and offset of these type of variables to the bound
checking thread, BoundWarden pass will insert a call instruction that calls the function
__bw_local_check, which performs bound checking locally in the program’s thread,
and pass the base, bound, and offset to directly to the function.

As an example, consider the following code snippet:

1 int foo[10];

2 foo[7] = 42;

Which will be translated into the following IR:

1 %foo = alloca [10 x i32], align 16

2 ...

3 %4 = getelementptr inbounds [10 x i32], [10 x i32]* %foo

, i64 0, i64 7

4 store i32 42, i32* %4, align 4

With local bound checking, BoundWarden will transform the above snippet into
the following:

1 %foo = alloca [10 x i32], align 16

2 ...

3 %4 = getelementptr inbounds [10 x i32], [10 x i32]* %foo

, i64 0, i64 7

4 %10 = bitcast [10 x i32]* %foo to i8*

5 %11 = bitcast i32* %9 to i8*

6 call void @__bw_local_check(i8* %10, i64 40, i8* %11)
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7 store i32 42, i32* %4, align 4

As can be seen from the above code snippet, we pass the LLVM identifier that
stores the address of the foo array and another one that stores the result of the offset
calculation from the GEP operator directly to the __bw_local_check function. As for
the bound of the foo array, we create a new LLVM integer constant to hold the value
of the bound which is later pass to the function.

It is worth emphasizing that in order to obtain base, bound, and offset of local
variables without having to reply on the runtime component, we had to modify Bound-
Warden pass so that it process each LLVM module in two passes. The first pass involves
scanning through the module and looking for local variables that have suitable charac-
teristics. BoundWarden will extract base and bound of these variables and store them in
a variable called VariableMap, which is a simple associative data structure that maps
local variable name to its base and bound. Note that the base and bound that are
stored in the VariableMap are different from the ones that are stored in the bound
table, as the base and bound in the VariableMap are LLVM identifiers.

Once the first pass is done, the second pass will use the information in the Vari-

ableMap to insert local bound checking to the appropriate local variables. This requires
a modification to Algorithm 4 in Section 4.2.4 to check each local variable to determine
whether a local variable’s name is in the VariableMap. If it is, then the modified
algorithm will insert a call instruction to the function __bw_local_check with cor-
responding arguments from the VariableMap.

At first glance, this optimization should greatly help reduce the runtime overhead
of BoundWarden, since this approach completely bypass the need to first send the
metadata to the ring buffer and having to wait for the bound checking thread to perform
bound checking. In practice, however, the benefit of this optimization depends on the
structure of the program and where the bottleneck or the hotspot is. If most of the
program’s data structures are located on the heap, then this optimization offers little
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benefits. Nevertheless, we enable this optimization for the rest of this paper.

5.3 Disable Checking on Local Non-Composite Types

The last optimization we implemented is a simple check that disable bound check-
ing on local variables that are not composite types, i.e., any type that are not arrays,
structures, or unions. While this optimization is simple enough to implement, care must
be made to properly handle edge cases, especially the case where local variables have
pointers point to them. In order to handle this case, we utilized the two pass approach
(that we previously used to implement local bound checking optimization) to imple-
ment a check in the first pass that determines the type of local variables and disable
bound checking on the ones that are not composite types in the second pass.

5.4 Summary

In this chapter, we describe optimizations that we implemented in the latest ver-
sion of the prototype of BoundWarden to help reduce its runtime overhead. It is worth
pointing out that all three optimizations that we implemented are in BoundWarden pass,
the compiler extension component of BoundWarden, which, according to the results
from the profiler, accounts for the majority of performance bottlenecks.

In the next chapter, Chapter 6, we evaluate effectiveness and efficiency of the
latest version the prototype of BoundWarden, which has been extended with these
three optimizations.
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CHAPTER VI

EVALUATION
In this chapter, we describe the experiments that we performed to evaluate Bound-

Warden effectiveness and efficiency. Section 6.1 describes the experiments that we
conducted to evaluate BoundWarden effectiveness at protecting spatial memory safety,
while the experiment in Section 6.2 measured BoundWarden runtime performance.

6.1 Protection Effectiveness

We use two publicly available test suites to evaluate BoundWarden effectiveness
at preventing spatial memory safety violations: RIPE test suite, and NIST SARD Test Suite
89.

6.1.1 Evaluate Protection Effectiveness using RIPE

Runtime Intrusion Prevention Evaluator (RIPE) test suite [44] is an attack synthesiz-
er/generator that is capable of generating attacks that can be used to evaluate buffer
overflow defense mechanisms. RIPE is a well-known benchmark that has been used to
evaluate many works in the literature. It can generate up to 850 valid attack forms from
the following five attributes:

• Location in memory of the buffer to be overflown, which includes stack, heap,
BSS, and Data segment.

• Target code pointer that RIPE is going to redirect towards the attack code. Avail-
able options are return address, old base pointer, five types of function pointers,
five types of longjump buffers, and four types of vulnerable structures (i.e., struc-
tures that contains buffers and function pointers).

• Overflow technique used, of which two are supported: direct and in-direct over-
flowing techniques.
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Partially Overall
Runtime Successful Successful Failed Effec-
Environment Attacks Attacks Attacks tiveness
Ubuntu 6.06
GCC 4.0 806 (94%) 34 (4%) 10 (2%) 2%
Clang 3.8.1 442 (52%) 6 (1%) 402 (47%) 47%
BoundWarden 0 (0%) 0 (0%) 850 (100%) 100%

Debian 9.9
BoundWarden 0 (0%) 0 (0%) 850 (100%) 100%

Table 6.1: Summary of protection effectiveness of BoundWarden using RIPE.

• Attack code that is the target of the redirection. The following are supported:
shellcode without NOP sled, shellcode with NOP sled, shellcode with polymorphic
NOP sled, return-to-libc, and Return-Oriented-Programming (ROP).

• Function abused that is used to perform buffer overflow. RIPE can perform
buffer overflow using one of the following function: memcpy, strcpy, strncpy,
sprintf, snprintf, strcat, strncat, sscanf, fscanf, and homebrew, a
loop-based equivalent of memcpy.

Note that since RIPE was created and designed to run on 32-bit architecture, we
modified the prototype of BoundWarden and add support for 32-bit architecture. Thanks
to the modular design of BoundWarden, the changes needed to be made are minimum
and mostly involves modifying the bound table to support 32-bit addressees.

As can be seen from the results in Table 6.1, BoundWarden successfully prevented
all 850 attacks that RIPE generated on both Ubuntu 6.06 Desktop Edition, which is the
environment used in original the RIPE paper [44] that has many serious vulnerabilities,
and on a modern, fully updated Debian 9.9 system.

6.1.2 Evaluate Protection Effectiveness using NIST SARD Test Suite 89

Another test suite that we used to evaluate BoundWarden protection coverage is
NIST Software Assurance Reference Dataset (SARD) [24] Test Suite 89 [34], which is based
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on a taxonomy of C buffer overflows developed by Kratkiewicz et al. [16], and contains
291 test cases, each with four variants (i.e., each test case contains three “bad” tests,
those that contain buffer overflow errors, and one “good” test, one which does not
contain buffer overflow errors), for the total of 1,164 tests. As per the suggestions in
[16], we report the results using three metrics:

• Detection Rate, which is defined as the number of the test cases in which Bound-
Warden correctly detects buffer overflows in the bad tests divided by the number
of all test case, as shown in the following equation:

DR =
TCbad

TCall
,

where DR is the detection rate, TCbad is the number of the test cases that Bound-
Warden detects buffer overflows in the bad tests, and TCall is the number of all
test cases.

Detection rate measures the ability of BoundWarden to detect and prevent the
buffer overflows in various circumstances. The higher the detection rate, the better
BoundWarden is at enforcing spatial memory safety.

• False Alarm Rate, which is defined as the number of the test cases that Bound-
Warden incorrectly identifies the good tests as having buffer overflows divided by
the number of all test case:

FR =
TCgood

TCall
,

where FR is the false alarm rate, TCgood is the number of the test cases that
BoundWarden detects buffer overflows in the good tests, and TCall is the number
of all tests that are used.

False alarm rate tell us how likely it is that BoundWarden will (incorrectly) detect
buffer overflows in programs that do not have any buffer overflow error in them.
The lower the false alarm rate, the lower the chance that BoundWarden will make
this mistake.
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Test ID Description
155–157, 159–161, 171–173, Buffer overflows in global and
175–177 static variables1
179–181, 219–221, 223–225, Buffer overflows in nested
227–229, 231–233, 235–237, composite types
239–241, 243–245, 213, 217
291–293, 295–297, 299–301, Buffer overflows when using
303–305, 307–309, 311–313, external or library functions
315–317, 319–321, 839–841, to copy data from one buffer
843–845, 1263–1265, to another
1267–1269, 1271–1273,
1275–1277
163–165 Buffer overflows in shared memory
277 A buffer overflow when performing

pointer arithmetic

Table 6.2: Tests from SARD Test Suite 89 that BoundWarden failed to pass,
grouped into 5 categories.

• Confusion Rate, which is defined as the number of the test cases where Bound-
Warden detects buffer overflows in both the bad and good tests, divided by the
number of test cases that BoundWarden correctly detects buffer overflows in the
bad tests, as shown below:

CR =
TCbad+good

TCbad
,

where CR is the confusion rate, TCbad+good is the number of the test cases that
BoundWarden mistakenly detects buffer overflows in both the good and bad tests,
and TCbad is the number of the test cases where BoundWarden detects buffer
overflows in the bad tests.

Confusion rate indicates how well BoundWarden can distinguish between the bad
and good tests. The lower the confusion rate, the better BoundWarden is at
differentiating between programs that have buffer overflow errors and ones that
don’t.

1Note that BoundWarden passed all 12 tests in this category once we applied the fix described
in Section 6.1.2.1.
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Against the SARD Test Suite 89, BoundWarden initially had the detection rate of
93%, that is, it successfully detected and prevented spatial memory violations in 1,080
tests out of the total 1,164, with 0 false alarm and confusion rates. Table 6.2 lists all the
tests that BoundWarden failed to pass, which we grouped into five categorizes. Next, we
will go over each category and explain the reasons why BoundWarden failed each one
in detail.

6.1.2.1 Out-Of-Bound Errors on Static Arrays

The first category of test cases that BoundWarden failed to pass involve tests that
perform out-of-bound array indexing on static arrays in various locations in the memory.
As described in Section 4.2.3, BoundWarden already supports retrieving base and bound
of global variables, as well as performing bound checking on global variables. Since
static variables, both local and global, are treated by LLVM as more or less equivalent
to global variables, these failures are unexpected at first. However, a closer inspection
at how LLVM generate IR for static variables reveals the source of the problem. Namely,
in the case of static variables, the GEP operations for computing the index into static
variables are “inlined” into the store and load instructions. This means that Algorithm
4 cannot be used to match and insert code to invoke bound checking thread. To solve
this problem, we implement a new algorithm that matches each store instruction and
checks whether its second argument is an inlined GEP operator. If it is, then the new
algorithm will extract the base, bound, and offset of the static arrays, and insert the
same bound checking code used by Algorithm 4 to perform bound checking.

With this modification, BoundWarden successfully pass all 12 tests in this category,
which improves the overall detection rate to 94% — now passing 1,092 tests out of the
total 1,164 with 0 false alarm and confusion rates.

6.1.2.2 Out-Of-Bound Errors in Nested Composite Types

The second category of tests that BoundWarden failed to pass involves buffer
overflows inside nested composite types. These include multidimensional arrays, arrays
inside a structure, arrays inside a union, etc. On closer inspection, it is revealed that the
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majority of tests in this group involves buffer overflows between members of either a
structure or a union, as the following code from test case ID 232 illustrate:

1 typedef struct {

2 char buf[10];

3 int int_field;

4 } my_struct;

5 int main(int argc, char *argv[])

6 {

7 my_struct array_buf[5];

8 /* BAD */

9 array_buf[4].buf[17] = 'A';

10 return 0;

11 }

While it is unfortunate that BoundWarden currently cannot detect this category
of buffer overflow, it has no issue detecting buffer overflows in the related cases where
the index or pointer goes out-of-bound of the outmost composite type.

To better illustrate this, the following is the code from test case ID 209, where
BoundWarden correctly detected and prevented buffer overflow:

1 typedef struct {

2 int int_field;

3 char buf[10];

4 } my_struct;

5 int main(int argc, char *argv[])

6 {

7 my_struct s;

8 s.int_field = 10;

9 /* BAD */

10 s.buf[s.int_field] = 'A';
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11 return 0;

12 }

As can be seen in the above code snippet, the test involves an attempt to access
an element inside the array buf inside the structure s with an invalid index value (10,
in this case). From our experiment, BoundWarden has no problem detecting the out-of-
bound error in this and other tests which have this kind of out-of-bound errors.

6.1.2.3 Out-Of-Bound Errors When Using External Functions to Copy Buffers

The third category of tests that BoundWarden failed is the category that represents
buffer overflows when using various library functions to copy data to a buffer or from
one buffer to another. In this case, BoundWarden failed to properly detect and prevent
buffer overflows because the external functions that are being called to copy data to
and from buffers are not instrumented by BoundWarden compiler extension. In order
for BoundWarden to pass the tests in this group, we can either recompile the standard
library with BoundWarden compiler extension pass or use the LD_PRELOAD technique
to override symbols in the library and redirect them to equivalent functions that has
been instrumented by BoundWarden pass.

6.1.2.4 Out-Of-Bound Errors in Shared Memory

The fourth category of tests simulates buffer overflows in shared memory. We
believe that the reason that BoundWarden failed this set of tests is because the current
implementation of BoundWarden pass did not instrument the functions that allocated
and attach shared memory into a process, namely the shmget and shmat functions.
The solution would be to implement an algorithm to match and instrumented all func-
tions that allocated and attached shared memory.

6.1.2.5 Out-Of-Bound Errors When Performing Complex Pointer Arithmetic

The fifth and final category is a test ID 277 which is a part of the test case 275–
278 that evaluates BoundWarden’s ability to detect buffer overflow when performing
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pointer arithmetic. The full code of the test ID 277 is shown below:

1 int main(int argc, char *argv[])

2 {

3 int i;

4 char buf[10];

5 i = 2;

6 /* BAD */

7 (buf + (4 * i))[2] = 'A';

8 return 0;

9 }

The reason as to why BoundWarden failed to pass this particular test lies in how
LLVM translates the pointer arithmetic expression. Specifically, the line 7 in the above
snippet is translated into the following IR:

1 %4 = getelementptr inbounds [10 x i8], [10 x i8]* %buf,

i32 0, i32 0

2 %5 = load i32, i32* %i, align 4

3 %6 = mul nsw i32 4, %5

4 %7 = sext i32 %6 to i64

5 %8 = getelementptr inbounds i8, i8* %4, i64 %7

6 %9 = getelementptr inbounds i8, i8* %8, i64 2

7 store i8 65, i8* %9, align 1

As can be seen, the pointer arithmetic expression is translated into two GEP op-
erators: one in line 5 which handles the (buf + (4 * i)) part of the expression,
and the other in line 6 handles the array indexing part of the expression (the [2] part).
While BoundWarden pass instrumented both GEP operators, it failed to detect buffer
overflow because the first argument of the GEP operator in line 6 points to an address
in the middle of the array buf, the address of which is not stored in the bound table.
Solving this issue would require extending BoundWarden with the ability to track point-
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Figure 6.1: Performance of the varying sizes of the bound table (the lower the
better).

ers that point to a middle of a buffer, which would turn BoundWarden into a hybrid of
object-based and pointer-based approaches.

6.2 Runtime Performance

All the experiments in this and the following sections were performed on a 2012
Lenovo Thinkpad X230 with Intel Core i5-3210M CPU running at 2.50 GHz, 16 Gbyte of
RAM, and an SSD. The OS is 64-bit Debian 9.9 Stretch. The compiler extension compo-
nent of BoundWarden prototype was implemented as an LLVM pass against LLVM version
3.8.1, and the runtime component was implemented as a static library. All test suites
and benchmark used were compiled using Clang version 3.8.1 with -O3 optimization
level.

We use Olden benchmark [33] to gauge the performance overhead of our bound
checking technique. The reason why we choose to use Olden benchmark is because
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it is a well-known benchmark that is a part of the LLVM test suite and is also used by
many other works, such as SafeDrive’s Deputy [47], CCured [25, 26], SAFECode [10, 9],
SoftBound [22] and Checked C [12].

We begin by performing tests to determine the optimal bound table size in Section
6.2.1, and, in Section 6.2.2, the optimal ring buffer size. We then used these parameters
to run a benchmark that evaluate BoundWarden runtime performance in Section 6.2.3.

6.2.1 Determine the Optimal Bound Table Size

The first test we performed was the evaluation of the performance of the various
implementations of the bound table to determine which one is the fastest. We ran
each benchmark 10 times, and aggregated the results. Figure 6.1 shows the results of
the experiment.

As can be seen from Figure 6.1, while the results are very close, the 3-L bound
table has a slight edge over the other two, although it is also a bit more volatile (as can
be seen with the higher spread of the performance data). Nevertheless, We decided to
use the 3-L bound table in all the subsequent tests.

6.2.2 Determine the Optimal Ring Buffer Size

The next test that we perform is a test to determine the most optimal size of the
ring buffer. As described previously, the size of the ring buffer is fixed and determined at
compile time. We compare the performance of four sizes of the ring buffer: 2.4 Mbyte,
24 Mbyte, 48 Mbyte, and 240 Mbyte. Figure 6.2 shows the results of the experiment, in
which we again ran each benchmark 10 times then aggregated and averaged the results.
While the results are very close, the ring buffer with the size of 24 Mbyte is slightly
faster than others, with runtime performance on average of 5.2 seconds. Therefore, we
decided to set the size of the ring buffer to 24 Mbyte in all the tests in the rest of this
work.
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Figure 6.2: The impact of the size of ring buffer on BoundWarden performance
(the lower the better).

6.2.3 Overall Runtime Performance

The last test we performed was the evaluation of the overall runtime performance
of BoundWarden. We evaluated the performance of two implementations of BoundWar-
den: the first implementation, labeled BoundWarden, lacked all optimizations described
in Chapter 5, and the second implementation, labeled BoundWarden-Optimized, was
an implementation that included all the optimizations described in Chapter 5. For com-
parison, we also used Olden benchmark to measure the performance of SoftBound
+CETS [23, 22]. We cloned SoftBound+CETS from its Git repository, and compiled and
installed according to the instruction. Note that we did not enable SoftBound+CETS’s
LTO support.

The reason we choose to use SoftBound+CETS as a reference is because its archi-
tecture is similar to BoundWarden, though it is worth emphasizing that SoftBound+CETS
enforces both spatial and temporal safeties, while BoundWarden only enforces spatial
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Figure 6.3: Overall runtime overhead of BoundWarden, compared against those
of SoftBound+CETS (the lower the better).

memory safety. Like in the previous tests, we ran each benchmark 10 times, then aver-
aging the results. We then normalized the results using the runtime performance data
of the uninstrumented code as the base case.

When compiling the benchmark, we encountered difficulties when trying to in-
strument the bh application with BoundWarden, due to how the bh application al-
locates and manages structures. In the end, we had to made modifications to both
versions of BoundWarden prototypes to workaround the issue. Testing showed that the
workarounds did not affect BoundWarden’s performance in other benchmarks. Also, we
were unable to use SoftBound+CETS to instrument and compile mst and voronoi appli-
cations, despite disabled vectorization instructions as per the recommendation, which
explains the lack of SoftBound+CETS’s benchmark results from those two applications
in the results. Figure 6.3 shows the results of the experiment.

As can be seen from the results, BoundWarden, especially the version which in-
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cludes all the optimizations, is in general faster than SoftBound+CETS (again, it is worth
repeating that SoftBound+CETS enforces spatial and temporal safeties, while Bound-
Warden only enforces spatial safety, which likely contributed to SoftBound+CETS having
higher runtime overhead). Specifically, on average, the version of BoundWarden without
any optimization is 2.74 times slower than the uninstrumented code, while the version
which includes all optimizations is 2.25 times slower than the uninstmented code. If
we discard the results from the mst and voronoi applications, then the non-optimized
version of BoundWarden is 3.13 times slower than the base case, while the optimized
version is 2.5 times slower. In comparison, SoftBound+CETS, on average (again only con-
sidering the first eight applications from the benchmark), is 5.1 times slower than the
base case.

6.3 Summary

In this chapter, we evaluate effectiveness and efficiency of BoundWarden proto-
type. As can be seen from the results, BoundWarden offers comprehensive protection
against spatial memory violations. The current prototype of BoundWarden is capable of
detecting and preventing buffer overflows in all 850 attacks that RIPE test suite generated
and 94% (or 1,092 out of the total 1,164 tests) from the SARD Test Suite 89. We used the
Olden benchmark to experimentally determine the optimum size of the bound table
and the ring buffer, as well as to determine the overall runtime overhead of Bound-
Warden, compared to SoftBound+CETS. The results showed that the latest prototype
of BoundWarden is, on average, 2.25 times slower than the uninstrumented code and is
around 2 times faster than SoftBound+CETS.

Interesting enough, one of the main contribution that made both versions of
BoundWarden faster than SoftBound+CETS was not all the optimizations that we imple-
mented (though they certainly contributed), but the technique that we used to detect
and prevent buffer overflows in structures and unions that we described in Section 4.2.5.
Recall that LLVM translates C code that access a buffer inside a structure or a union into
two GEP operators; one that calculates the offset into structures or unions, while the
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other calculates the offset into buffers. Being able to differentiate between these two
kinds of GEP operations help us cut down on the amount of GEP operators that must be
instrumented significantly, which means less work needed to be done in general, which
translates directly into faster runtime performance.

Also, from the profiling results, we discovered that the major source of the over-
heads in BoundWarden prototype came not from the runtime component, but from the
code that were inserted into the C source code by the compiler extension component.
This fact helps to back up the explanation of the beneficial effect of the algorithm that
we used to insert bound checking code for buffers in composite types. It also helps
direct our future research efforts, as it is clear that in order to improve the performance
of BoundWarden, we need to improve the static analysis capability of its compiler ex-
tension component.
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CHAPTER VII

CONCLUSION
In this dissertation, we proposed BoundWarden, a compiler and runtime system

that preserves spatial memory safety for C programming language. By storing base and
bound of buffers in a dedicated bound table, BoundWarden can comprehensively detect
and prevent spatial memory safety violations in buffers on stack, heap, as well as data
and BSS segments, without having to make any modification to the C source code. This
helps preserve compatibility with existing libraries and binaries. The results from RIPE
and SARD test suites showed that BoundWarden successfully detected and prevented
buffer overflow and other out-of-bound errors in both test suites, with a detection rate
of 100% and 94%, respectively, along with 0% false alarm and confusion rates. In or-
der to reduce runtime overhead, BoundWarden offloads the majority of the works to a
dedicated bound checking thread, which performs bound checking as well as managing
metadata. The results from Olden benchmark showed that the prototype implementa-
tion of BoundWarden, with all optimizations enabled, is on average 2.25 times slower
when compared to the uninstrumented code, which according to the profiling results
most of the overheads came from the code that BoundWarden inserts into source code
of a program.

In the future, we plan to improve the static analysis capability of BoundWarden,
which in its current state is quite primitive, in order to improve performance by reducing
the amount of code that are needed to be inserted into source code. We also plan to
extend BoundWarden with the ability to detect and prevent temporal safety.
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Appendix I

FAILED TESTS FROM SARD TEST SUITE 89
The following table, Table A.1, contains the full list of all 84 tests from NIST’s

SARD Test Suite 89, along with their description, that the first version of the prototype
of BoundWarden failed to pass. As we have previously described in Chapter 6, we
successfully reduced the total number of failed test cases from 84 to 72 after we applied
the fix described in Section 6.1.2.1.

Test ID Description

155-1571 Buffer overflows in a local initialized static char array
159-1611 Buffer overflows in a local uninitialized static char array
163-165 Buffer overflows in a shared memory that has been casted into

a char array
171-1731 Buffer overflows in a global uninitialized static char array
175-1771 Buffer overflows in an initialized global static char array
179-181 Buffer overflows in a 2 dimensions array
213 Buffer overflow in a char array that is the first element inside

a union
217 Buffer overflow in a char array that is the last element inside

a union
219-221 Buffer overflows in a char array inside a struct inside an array

of structs
223-225 Buffer overflows in the first char array inside a struct inside an

array of structs
227-229 Buffer overflows in the second char array inside a struct inside

an array of structs
231-233 Buffer overflows in a char array that is the first element inside

1 Note that BoundWarden passed these 12 tests once we applied the fix described in Section
6.1.2.1.
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a struct that has 2 elements inside an array of structs
235-237 Buffer overflows in a char array that is the second element inside

a struct that has 2 elements inside an array of structs
239-241 Buffer overflows in a char array that is the first element inside

a union that has 2 elements inside an array of unions
243-245 Buffer overflows in a char array that is the second element inside

a union that has 2 elements inside an array of unions
277 Buffer overflow when performing pointer arithmetic using the array

name as one of the argument
291-293 Buffer overflows when using strcpy function to copy a string

literal that is larger than the size of the buffer
295-297 Buffer overflows when using strcpy function to copy a local

string variable that is larger than the size of the buffer
299-301 Buffer overflows when using strncp function to copy a local

string variable that is larger then the size of the buffer
303-305 Buffer overflows when using strncp function to copy a local

string variable that is larger then the size of the buffer, where
the length of the string is stored in a variable

307-309 Buffer overflows when using strncp function to copy a local
string variable that is larger then the size of the buffer, where
the length of the string is computed inline using the addition and
multiplication operations

311-313 Buffer overflows when using strncp function to copy a local
string variable that is larger then the size of the buffer, where
the length of the string is computed inline using the modular
operations

315-317 Buffer overflows when using strncp function to copy a local
string variable that is larger then the size of the buffer, where
the length of the string is obtained from a function call

319-321 Buffer overflows when using strncp function to copy a local
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string variable that is larger then the size of the buffer, where
the length of the string is obtained from a local int array

839-841 Buffer overflows when reading contents of a file into a buffer
843-845 Buffer overflows when using getcwd function to store current working

directory into a buffer
1263-1265 Buffer overflows when using memcpy function to copy a local

string variable that is larger than the sieze of the buffer
1267-1269 Buffer overflows when using memcpy function to copy a local

string variable that is larger than the sieze of the buffer, where
the size of the buffer is stored in a local variable

1271-1273 Buffer overflows when using memcpy function to copy a local
string variable that is larger than the sieze of the buffer, where
the size of the buffer is stored in a local variable and compared
against a variable that contains the actual size of the buffer before
being used

1275-1277 Buffer overflows when using memcpy function to copy a local
string variable that is larger than the sieze of the buffer, where
the size of the buffer is stored in a local variable and compared
against the actual size of the buffer before being used

Table A.1: The 84 tests from SARD Test Suite 89 that the early prototype of
BoundWarden failed to detect and prevent buffer overflow errors.
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