
การออกแบบและการทำให้เกิดผลของโครงข่ายเมชไร้สายกลางแจ้งพิสัยปานกลางด้วย
โอเพนโฟลวในราสเบอร์รีพาย

นายโซ ยีเต็ด

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต
สาขาวิชาวิศวกรรมไฟฟ้า ภาควิชาวิศวกรรมไฟฟ้า
คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

sปีการศึกษา 2561
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัยบทคดัยอ่และแฟ้มข้อมลูฉบบัเตม็ของวิทยานิพนธ์ตัง้แตปี่การศกึษา 2554 ท่ีให้บริการในคลงัปัญญาจฬุาฯ (CUIR)

เป็นแฟ้มข้อมลูของนิสติเจ้าของวิทยานิพนธ์ท่ีสง่ผา่นทางบณัฑิตวิทยาลยั

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

DESIGN AND IMPLEMENTATION OF MEDIUM-RANGE OUTDOOR

WIRELESS MESH NETWORK WITH OPENFLOW IN RASPBERRY PI

Mr. Soe Ye Htet

A Thesis Submitted in Partial Ful�llment of the Requirements

for the Degree of Master of Engineering Program in Electrical Engineering

Department of Electrical Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2018

Copyright of Chulalongkorn University

Thesis Title DESIGN AND IMPLEMENTATION OF MEDIUM-RANGE
OUTDOOR WIRELESS MESH NETWORK
WITH OPENFLOW IN RASPBERRY PI

By Mr. Soe Ye Htet
Field of Study Electrical Engineering
Thesis Advisor Associate Professor Chaodit Aswakul, Ph.D

Accepted by the Faculty of Engineering, Chulalongkorn University in
Partial Fulfillment of the Requirements for the Master’s Degree

. .Dean of the Faculty of Engineering
(Associate Professor Supot Teachavorasinkun, D.Eng.)

THESIS COMMITTEE

. Chairman
(Assistant Professor Chaiyachet Saivichit, Ph.D)

. Thesis Advisor
(Associate Professor Chaodit Aswakul, Ph.D)

. Examiner
(Associate Professor Kultida Rojviboonchai, Ph.D)

. External Examiner
(Associate Professor Sinchai Kamolphiwong, Ph.D)

iv

โซ ยีเต็ด : การออกแบบและการทำให้เกิดผลของโครงข่ายเมชไร้สายกลางแจ้งพิ-
สัยปานกลางด้วยโอเพนโฟลวในราสเบอร์รีพาย (Design and Implementation of
Medium-Range Outdoor Wireless Mesh Network with OpenFlow in Raspberry
Pi) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ดร.เชาวน์ดิศ อัศวกุล, 124 หน้า.

วิทยานิพนธ์ฉบับนี้ได้นําเสนอการออกแบบ และพัฒนาระบบทดสอบโครงข่ายไร้สายแบบเมชที่กําหนด
โดยซอฟต์แวร์ (SDWMN) ด้วยวิธีการควบคุมอินแบน (in-band) มาใช้กับระบบเฝ้าติดตามการจราจรบนถนน
พญาไทในช่วงจากถนนพระราม 1 และถนนพระราม 4 โนดเมชไร้สายสําหรับระบบทดสอบ SDWMN แบบ
กลางแจ้งนี้ประกอบด้วยกล่องแบบกันน้ํา 6 กล่อง, บอร์ดราสเบอร์รีพาย 6 ตัว,กล้อง 6 ตัว,แบตเตอรีสํารอง
6 ก้อน และคอมพิวเตอร์ Intel NUC 2 เครื่อง โดยใช้มาตรฐานอินเทอร์เน็ตไร้สายแอดฮอก IEEE
802.11 เพื่อส่งภาพที่ถ่ายจากราสเบอร์รีพายเกตเวย์ 2ตัวถูกติดตั้งที่ป้อมตำรวจจราจรและโนดโครงข่ายไร้สาย
แบบเมช 2 ตัวถูกติดตั้งไว้ที่สะพานลอยข้ามถนนพญาไทแต่ละแห่งโดยมีระยะทางระหว่างเกตเวย์ทั้งสองตัว
เท่ากับ 1100 เมตรและมีระยะทางเฉลี่ยระหว่างสะพานลอยที่อยู่ติดกันเท่ากับ 250 ถึง 350 เมตร
สาระสําคัญของวิทยานิพนธ์ฉบับนี้สรุปไว้ดังต่อไปนี้

ส่วนแรกคือ การออกแบบและพัฒนาส่วนประกอบทั้งหมดเพื่อเตรียมพร้อมสําหรับการติดตั้ง SDWMN
จริง โดยส่วนของซอฟต์แวร์นั้นรวมถึงการติดตั้งสวิทช์เสมือน OpenVswitch, ตัวควบคุม RYU, ไดรเวอร์
สําหรับอินเทอร์เน็ตไร้สายภายนอกในโนดโครงข่ายไร้สายแบบเมช และการจัดเส้นทางสําหรับ SDWMN ภาย
นอก การติดตั้งใช้เคอร์เนลลินุกซ์เวอร์ชัน 4.4 ร่วมกับไดรเวอร์สําหรับสายอากาศที่ใช้ในวิทยานิพนธ์นี้ ในส่วน
ของฮาร์ดแวร์กล่องกันน้ําถูกออกแบบมาสําหรับติดตั้งบนสะพานลอยบนถนนพญาไท

เส้นทางหลักและเส้นทางรองถูกสร้างขึ้นโดยกฎการส่งต่อ ที่กําหนดไว้ล่วงหน้าบนเส้นทางที่จำนวนฮอพ
ต่ำท่ีสุด เส้นทางหลักจะถูกติดตั้งตามกฎต่าง ๆ ในขั้นตอนการเริ่มเปิดใช้งานโนดไร้สายทั้งหมด และเมื่อโนด
เมชไร้สายบ่างโนดหยุดทํางาน เส้นทางรองจะถูกสร้างขึ้นตามกฎการส่งต่อสํารองที่กําหนดไว้ล่วงหน้าด้วยการ
ใช้ข้อความมาตรฐานในการร้องขอให้ กําหนดค่าของโอเพนโฟลว

จากการวัดสถรรถนะโครงข่ายพบว่ามีทราฟฟิกควบคุมโอเพนโฟลวประมาณ 12 กิโลบิตต่อวินาทีเมื่อโนด
เมชไร้สายทุกตัวเชื่อมต่ออยู่กับตัวควบคุม RYU และประมาณ 20 กิโลบิตต่อวินาทีเมื่อโนดเมชไร้สายตัว
หนึ่งถูกตัดการเชื่อมต่อจากตัวควบคุม RYU

กรณีศึกษาที่มีโนดเมชไร้สายหยุดทำงานได้ถูกจำลองขึ้นโดยการรีบูตโนดเมชไร้สายด้วยผู้ทดลองเอง จาก
ผลลัพธ์ที่ได้นั้นเวลาที่มากที่สุดที่ต้องใช้เพื่อกําหนดเส้นทางใหม่เป็น 46 วินาที สำหรับระนาบควบคุม และ 30
วินาที สําหรับระนาบข้อมูล ค่าระยะเวลาในการฟื้นฟูเส้นทางสำหรับความล้มเหลวในแต่ละกรณี จะขึ้นอยู่กับ
ตําแหน่งทางกายภาพจริงที่ใช้ติดตั้ง SDWMN ภายนอก และขึ้นกับว่าโนดใดหยุดทำงาน

สุดท้ายวิทยานิพนธ์นี้ได้ทดสอบการรวมแอพพลิเคชัน และการเฝ้าติดตามการจราจรบนถนนกับโครงข่าย
SDWMN นี้ โดยได้ให้บริการแก่ตํารวจจราจรเป็นจำนวน 16 ชั่วโมงในวันที่ 26 พฤศจิกายน พ.ศ.
2561 และได้มีการตรวจสอบสถานะของระนาบควบคุมในระหว่างการใช้งานจริงของระบบ ในการทดสอบใน
ช่วงฤดูหนาวของประเทศไทยและพบว่าที่อุณหภูมิของโนดเมชไร้สายต่ำกว่าอุณหภูมิสูงสุดที่สามารถใช้งานได้คือ
85 องศาเซลเซียส เป็นผลให้งานในอนาคตคือการทดสอบใน ฤดูร้อนซึ่งอาจจะนำไปสู่การทดสอบ
ความไม่เสถียรของโนดที่ขึ้นกับอุณหภูมิที่สูงขึ้นและส่งผลต่อการศึกษาความน่าเชื่อถือของระบบ SDWMN
โดยระบบทดสอบโครงข่ายที่ได้พัฒนาขึ้นนี้จะเป็นพื้นฐานสําหรับการตรวจสอบการใช้งานต่าง ๆ ในอนาคตของ
SDWMN ขนาดใหญ่ในโครงข่ายการเฝ้าระวังการจราจรบนถนนต่อไป

ภาควิชาวิศวกรรมไฟฟ้า ลายมือชื่อนิสิต .
สาขาวิชาวิศวกรรมไฟฟ้า ลายมือชื่อ อ.ที่ปรึกษาหลัก .
บีการศึกษา2561

v

5970475121 : MAJOR ELECTRICAL ENGINEERING
KEYWORDS: OPENFLOW/ SOFTWARE-DEFINED NETWORKING/ RASPBERRY PI/
WIRELESS MESH NETWORK.

SOE YE HTET : DESIGN AND IMPLEMENTATION OF MEDIUM-RANGE
OUTDOOR WIRELESS MESH NETWORK WITH OPENFLOW IN RASPBERRY PI.
ADVISOR: ASSOC. PROF. CHAODIT ASWAKUL, Ph.D, 124 pp.

This thesis has designed and implemented the prototype of software-defined wireless
mesh network (SDWMN) testbed with in-band control approach for road traffic monitoring
system on Phaya Thai road between Rama 1 and Rama 4 roads. Wireless mesh nodes for
this outdoor SDWMN testbed are composed of 6 waterproof boxes, 6 Raspberry Pi’s, 6
cameras, and 6 power banks and 2 Intel NUC computers. Ad-hoc based IEEE 802.11 WiFi
standard is used to send the captured image from Raspberry. Two gateways are installed at
the traffic police boxes and two wireless mesh nodes are installed at each crossover bridge
on Phaya Thai road. The total distance between two gateways is 1100 meters. On Phaya
Thai road, the average distance between adjacent crossover bridges is 250-350 meters. In
summary, the main contributions of this thesis are as follows.

Firstly, we have designed and developed all components in preparation for the actual
installation SDWMN testbed. The software parts include the installation of OpenVswitch,
RYU, driver for external WiFi adapter in all wireless nodes and routing for outdoor
SDWMN. Linux kernel version 4.4 has been used with the driver for applied antenna in
this thesis. A waterproof box is designed for installation on the crossover bridges on
Phaya Thai road.

The primary route and the alternative route are built by predefined forwarding rules
based on minimum hop path. The primary route is installed by predefined forwarding
rules at bootstrapping stage in all wireless nodes and the alternative route is established by
predefined backup forwarding rules from RYU controller when one of the wireless mesh
nodes is failed with the usage of standard OpenFlow configuration request message.

Based on our measurement of network performance, OpenFlow control traffic requires
around 12 kbit/sec when all wireless mesh node are connected to RYU controller and
requires at least 20 kbit/sec when one of the wireless mesh nodes is disconnected from
RYU controller.

The failure of wireless mesh node is investigated by manually rebooting the wireless
mesh node. From our results, the required largest time to reroute for is 46 seconds and for
data plane is 30 seconds. The actual restoration time for individual failure cases depends
on the actual physical location where outdoor SDWMN is installed and the nodes that fail

Finally, we have integrated the intended traffic monitoring application and SDWMN
network. We have provided to traffic police for usages of traffic monitoring system for
16 hours on 26th November 2018 and the status of control plane during this practical
operation of a traffic monitoring system is investigated. During network operation with traffic
monitoring application in winter season of Thailand, the temperature of wireless mesh node
is lower than the maximum operable temperature which is 85-degree Celsius. Testing in the
warmer seasons is left as a future work together with the testing of resultant temperature-
dependent node inoperability and SDWMN reliability. The current network testbed will be
a baseline for those future implementation verification of large-scale SDWMN of road traffic
monitoring network.

Department : .Electrical Engineering Student’s Signature
Field of Study :Electrical Engineering Advisor’s Signature
Academic Year :2018

vi

Acknowledgements

First of all, I wholeheartedly appreciate my advisor, Assoc. Prof. Dr. Chaodit Aswakul, for
giving me chance to have the positive learning environment as his advisee and for his valuable
guidance during my days at the Chulalongkorn University. At the beginning of my journey at
Chulalongkorn University, I was not familiar with the networking and programming scenario.
However, my advisor is always patient on me in teaching about software-defined networking
and programming from the basic to advance level. Without his caring on my work, the day that
I have to successfully say goodbye to the Chulalongkorn University will never reach to my life.
I would like to express my gratitude to Asian Scholarship Program which provides the financial
support for studying Master Engineering Degree in the Chulalongkorn University and I would
like to thank the financial support for equipment preparation costs from the Wireless Network
and Future Internet Research Unit of Chulalongkorn University.

The weekly group NRG-ASEEAWAYY meeting helps me to improve the skill of presentation
and the suggestions during the presentation from my advisor and the group members from
Wireless Network and Future Internet Research Unit improve my logical thinking in research.
Those suggestions are really valuable not only for this research work, but also for my life. I
will always keep every single suggestion in my mind.

I do appreciate the committee members for my thesis examination for your valuable points.

My journey at Chulalongkorn University is not easy. However, the motivation which is given
by my advisor guides me to finish my journey of Master Engineering Degree at Chulalongkorn
University. Moreover, I would like to thanks my parents, my girlfriend and my friends for their
encouragement in my study life at Chulalongkorn University.

Contents

Page
Thai Abstract . iv
English Abstract . v
Acknowledgements . vi
Contents . vii

List of Tables . viii

List of Figures . x

1 Introduction . 1

1.1 Research Motivation . 1

1.2 Problem Statement . 2

1.3 Objective . 3

1.4 Scope of Thesis . 3

2 Background and Literature Review . 4

2.1 Wireless Mesh Network . 4

2.2 SDN . 5

2.3 OpenFlow . 8

2.4 WiFi Frequency Band Selection . 10

2.5 Type of Antenna . 12

2.6 Summary of Existing WMN Testbeds in Literature and Proposed SDWMN . 13

3 Proof-of-concept Investigation of OpenFlow Based 2-hop Routing Scenario in Small-

scale Preliminary Outdoor SDWMN Testbed on Phaya Thai Road [44] 17

3.1 Design of Preliminary Small-scale Outdoor SDWMN Testbed 17

3.2 Implementation of OpenFlow Based 2-hop Simplified Routing 19

3.3 Measurement Result of Preliminary SDWMN Testbed’s Performance 27

4 Proposed Fault-Tolerant Multi-hop Routed SDWMN with Node Failure 29

4.1 Installation Preparation on Phaya Thai Road 30

4.2 Implementation of Multi-hop Routing . 31

4.3 Implementation of Restoration Mechanisms Upon Failure Scenario of Wireless

Mesh Node . 35

4.4 Monitoring Program for CPU Temperature of Wireless Mesh Node 42

5 Experiment of Final Outdoor SDWMN Testbed inside Campus 44

5.1 Setting of One-Hop Reachability Test inside Campus 44

5.2 Measurement Result of One-Hop Reachability 46

6 Experiment of Final Outdoor SDWMN Testbed on Phaya Thai Road 49

6.1 Setting Up of Actual Testbed Component Installation 49

6.2 Measurement Result of Network Performance for Data Plane Traffic 51

6.3 Practical Deployment Trial for Integrated SDWMN and Traffic Monitoring

Application on Phaya Thai Road . 64

viii

6.4 Temperature Measurement of Wireless Mesh Node During Outdoor Network

Operation . 67

6.5 Measurement Result of Rerouting Performance 70

6.5.1 Case of Raspi 1’s Failure . 70

6.5.2 Case of Raspi 2’s Failure . 77

6.5.3 Case of Raspi 3’s Failure . 78

6.5.4 Case of Raspi 4’s Failure . 79

6.5.5 Case of Raspi 5’s failure . 82

6.5.6 Case of Raspi 6’s failure . 82

6.5.7 Summary of Rerouting Performance . 84

7 Conclusion . 86

References . 88

Appendices . 92

Appendix A Network Configuration of

Software-Defined Wireless Mesh Network (SDWMN) 93

Appendix B Installing Necessary Package

To Develop SDWMN . 96

Appendix C Python Program for Monitoring Temperature of Wireless Mesh Node . 97

Appendix D Developing Predefined Forwarding Rules For Primary Route in Open-

Vswitch of Wireless Nodes . 98

Appendix E Developing Rerouting RYU Program . 108

Appendix F Setting Network Parameters In All Wireless Nodes 123

Biography . 124

List of Tables

Page

2.1 Main components of flow entry in a flow table [17]. 8

2.2 Names of action fields of OpenFlow and their function [17]. 9

2.3 Wireless standards of IEEE 802.11. 11

2.4 Allowed WiFi transmission power in Thailand. 12

2.5 Summary of reviewed WMN testbeds and proposed SDWMN. 16

3.1 Average TCP throughput in preliminary outdoor SDWMN testbed

(Mbit/sec). 27

3.2 Average RTT in preliminary outdoor SDWMN testbed (ms). 28

4.1 Software tools for implementing proposed outdoor SDWMN testbed. 30

4.2 Routing information for control plane of proposed outdoor SDWMN

testbed. 33

4.3 Routing information for data plane of proposed outdoor SDWMN

testbed. 35

4.4 Rerouting information with failure of wireless mesh node for control

plane. 41

4.5 Rerouting information with failure of wireless mesh node for data plane. 41

6.1 Status of network during 16 hours of practical deployment operation. 65

6.2 MAC and IP addresses of wireless mesh nodes and gateways. 70

6.3 Rerouting information of control plane for failure case of Raspi 1 in

round 1. 72

6.4 Rerouting information of control plane for failure case of Raspi 1 in

round 2. 72

6.5 Rerouting information of control plane for failure case of Raspi 1 in

round 3. 73

6.6 Rerouting information of control plane for failure case of Raspi 2 in

round 1. 77

6.7 Rerouting information of control plane for failure case of Raspi 2 in

round 2. 77

6.8 Rerouting information of control plane for failure case of Raspi 2 in

round 3. 77

6.9 Rerouting information of control plane for failure case of Raspi 3 in

round 1. 78

6.10 Rerouting information of control plane for failure case of Raspi 3 in

round 2. 78

6.11 Rerouting information of control plane for failure case of Raspi 3 in

round 3. 78

x

6.12 Rerouting information of control plane for failure case of Raspi 4 in

round 1. 79

6.13 Rerouting information of control plane for failure case of Raspi 4 in

round 2. 79

6.14 Rerouting information of control plane for failure case of Raspi 4 in

round 3. 79

6.15 Rerouting information of control plane for failure case of Raspi 5 in

round 1. 82

6.16 Rerouting information of control plane for failure case of Raspi 5 in

round 2. 83

6.17 Rerouting information of control plane for failure case of Raspi 5 in

round 3. 83

List of figures

Page

2.1 Typical architecture of WMN. 4

2.2 Typical topology of full WMN. 6

2.3 Typical topology of partial WMN. 6

2.4 Principle of SDN [2]. 7

2.5 Architecture of OpenFlow switch compliant with OpenFlow version

1.3 [17]. 10

3.1 Typical installation scenario of outdoor SDWMN to monitor road

network traffic (e.g. on Phaya Thai road, Bangkok). 18

3.2 Equipment of gateway in preliminary outdoor SDWMN testbed. . . . 20

3.3 Equipment of mesh node in preliminary outdoor SDWMN testbed. . 20

3.4 Architecture of preliminary outdoor medium-range SDWMN testbed. 21

3.5 Problem of relaying ARP packet in 2-hop simplified routing from

Gateway 1 to Raspi 2 with external USB WiFi adapter. 22

3.6 Relaying ARP packet in 2-hop simplified routing from Gateway 1 to

Raspi 2 with external USB WiFi adapter by modifying destination

MAC address. 23

3.7 OVS forwarding rules of in-band controlled preliminary SDWMN at

(a) OVS 1 (b) OVS 2 (wireless relay Node) (c) OVS 3. 24

4.1 Topology of proposed outdoor SDWMN testbed for road traffic moni-

toring over bi-directional road of car lanes between two intersections. 29

4.2 Architecture of proposed outdoor medium-range SDWMN testbed. . 32

4.3 Forwarding procedure of wireless mesh node. 32

4.4 Illustration of routing for control plane in proposed outdoor SDWMN

testbed. 33

4.5 Illustration of routing for data plane in proposed outdoor SDWMN

testbed. 34

4.6 Echo message exchange between SDN controller and OpenFlow

switch [17]. 36

4.7 Example of node failure rerouting based on three wireless mesh nodes

and one gateway. 36

4.8 Illustration of exchanging OFPT HELLO messages between wireless

mesh node and RYU controller. 38

4.9 Temperature monitoring Python program installed in each wireless

mesh node. 43

5.1 Testing scenario of wireless network reachability inside campus area

of Chulalongkorn University. 44

xii

5.2 100-metre wireless network reachability testing. 44

5.3 200-metre wireless network reachability testing. 45

5.4 300-metre wireless network reachability testing. 45

5.5 400-metre wireless network reachability testing. 45

5.6 Comparison of 95-percent confidence interval for RTT in one-hop

reachability. 47

5.7 Comparison of 95-percent confidence interval for TCP throughput in

one-hop reachability. 47

5.8 Comparison of 95-percent confidence interval for UDP throughput in

one-hop reachability. 48

6.1 Topology of real outdoor SDWMN testbed on Phaya Thai road for

road traffic monitoring network. 49

6.2 Installation of waterproof box at fence of crossover bridge on Phaya

Thai Road. 49

6.3 Installation of wireless mesh node inside waterproof box over crossover

bridge on Phaya Thai Road. 50

6.4 Crossover bridge on Phaya Thai Road. 50

6.5 Position of wireless mesh node over crossover bridge on Phaya Thai

Road. 51

6.6 Traffic police box near SamYan MRT station on Rama 4 road where

Gateway 1 is installed. 51

6.7 Traffic police box near Chulalongkorn Soi 12 where Gateway 2 is in-

stalled. 52

6.8 Installation of Gateway 2 in traffic police box. 52

6.9 Traffic image captured with smart phone at daytime on Phaya Thai

road at 4 PM. 53

6.10 Traffic image captured with smart phone at nighttime on Phaya Thai

road at 4 AM. 54

6.11 Comparison of 95-percent confidence interval for TCP throughput

from Raspi 1, Raspi 2 and Raspi 4 to Gateway 1 between daytime

and nighttime. 55

6.12 Comparison of 95-percent confidence interval for UDP throughput

from Raspi 1, Raspi 2 and Raspi 4 to Gateway 1 between daytime

and nighttime. 56

6.13 Comparison of 95-percent confidence interval for RTT from Raspi 1,

Raspi 2 and Raspi 4 to Gateway 1 between daytime and nighttime. 56

6.14 Comparison of packet loss ratio from Raspi 1, Raspi 2 and Raspi 4 to

Gateway 1 between daytime and nighttime. 57

6.15 Comparison of 95-percent confidence interval for TCP throughput

from Raspi 3, Raspi 5 and Raspi 6 to Gateway 2 between daytime

and nighttime. 58

xiii

6.16 Comparison of 95-percent confidence interval for UDP throughput

from Raspi 3, Raspi 5 and Raspi 6 to Gateway 2 between daytime

and nighttime. 58

6.17 Comparison of 95-percent confidence interval for RTT from Raspi 3,

Raspi 5 and Raspi 6 to Gateway 2 between daytime and nighttime. 59

6.18 Comparison of packet loss ratio from Raspi, Raspi 5 Raspi 6 to Gate-

way 2 between daytime and nighttime. 59

6.19 Physical location between Raspi 3 and Gateway 2. 60

6.20 Physical location between Raspi 6 and Raspi 5. 60

6.21 Comparison of 95-percent confidence interval for TCP throughput

from Raspi 5 to Gateway 2 in old location and new location. 61

6.22 Comparison of 95-percent confidence interval for UDP throughput

from Raspi 5 to Gateway 2 in old location and new location. 62

6.23 Comparison of 95-percent confidence interval for RTT from Raspi 5

to Gateway 2 in old location and new location. 62

6.24 Comparison of packet loss ratio from Raspi 5 to Gateway 2 in old

location and new location. 63

6.25 Physical location between Raspi 1, Raspi 4 and Gateway 1. 63

6.26 Physical location between Raspi 3, Raspi 6 and Gateway 2. 64

6.27 Running traffic monitoring application over SDWMN testbed. 65

6.28 Practical operation status for 16 hours of outdoor SDWMN on Phaya

Thai road . 66

6.29 Overhead of OpenFlow traffic. 67

6.30 Captured image at location of Gateway 1 while public bus is passing

through intersection which potentially blocks the line-of-sight of

signal propagation in between the nearest wireless mesh nodes and

Gateway 1. 67

6.31 Status of temperature of wireless mesh node at outdoor network op-

eration. 68

6.32 Weather information from www.timeanddate.com for 26th November

2018 in Bangkok. 69

6.33 Weather information from www.timeanddate.com for 27th November

2018 in Bangkok. 69

6.34 Information of received control packet from Raspi 2 to Gateway 1

through primary route. 70

6.35 Information of received control packet from Raspi 3 to Gateway 1

through primary route. 71

6.36 Information of received control packet from Gateway 2 to Gateway 1

through primary route. 71

6.37 Configuration reply messages from wireless mesh nodes to RYU con-

troller. 73

xiv

6.38 Control packet received at Gateway 1 from Raspi 2 through alterna-

tive route. 74

6.39 Control packet received at Gateway 1 from Raspi 3 through alterna-

tive route. 74

6.40 Control packet received at Gateway 1 from Gateway 2 through alter-

native route. 75

6.41 Control packet received at Gateway 1 from Raspi 2 through primary

route. 75

6.42 Control packet received at Gateway 1 from Raspi 2 through alterna-

tive route in round 1. 75

6.43 Control packet received at Gateway 1 from Raspi 2 through alterna-

tive route in round 2. 76

6.44 Control packet received at Gateway 1 from Raspi 2 through alterna-

tive route in round 3. 76

6.45 Control packet received at Gateway 1 from Raspi 5 through primiary

route. 80

6.46 Control packet received at Gateway 1 from Raspi 5 through primiary

route. 80

6.47 Control packet received at Gateway 1 from Raspi 6 through primiary

route. 81

6.48 Control packet received at Gateway 1 from Raspi 5 through alterna-

tive route. 81

6.49 Control packet received at Gateway 1 from Raspi 6 through alterna-

tive route. 82

6.50 Status of received data packet from Raspi 5 at Gateway 2 while Raspi

6 is working. 83

6.51 Status of received data packet from Raspi 5 at Gateway 2 when Raspi

6 is failed. 83

6.52 Status of received data packet from Raspi 5 at Gateway 2 when Raspi

6 is failed in round 2. 84

6.53 Status of received data packet from Raspi 5 at Gateway 2 when Raspi

6 is failed in round 3. 84

Chapter 1

Introduction

1.1 Research Motivation

Nowadays, road traffic congestion becomes a major problem for the people in their daily

life as the traffic density has been increasing year by year. In order to reduce the road traffic

congestion, researchers have tried to set up the wireless sensor network or wireless mesh

network or other types of networks to build the road traffic monitoring system. Under

the category of a road traffic monitoring system, we have focused to build up the outdoor

wireless network along the road in this thesis to support the future road traffic monitoring

application such as the application of real-time video streaming. The wireless outdoor

network of this work needs to be cost-effective, scalable and reliable.

In this case, IEEE 802.11 standard (WiFi) has been chosen for this work in order to

minimize the operating cost in sending video or other possible data within the implemented

outdoor wireless network. There are two options which can be utilized to establish the

wireless network based on IEEE 802.11 standard which is an ad-hoc mode and an infras-

tructure mode. In an infrastructure based network, a wireless access point (AP) is required

to build the wireless network and the range of wireless network can be extended by adding

more APs. In contrast, an ad-hoc mode allows two or more devices such as laptops to be

directly connected to each other without relying on the wireless access points. Therefore,

an ad-hoc based wireless network is easy to be set up and extended without any AP. A

wireless mesh network (WMN) is a multi-hop ad-hoc network and it can be established by

connecting wireless nodes or routers to each other with the radio standards such as WiFi [4],

ZigBee [12]. Since WMN can also eliminate the cost to purchase APs in expanding the net-

work range, WMN becomes a cost-effective solution to create an outdoor wireless network

to be deployed along a target congested road.

However, there are also challenges in WMN. The advantage of requiring no infrastruc-

ture based AP means that there is no central point to manage a WMN. To enable the

routing in WMN, there are three types of distributed mesh routing protocols, namely, (i)

proactive routing protocol (ii) reactive routing protocol and (iii) hybrid routing protocol [3].

2

Those distributed mesh routing protocols have a relatively restrictive functionality and their

distributive nature of protocol configurations are difficult to be managed efficiently. In order

to overcome the current limitation of WMN, software-defined networking (SDN) introduces

the feature of centralized network management by separating the control and data planes

with the open standard protocol such as OpenFlow [1]. By using the SDN in WMN, the

network becomes manageable, controllable and easy to be modified. SDN based routing

algorithms are easy to be configured or modified by using an available high-level program-

ming language to automate the forwarding function from the control plane. This thesis aims

at bringing the functionalities of SDN into the wireless mesh network and testing the real

outdoor software defined wireless mesh network (SDWMN) testbed along an actual road.

In this work, SDWMN testbed needs to be low cost and a Raspberry Pi 3 model B+ [13]

becomes an interestingly appropriate option as the wireless mesh node hardware because

it is a cheap and sufficiently powerful device. We design and implement the system with

the intention for a road traffic monitoring system in this thesis by using an SDWMN of

Raspberry Pi nodes to relay the road traffic video data from all the nodes to the gateway

nodes locating at the ending points of connected WMN topology.

1.2 Problem Statement

According to the intended future application in this work, the proposed SDWMN testbed

needs to be implemented in the outdoor environment along the targeted congested road.

However, the past implementation of SDWMN [35, 36, 37, 38, 39, 40, 41, 42] have been set

up in the indoor or only by emulated environments. While insightful results getting from

the emulated environment can be easily repeated in a laboratory, the result can be varied

by the type of emulated environments and can much differ from that in the actual outdoor

scenario.

In this work, we have proposed to implement a prototype for an outdoor medium-range

SDWMN testbed to be tested in real scenarios along the road. There are challenges to

deploy our intended network testbed. The major focuses in this work are weather condi-

tions, network reachability, and performance. The weather challenges are concerned with

the hot-humid country’s temperature and rain. The high temperature can cause the Rasp-

3

berry Pi‘s to be overheating and can be burnt. A heavy rain can degrade the wireless signal

strength such as decreasing RSSI (received signal strength indicator) value. For this rea-

son, the valid equipment hardware components must be chosen carefully in designing the

outdoor SDWMN network testbed. Finally, with the testbed constructed, we are interested

in testing network reachability and performance. Those challenges become our motivation

to investigate the actual achievable performance of SDWMN testbed and practical mea-

surement result from the real testbed is expectedly valuable for improving the proposed

SDWMN testbed design.

1.3 Objective

The main objective of this thesis is to design and implement the medium-range outdoor

wireless mesh network with OpenFlow-enabled Raspberry Pi’s for a road traffic monitoring

system. The network design criteria include the proper ISM WiFi frequency band selection,

preparation for seasonal weather challenges, selection of antenna type, and the measurement

location for the testbed performance. From the real implementation, the test includes the

measurement of network reachability, TCP throughput, packet loss ratio, a temperature of

Raspberry Pi and latency based on ICMP packets.

1.4 Scope of Thesis

The scope of this research are as follows:

1. Design of the outdoor medium-range SDWMN to prepare for the actual deployment

scenario challenges.

2. Development of a simple fault-tolerant multi-hop routing scenario for failure of wire-

less mesh node which is suitable to the proposed outdoor SDWMN testbed.

3. Implementation of the real outdoor SDWMN testbed along the selected road and test

TCP throughput, latency, packet loss ratio and the network reachability specified here

by the maximum per-hop distance between wireless nodes as well as the maximum

number of hops that can sustain the desired path throughput.

Chapter 2

Background and Literature Review

2.1 Wireless Mesh Network

Based on the IEEE 802.11 standard, a wireless network can be configured in two ways.

The first one is an infrastructure based network and the second one is an ad-hoc based

network. In an infrastructure based network, the wireless access point (AP) is required to

establish the wireless connection between the wireless nodes such as laptops and routers.

The range of the infrastructure based network can be extended by adding the APs. On the

other hand, the wireless nodes are able to directly connect to each other without APs in an

ad-hoc based network. An ad-hoc based network is easy to set up and it is inexpensive in

extending the range of the network because there is no need for the APs in extending the

network coverage. WMN is the multi-hop ad-hoc network and the typical architecture of

WMN is demonstrated in Figure 2.1.

Figure 2.1: Typical architecture of WMN.

In Figure 2.1, WMN is composed of three kinds of wireless nodes which are mesh routers,

mesh gateway and mesh clients. Since WMN is based on the ad-hoc mode, each mesh router

and a mesh gateway can be directly connected to each other. Laptops, mobile phones can

5

be regarded as the mesh clients in this matter. A mesh gateway in Figure 2.1 is connected

to the wired network for the internet connection. Various communication standards such as

IEEE 802.15.4 (ZigBee), IEEE 802.11 (WiFi) can be applied to establish the WMN. There

are a lot of traditional mesh routing protocols such as optimized link state routing protocol

(OLSR) [28], ad-hoc on-demand distance vector (AODV) [29] implemented in the WMN for

each mesh router to operate its responsibilities which are forwarding and routing the pack-

ets. The network must be designed by considering a topology robustness with self-healing

characteristics as enabled by a proper mesh network routing. However, a conventional

WMN with distributed routing protocols is generally difficult to be managed. This is be-

cause of the complex structure of wireless mesh topology and hence a manual configuration

is often required upon significant network routing upgrades. Distributed routing also suffers

from the lack of the network global view, and this could raise an issue on routing protocol

efficiency. To cope with such difficulties, the feature of SDN is applied with an inherently

enhanced network programmability. The detail of the SDN is explained in Section 2.2.

There are two types of topologies [25]:

1. Full mesh topology.

2. Partial mesh topology.

Figure 2.2 gives an example of the topology of a full WMN. If the wireless nodes such

as mesh routers are fully interconnected to every other node, that topology is considered

as the full wireless mesh topology [25]. Figure 2.3 gives another example of the topology

of a partial WMN. If the wireless nodes are connected to each other but not to every other

node, such a kind of topology is regarded as the partial mesh topology [25].

2.2 SDN

SDN [2] is regarded as the next generation of network architecture. In conventional

networking, the control plane, data plane, and management plane are implemented in the

hardware of forwarding elements. Here, the forwarding elements refer to the routers and

switches. In SDN, the control plane and data plane are separated by an open standard

protocol such as OpenFlow [1] and the control plane is implemented as the software in

6

Figure 2.2: Typical topology of full WMN.

Figure 2.3: Typical topology of partial WMN.

7

a logically centralized SDN controller. Here, the centralized control plane is responsible

for commanding SDN switches by giving instructions on how to send the packets and a

data plane is responsible for forwarding incoming packets according to the instructions

from the control plane. SDN switch is referred to as the OpenFlow-enabled forwarding

elements and OpenFlow is an open standard protocol to enable the direct communication

between the SDN controller and SDN switches. The intelligence of network is separated

from the forwarding function and that the intelligence of network is located in the logically

centralized SDN controller. In this matter, SDN controller does not need to be physically

centralized but it must have the global view of the whole topology. Therefore, SDN can

simplify the network operation. High-level programming languages such as Python, Java

are allowed for the program development of software applications such as load balancing

algorithm, routing algorithm to run on top of (or so-called at the northbound interface of)

the SDN controller. Therefore, SDN network is easy to be managed and modified with

those SDN applications which can be executed in the SDN controller. The principle of SDN

is summarized in Figure 2.4.

Figure 2.4: Principle of SDN [2].

Basically, SDN is composed of three layers.

1. Infrastructure Layer.

2. Control Layer.

8

3. Application Layer.

The lowest layer is the infrastructure layer which is also known as the forwarding layer

and it is composed of SDN switches. The main difference between SDN switch and the

traditional router is that SDN switch does not have its own routing logic. That means every

SDN switch is not allowed to decide by itself how to forward each incoming packet. The

SDN controller assigns the forwarding flow tables to SDN switches and SDN switches have to

forward the packets according to the flow tables assigned by the SDN controller. The middle

layer is the control layer and it is executed by the SDN controller. The upper layer is the

application layer and it is composed of the SDN applications such as routing algorithm and

load balancing. The interface between the control layer and the infrastructure layer is the

southbound interface which is provided by the open standard interface such as OpenFlow [1].

SDN controller uses the southbound interface in order to install the forwarding rules into

SDN switches. A northbound interface is located between the application layer and the

control layer and that interface is used by the SDN application to run its service on the

SDN controller through the application programming interface (API).

2.3 OpenFlow

OpenFlow [1] is the first open standard protocol that provides the southbound interface

between the SDN controller and SDN switches. There are so far versions of OpenFlow

protocols from version 1.0 to 1.5. OpenFlow version 1.0 is the default version and it is

used in most SDN switches and SDN controllers. OpenFlow provides the communication

interface for an SDN controller to instruct SDN switches on how to forward the packets

by installing, deleting and modifying flow entries in SDN switches reactively or proactively.

The flow table of SDN switch is a set of flow entries and flow entries are executed with

match-action criteria. The main components of flow entry in a flow table is summarized in

Table 2.1 from OpenFlow version 1.3, which will be used in this thesis.

Table 2.1: Main components of flow entry in a flow table [17].

Match Field Priority Counters Instructions Timeout Cookie

Each flow table entry contains:

9

1. Match field : To filter the incoming packets by matching with the defined values in

the matching fields.

2. Priority : The matching preference of table entries. When an SDN switch receives a

packet, an incoming packet header is matched sequentially from the highest number

of priority to the lowest number of priority.

3. Counters : The counter is used to count the number of the matched packet. The

counter is updated with the number of matched packets.

4. Instructions : Action fields for each matched packet.

5. Cookie : Opaque data specified by the controller. Cookie value is used to filer the

flow modification, flow statistics and flow deletion.

In the matching field, the ingress port and the specific packet header values are included.

The ingress port is the port where the SDN switch receives the incoming packet. The

specific packet headers in the matching fields are the destination MAC address, source

MAC address, source IP address, destination IP address, TCP/UDP source port number,

TCP/UDP destination port number, for example.

The options available in the action field of the flow table are used to instruct the SDN

switches how they need to exactly handle the matched packet. Some available options in

the action field and their functions are listed in Table 2.2 from OpenFlow version 1.3.

Table 2.2: Names of action fields of OpenFlow and their function [17].

Actions Function

OUTPUT Forward the packets on a specific port

DROP Drop the packets

ALL Forward packets out to all physical ports

CONTROLLER Forward the packets to the controller as a packet in message

FLOOD Forward packet out to all physical ports except to the ingress port

LOCAL Forward the packets to the local port of the bridge

INPORT Forward the packets to the ingress port

The architecture of OpenFlow switch compliant with OpenFlow version 1.3 is summa-

rized in Figure 2.5. In this thesis, we use the OpenFlow version 1.3 because it can support

10

the features of multiple flow tables. The feature of multiple flow tables can provide the flex-

ible OpenFlow switch pipeline. When the OpenFlow switch receives an incoming packet,

that incoming packet is matched and processed in the operational precedence starting from

the lowest number of tables e.g. table 0. The specific type of processing such as QoS,

routing can be separately defined conveniently by dedicated flow tables such as table 1 for

QoS, table 2 for routing. In this thesis, multiple flow tables are used for rewriting the packet

header of the incoming packet, for relaying the incoming packet for multi-hop routing.

Figure 2.5: Architecture of OpenFlow switch compliant with OpenFlow version
1.3 [17].

2.4 WiFi Frequency Band Selection

We have considered to set up an outdoor SDWMN testbed based on 2.4 GHz and 5 GHz

because those frequencies are unlicensed Industrial, Scientific and Medical (ISM) bands for

WiFi. Therefore, the characteristics of 2.4 GHz ISM band and 5 GHz ISM band are mainly

discussed in this subsection.

Under the standards of IEEE 802.11, there are generally five different IEEE 802.11

standards which are applied to 2.4 GHz ISM band and 5 GHz ISM band. Table 2.3 highlights

the different frequency ranges of IEEE 802.11 standards.

The characteristics of the 2.4 GHz and 5 GHz ISM frequency bands are summarised as

follows [45]:

11

Table 2.3: Wireless standards of IEEE 802.11.

IEEE 802.11 standard ISM band
802.11b 2.4 GHz
802.11g 2.4 GHz
802.11a 5 GHz
802.11ac 5 GHz
802.11n 2.4/5 GHz

1. Channels 1 to 14 can be used (FCC allows only 11 channels) in 2.4 GHz ISM band.

Among them, the maximum 3 non-overlapping channels can be applied [(1,6,11),

(2,7,12), (3,8,13), (4,9,14), (5,10)]. In 5 GHz ISM band, the maximum of 23 non-

overlapping channels can be applied. The number of non-overlapping channels in 2.4

GHz and 5 GHz ISM bands are based on 20 MHz channel bandwidth.

2. 2.4 GHz ISM band is widely used in Bluetooth, microwave oven, remote controller,

cordless phone and this can possibly lead to the overcrowded situation. Since 23 non-

overlapping channels can be applied in 5 GHz ISM band, there is less interference in

5 GHz ISM band.

3. Theoretically, 2.4 GHz can provide larger network coverage than network coverage

that 5 GHz can because the higher the frequency, the shorter the range based on the

same transmission power.

4. Based on 20 MHz channel width in 2.4 GHz and 5 GHz band, 5 GHz ISM band can

provide more non-overlapping channels and a lower level of interference. There is also

no overcrowded situation in 5 GHz band. Therefore, the performance of 5 GHz band

is better than 2.4 GHz ISM band expectedly in general.

Selection of frequency range is one of the important factors to design the outdoor-based

network to provide the stable and wide wireless connectivity. In this design, the location of

the proposed outdoor SDMWN testbed will be located inside the urban area because the

proposed testbed is intended for a road traffic monitoring system. If a proposed outdoor

SDWMN testbed is implemented with 2.4 GHz ISM band, the Bluetooth devices from cars

can potentially degrade a proposed outdoor SDWMN testbed. There is another point to be

contemplated in the selection of frequency range. The allowable WiFi transmission power is

12

different according to the rules of the country. The maximum permitted WiFi transmission

power in Thailand is listed in Table 2.4.

Table 2.4: Allowed WiFi transmission power in Thailand.

Frequency (GHz) Allowed WiFi transmission power Type of Network
2.400 - 2.500 0.1 W (EIRP) Indoor/Outdoor
5.150 - 5.350 0.2 W (EIRP) Indoor
5.470 - 5.725 1.0 W (EIRP) Indoor/Outdoor
5.725 - 5.850 1.0 W (EIPR) Indoor/Outdoor

Effective Isotropically Radiated Power or Equivalent Isotropic Radiated Power (EIRP)

is equal to the output power of the transmitter minus cable loss plus antenna gain [27]. Note

from Table 2.4 that there are higher maximum wireless transmission power allowed in 5 GHz

band than in 2.4 GHz band. The wireless transmission power directly affects the network

reachability. In summary, from all the reasonings aforementioned, this thesis proposes to

utilize 5 GHz ISM band.

2.5 Type of Antenna

The type of WiFi antenna is another important factor for the outdoor network planning.

There are two major types of WiFi antennas: (i) omnidirectional antenna and (ii) directional

antenna. An omnidirectional antenna provides 360-degree horizontal radiation pattern.

Therefore, the number of required omnidirectional antennas for a wireless node does not

depend on the number of neighbor nodes due to its radiation pattern that can reach all the

neighbor nodes in all surrounding directions. A directional antenna is used to provide the

wireless signal in a specific direction. Since the transmission power is only needed to be

consumed for the specific direction, the directional antenna can provide a longer per-hop

distance based on the same EIRP transmission power allowed by law in comparison with

the omnidirectional antenna. The number of required directional antenna is also based on

the number of neighbor nodes for at least along a road the node must be able to relay both

forward and backward to its neighbors. Therefore, the implementation cost of the network

based on directional antennas will be higher than the network design which is based on

omnidirectional antennas. In order the save the implementation cost, an omnidirectional

13

antenna is applied in the proposed outdoor medium-range SDWMN testbed.

2.6 Summary of Existing WMN Testbeds in Literature and

Proposed SDWMN

This section provides a survey of how existing WMN testbeds have been implemented

in the past and compares with the proposed SDWMN.

The small-scale Raspberry Pi based WMN testbed has been built in [30]. OpenWrt

operating system is installed in each Raspberry Pi mesh node. The main purpose of the

paper is in analyzing the performance of OLSR routing protocol in line-of-sight (LoS) and

non-line-of-sight (NLoS) propagations in an indoor environment.

The outdoor campus WMN based on the 802.11b/g wireless interfaces are implemented

on the roof of the university in [31]. Those wireless interfaces use fourth generation Atheros

chipset based on AR5213 MAC/baseband. The target of this paper is to analyze the outdoor

wireless link performance achievable by the 802.11b standard and the 802.11g standard.

Another outdoor campus WMN testbed has been established in [32]. In this case, Better

Approach To Mobile Ad-hoc Networking (B.A.T.M.A.N) [7] mesh routing protocol is used

to set up the testbed. The contribution of this work is in investigating the performance of

B.A.T.M.A.N routing protocol which is integrated at their proposed outdoor testbed.

The large-scale WMN testbed with static routing for road traffic control is proposed

in [33]. The main objective of this work is to control the road traffic by handling the traffic

light. The testbed is composed of 7 wireless mesh nodes each installed in a traffic light

pole. Three different radios are applied (900 MHz, 2.4 GHz, 3.5 GHz) to construct the

testbed. That testbed is located in the Sydney Central Bank Distinct which is an urban

environment. The range between each mesh node is from 200 meters to 500 meters. Link

characteristics of the testbed are analyzed in terms of latency.

QuRiNet has been set up in [34]. QuRiNet is the large-scale WMN testbed composed

of 30 wireless mesh nodes. The testbed is located in the Quail Ridge Natural Reserve in

California. The physical link distance between each wireless node is ranged from a hundred

meters. The author has described the detail challenges to install QuRiNet in the outdoor

14

environment and explained how they have designed the QuRiNet to overcome the weather

challenge, equipment challenge, site location challenge, and antenna selection challenge.

Dynamic OLSR routing protocol is deployed to enable multi-hop routing for QuRiNet.

The proposed WMN testbeds [30, 32, 34] are fully distributed wireless networks and

the intelligence of the networks is maintained in each mesh node. Routing in the WMN

is achieved by the traditional routing protocols and those conventional routing protocols

provide a different kind of behaviors. The behavior of traditional mesh routing protocols is

difficult to be managed as the intelligence of the network is implemented distributively in

each mesh node.

The first architecture of SDWMN has been proposed in [35] to overcome the limited

functionality of the legacy routing protocol and the WMN has been managed from the

logically centralized SDN controller. In-band SDN control mechanism is applied by using

two separated virtual local area networks (VLANs) on the same network interface to set up

the control channel and data channel, respectively. One VLAN is used to carry the control

traffic and another VLAN is used to carry the data traffic. Traditional OLSR routing

protocol is used for control traffic routing.

The traditional routing protocol is often used for data traffic in SDWMN as the backup

plan in case of the centralized SDN controller is down. OLSR routing protocol has been

applied in [36] for control traffic and data traffic if the SDN controller is not working in the

proposed SDWMN framework in an NS3 [9]. The use case of [36] is the gateway balancing by

implementing a round-robin gateway selection algorithm in the POX controller. Implement-

ing traditional routing protocol inside the SDN based network may increase communication

overhead.

The testbed of SDWMN based on Raspberry Pi is proposed in [37]. The testbed is

set up in the laboratory with the WLAN APs and an ONOS (Open Network Operating

System) controller [6]. Each AP is composed of three Raspberry Pi’s for AP mode, station

(STA) mode and Open Virtual Switch (OVS). An ONOS controller is connected to the AP

via the wired network. The main purpose of the paper is in analyzing the performance of

each AP.

A small-scale SDWMN is implemented in [38] inside the laboratory with 4 wireless

15

routers and an SDN controller. The out-of-band approach is applied by setting up the

control plane with the wired network and the data plane with the wireless interfaces. The

main objective of this paper is to propose the OpenFlow-based load balancing with the

concept of the data flow path redirecting between links of the wireless mesh nodes.

The three-staged routing algorithm for SDWMN is proposed in [39]. The authors in [39]

have used NS3 [9] and Mininet [16] to create the emulation environment for the testbed.

For stage 1, an SDN controller tries to connect the switch with the basic routing by sending

OF Initial Path Request message. For stage 2, the switch sends OF Inital Path Response

message to the controller. From the message from stage 2, an SDN controller knows the

information of neighbor nodes. For stage 3, an SDN controller installs the routing path

based on the shortest path algorithm. In this paper, they focus on the connection between

an SDN controller and switches and the connection between the switches.

Control overhead, CPU usage is investigated in an in-band control approach SDWMN

testbed with full mesh and partial mesh topologies inside the building in [40]. Tun/Tap

interface is applied to construct the in-band control. The topology in [40] is composed of

6 mesh routers and an SDN controller. OLSR routing protocol is used to construct the

communication between mesh routers and an SDN controller.

IISTMeshNet testbed is implemented in [41] with two RYU controllers [19] and three

mobile routers. ALIX.3d3 board [20] is used as a mobile router in the proposed testbed. In-

band control approach is applied. The main purpose of this paper is to propose two dynamic

multi-hop hand-off solutions based on the mobility of the OpenFlow-enabled routers. The

first solution is the Round-Trip-Time (RTT) based hand-off scheme and the second solution

is the Expected Transmission Count (ETX) based hand-off scheme.

Prediction-based link uncertainty solution in SD-WMN (PLUS-SW) is proposed in [42]

to predict the link failure in the control plane and data plane on the case of node mobility

by using the supervised learning model and to determine the optimal alternative route from

the SDN controller. The simulation is done in the Network Simulation 3 (NS3) by building

the network with 50 nodes in 300 m x 1500 m area.

Table 2.5 gives a comparative summary of the reviewed WMN and SDWMN systems.

Thanks to the authors in [34] who have built the QuRiNet which is the outdoor large

16

WMN, the characteristic of the outdoor wireless network has been studied. A conventional

outdoor WMN is set up in the urban environment in [33] for controlling road traffic. Indoor

and emulated SDWMN testbeds are implemented in [35, 36, 37, 38, 39, 40, 41, 42]. The

main difference between our work and those summarized works is that we will propose

the real outdoor based SDWMN testbed along the road for traffic monitoring. OpenFlow

based routing scenario is applied to establish a control plane and a data plane on a single

physical interface. By using the features of SDN which we have discussed in Section 2.2 in

building WMN testbed, our proposed SDWMN testbed is easy to be managed and modified.

From the proposed outdoor SDWMN testbed, the investigation for the performance of real

outdoor SDWMN testbed can be conducted.

Table 2.5: Summary of reviewed WMN testbeds and proposed SDWMN.

Papers
OpenFlow Type of Testbed Routing
Enabled Control Environment Protocol

[30] No Distributed Indoor OLSR
[31] No Distributed Outdoor 802.11 b/g
[32] No Distributed Outdoor B.A.T.M.A.N
[33] No Distributed Outdoor Static
[34] No Distributed Outdoor OLSR
[35] Yes In-Band Indoor OLSR & SDN
[36] Yes In-Band NS3 OLSR & SDN
[37] Yes Out-of-Band Indoor SDN
[38] Yes Out-of-Band Indoor SDN
[39] Yes Out-of-Band NS3 & Mininet SDN
[40] Yes In-Band Indoor OLSR & SDN
[41] Yes In-Band Indoor OLSR
[42] Yes In-Band NS3 SDN

Proposed Work Yes In-Band Outdoor SDN

Chapter 3

Proof-of-concept Investigation of OpenFlow Based

2-hop Routing Scenario in Small-scale Preliminary

Outdoor SDWMN Testbed on Phaya Thai

Road [44]

Before we implement the final outdoor SDWMN testbed, we have implemented first

the small-scale outdoor preliminary SDWMN testbed with two Raspberry Pi’s and an

Intel R©NUC7i7BNH [14] in order to analyze the performance of OpenFlow based 2-hop

routing. The preliminary testbed preparation in this research is concerned with the medium-

range outdoor WMN based on OpenFlow-enabled Raspberry Pi, thanks to Raspberry Pi

3’s cost-effectiveness and obtainable computational power within a compact form factor.

The design intention is for studying the achievable link and path throughputs upon the

medium achievable range of wireless connectivity based on off-the-shelf wireless ad-hoc link

antenna. Our design is aimed at a potential future application towards a road network

traffic monitoring, where each Raspberry Pi 3 serves both as a wireless signal relay as well

as a sensor e.g. by attaching with a small camera to monitor road traffic conditions.

3.1 Design of Preliminary Small-scale Outdoor SDWMN

Testbed

An example of future usage scenario of proposed outdoor SDWMN is depicted in Fig-

ure 3.1. The topology consists of 2 gateways and 6 mesh nodes. Each gateway is operated

as a server to receive sensor data from mesh nodes and to push the data potentially into a

data cloud. Here, a node running the gateway functionality can also run the SDN controller.

Intel R©NUC7i7BNH is used as a gateway and a Raspberry Pi 3 model B+ with Quad-Core

CPU and 1-GByte RAM is used as a mesh node. Both the gateway and mesh nodes run

the Ubuntu MATE operating system [15] version 16.04 (32 bit). In each gateway and mesh

18

node, a dual-band EDUP EP-AC1605 Wi-Fi USB adapter [24] with two omnidirectional

antennas is installed. Since EDUP EP-AC1605 is a dual-band antenna, 2.4 GHz ISM band

or 5.5 GHz ISM band can be selected. 5.5 GHz is applied in establishing the preliminary

outdoor SDWMN testbed and the reason has been already discussed in Section 2.4. The

high WiFi transmission power in 5.5 GHz according to Table 2.4 should allow a per-hop dis-

tance of at least between 100 meters and 500 meters, which is regarded here as the medium

range in this design.

Figure 3.1: Typical installation scenario of outdoor SDWMN to monitor road
network traffic (e.g. on Phaya Thai road, Bangkok).

A sample SDWMN testbed has been designed with a typical usage deployment area as

exemplified by the Phaya Thai road segment in between Rama 1 road and Rama 4 road

in Bangkok, for the convenience of future installation and testing preparation. Here, there

are five crossover bridges which are the suitable locations to place, wherever possible, the

Raspberry Pi’s in order to avoid the line-of-sight obstacles such as trucks or buses which

can block the wireless signal. The average distance between adjacent crossover bridges is

around 250 meters. An exception is on the distance between Raspi 3 and Raspi 5 over 400

meters, which are not long enough to relay the signal from Raspi 3 to Raspi 5 directly.

However, Raspi 4 can be placed on either side of the road in between Raspi 3 and Raspi 5.

Open Virtual Switch (OVS) [8] is installed in each mesh node and gateway to establish

a connection between an SDN controller and the mesh nodes. OVS runs the standard

OpenFlow protocol. RYU controller [19] is chosen in this thesis as the testbed’s SDN

controller. RYU controller is Python-based and can support up to OpenFlow version 1.5

19

with usage convenience features e.g. GUI, OpenStack support, REST API. RYU controller

has been suggested as a good choice for small businesses and research applications [43].

For the implementation of the control plane for SDWMN, there is a challenge in that

most of the mesh nodes cannot reach the gateway directly in one wireless hop. This is unlike

the wired SDN, whereby a direct communication channel is easily dedicated to the estab-

lishment of a control interface. For SDWMN, there are two possible options to implement

the control plane i.e. with in-band control and out-of-band control [26].

Out-of-band control requires the separately dedicated control network and data network.

Since the outdoor SDWMN testbed is based on the IEEE 802.11 standard, at least two

USB Wi-Fi adapters would be required in each of mesh nodes and gateways if the design

is based on the out-of-band control approach [26]. An extra hardware cost for control

network is reducible in the in-band SDN approach, whereby the control and data planes are

implemented within the same physical interface at each node.

In the preliminary outdoor SDWMN testbed, therefore, the in-band SDN approach is

used in order to reduce the hardware cost. The in-band control plane is here established

by installing our properly defined forwarding rules to the OVS of each mesh node to relay

address resolution protocol (ARP) packets and transmission control protocol (TCP) packets

between the mesh node and the SDN controller. These forwarding rules have been pre-

installed at the mesh node as a script that will be automatically executed every time that

the mesh node is restarted.

From Figure 3.1, as a preliminary testing, a gateway (Gateway 1) has been installed at

location 2, and two Raspberry Pi’s (Raspi 1 and Raspi 2) have been installed at locations

3 and 4.

Figures 3.2 and 3.3 show the equipment of gateway and mesh node.

3.2 Implementation of OpenFlow Based 2-hop Simplified

Routing

Generally, OVS can be configured with bridges and each bridge can consist of multiple

ports [18]. Bridge in OVS is needed to be connected with an SDN controller in order to

20

Figure 3.2: Equipment of gateway in preliminary outdoor SDWMN testbed.

Figure 3.3: Equipment of mesh node in preliminary outdoor SDWMN testbed.

21

establish OpenFlow connection between SDN controller and OVS [18]. Here, a port in a

bridge is regarded as OpenFlow port. OpenFlow port can be a logical port, a physical port,

and a local reserved port [17]. The example of OpenFlow logical port is VLAN port. A

physical port is a port that OVS define for a hardware interface such as wireless interface

which is added to a bridge of OVS. LOCAL port represents local networking stack of the

OVS and all network traffic coming to and from a bridge of OVS is required to pass through

a LOCAL port.

The preliminary outdoor medium-range SDWMN testbed is shown in Figure 3.4.

Figure 3.4: Architecture of preliminary outdoor medium-range SDWMN
testbed.

In this work, a physical wireless network interface of Gateway 1, Raspi 1 and Raspi 2

is added to bridges of OVS 1, OVS 2 and OVS 3, respectively. OVS 2 in Raspi 1 enables

the relay function of the wireless relay node between Gateway 1 and Raspi 2. All network

traffic passing through those added physical wireless network interfaces is required to be

handled by OVS 1, OVS 2 and OVS 3.

When an incoming packet arrives at the wireless network interface of a mesh node

(Raspi 1 or Raspi 2), the mesh node will check a destination IP address of an incoming

packet. If the destination IP address of an incoming packet is equal to the IP address of the

mesh node, then that mesh node will respond to that incoming packet such as sending back

reply packets (e.g. ARP reply, ICMP reply). If the destination IP address of an incoming

packet is not equal to the IP address of the mesh node, then that mesh node forwards it to

the next hop by rewriting the header of destination MAC address to the next hop’s MAC

address. There is a reason why destination MAC address needs to be modified into next

22

hop’s MAC address to enable relay function. The problem of relaying the ARP packet in

2-hop simplified routing from Gateway 1 to Raspi 2 through Raspi 1 with the external USB

WiFi Adapter in the preliminary outdoor SDWMN testbed is summarized in Figure 3.5.

Figure 3.5: Problem of relaying ARP packet in 2-hop simplified routing from
Gateway 1 to Raspi 2 with external USB WiFi adapter.

As shown in Figure 3.5, Gateway 1 sends the ARP request packet to Raspi 2 and the

full message of ARP request packet is “Gateway 1’s MAC address > FF:FF:FF:FF:FF:FF

who has IP address (Raspi 2) tell IP address (Gateway 1)”. The wireless network interface

of Raspi 1 captures that packet and checks the destination IP address of that incoming

packet.

In this example, the destination IP address of an arrival packet at the wireless interface

of Raspi 1 is IP address of Raspi 2. Therefore, Raspi 1 forwards the arrival packet to Raspi

2. The wireless interface of Raspi 2 receives the ARP request packet from Gateway 1 and

replies that ARP request packet by sending the ARP reply packet. The full message of

ARP reply packet from Raspi 2 to Gateway 1 is “Raspi 2’s MAC address” > Gateway

1’s MAC address IP address (Raspi 2) is at MAC address of Raspi 2”. The ARP reply

packet from Raspi 2 to Gateway 1 is dropped by the wireless interface of Raspi 1 because

the applied external USB WiFi adapter at the wireless interface of Raspi 1 only accepts an

incoming packet with the destination MAC address being Raspi 1’s MAC address or the

broadcast MAC address FF:FF:FF:FF:FF:FF. Therefore, the wireless of Raspi 1 drops the

ARP reply packet from Raspi 2 to Gateway 1. The problem of relaying an ARP packet in

23

this example is solved by rewriting the header of destination MAC address. The modified

process of relaying the ARP packets in 2-hop routing from Gateway 1 to Raspi 2 with the

external USB WiFi Adapter is summarized in Figure 3.6. We follow the same scenario not

only for the ARP packet but also the other types of packets such as IP packet, TCP packet,

UDP packet and so on.

Figure 3.6: Relaying ARP packet in 2-hop simplified routing from Gateway 1
to Raspi 2 with external USB WiFi adapter by modifying destination MAC
address.

In this work, we assume that each wireless mesh node and a gateway know each other’s

MAC address. The successful way of enabling the 2-hop routing scenario by modifying the

destination MAC address with external USB WiFi Adapter is demonstrated in Figure 3.6

with the process of sending the ARP packets between Gateway 1 and Raspi 2.

Figure 3.7 shows the OVS forwarding rules which enable an in-band network in this

preliminary testing. Figure 3.7(a) shows the forwarding rules of OVS 1, Figure 3.7(b)

and 3.7(c) show the forwarding rules of OVS 2 and OVS 3. Among these figures, the

forwarding rules in Figure 3.7(b) enable the relay function of a wireless relay node (Raspi

1) between Gateway 1 and Raspi 2. Here, the IP addresses of Gateway 1, Raspi 1 and 2 are

10.0.0.3, 10.0.0.1 and 10.0.0.2, respectively. Additionally, the MAC addresses of Gateway

1, Raspberry Pi’s 1 and 2 are e8:4e:06:40:d3:4b, e8:4e:06:5f:47:59 and e8:4e:06:5e:6a:b1,

respectively.

In OVS 1 of Gateway 1, flow table 0 is to check all packets arrive at the wireless network

24

(a)

(b)

(c)

Figure 3.7: OVS forwarding rules of in-band controlled preliminary SDWMN
at (a) OVS 1 (b) OVS 2 (wireless relay Node) (c) OVS 3.

25

interface of Gateway 1. In the flow table 0, two flow rules of “ip, in port=1, nw dst=10.0.0.3,

actions=LOCAL” and “arp, in port=1, arp tpa=10.0.0.3, actions=LOCAL” will match

ARP packets and IP packets with the destination IP address 10.0.0.3 (IP address of Gate-

way 1) arrive at the wireless network interface of Gateway 1. If the incoming ARP packets

and IP packets are matched with those two flow rules, the matched packets are forwarded

to the LOCAL port of a bridge in order to be responded by OVS 1. The flow rule in

table 0 “in port=LOCAL, actions=resubmit(,2)” submit all packets generated from OVS

3 to flow table 2. The flow rule with the lowest priority in flow table 0 “in port=1, ac-

tions=drop” to drop the unmatched packet by the flow rules with higher priority in or-

der to prevent a problem of infinite loop. In flow table 2, the flow rule “table=2, ac-

tions=mod dl dst: e8:4e:06:5f:47:59 (MAC address of Raspi 1)” set destination MAC ad-

dress as e8:4e:06:5f:47:59 (Raspi 1’s MAC address) in all submitted packets from table 0.

In flow table 4, the flow rule “table=4, in port=LOCAL, dl dst: e8:4e:06:5f:47:59 (Raspi

1’s MAC address), actions=output:1” is to forward the modified packet submitted by the

flow table 2 to Raspi 1. The flow entries of OVS 3 in Raspi 2 are mostly equal with the

flow entries of OVS 1 in Gateway 1.

The flow rules of OVS 2 in Raspi 1 are also composed of three flow tables which are

table 0, table 1 and table 2 to enable the relay function. The main job of the flow table 0

in OVS 2 is to check all incoming packets at the wireless network interface of Raspi 1. The

flow rules in OVS 2 distinguish a target of an incoming packet by checking a destination

IP address of an incoming packet. In this configuration, there is only a single physical port

in each OVS. In OVS, an ingress port number and an output port number needs to be

different because OVS will drop a packet if a number of an ingress port and an output port

are the same [18]. The definition of an ingress port and output port is discussed in Section

2.3. For example, if a flow entry is “in port=1, actions=output:1”, then OVS will drop the

packet which arrives at an ingress port number 1 even when we define the rules to forward

the matched packets to an output port number 1.

The two flow rules in OVS 2 “arp, in port=1, arp tpa=“10.0.0.2” (Raspi 2’s IP

address), actions=mod dl dst: e8:4e:06:5e:6a:b1, load:0>NXM OF IN PORT[], resub-

mit(,2)” and “ip, in port=1, nw dst=“10.0.0.2” (Raspi 2’s IP address), actions=mod dl dst:

26

e8:4e:06:5e:6a:b1, load:0>NXM OF IN PORT[], resubmit(,2)” match incoming ARP pack-

ets and IP packets with destination IP address 10.0.0.2 (Raspi 2’s IP address) at the

wireless network interface of Raspi 1. If an incoming packet is matched with those two

flow rules, then the destination MAC address of that incoming packet is modified into

destination MAC address of Raspi 2. Then, number of ingress port is changed to be

different from the output port number and submit the modified packet into flow table

2. Likewise, the two flow rules in OVS 2 “arp, in port=1, arp tpa=“10.0.0.3” (Gate-

way 1’s IP address), actions=mod dl dst: e8:4e:06:40:d3:4b, load:0>NXM OF IN PORT[

], resubmit(,4)” and “ip, in port=1, nw dst=“10.0.0.3” (Gateway 1’s IP address), ac-

tions=mod dl dst:e8:4e:06:40:d3:4b, load:0>NXM OF IN PORT[], resubmit(,4)” match

incoming ARP packets and IP packets with destination IP address 10.0.0.3 (Gateway 1’s IP

address) at the wireless network interface of Raspi 1. If an incoming ARP packet or incoming

IP packet is matched with those two rules, then destination MAC address of that incoming

packet is modified into destination MAC address of Gateway 1. Then, ingress port number

is changed to be different from the output port number and submits the modified packet

into flow table 4. Another two flow rules in OVS 2 “arp, in port=1, arp tpa=“10.0.0.1”,

actions=LOCAL” and “ip, in port=1, nw dst=“10.0.0.1”, actions=LOCAL” match an in-

coming IP packet and ARP packet with the destination IP address 10.0.0.1 (Raspi 1’s IP

address). The incoming IP packets and ARP packets with destination IP address 10.0.0.1

at the wireless network interface of Raspi 1 are forwarded to LOCAL port in order to be

responded by OVS 2. There is an also drop action at the lowest flow entries in OVS 2

in order to prevent the case of an infinite loop. The flow entry in table 2 is to forward a

modified packet submitted from flow table 0 to Raspi 2 and the flow entry in table 4 to

forward a modified packet submitted from flow table 0 to Gateway 1.

The flow rules for ARP packet and IP packet in each OVS of Gateway 1, Raspi 1

and Raspi 2 enable in-band communication by forwarding the control packets and data

packets over a single physical wireless interface. Control packets are TCP packets from

mesh nodes (Raspi 1 and Raspi 2) to a specified port number of Gateway 1 which RYU

controller uses. Here, port number 6633 of Gateway 1 is used by RYU controller to set up

the control channel. Data packets in the preliminary outdoor SDWMN testbed are TCP

27

packets generated by iperf [21] to measure TCP throughput from mesh nodes to another

port number of Gateway 1 which is not used by RYU controller and ICMP packets generated

by ping program from mesh nodes to Gateway 1 in order to measure round-trip-time (RTT).

3.3 Measurement Result of Preliminary SDWMN Testbed’s

Performance

Iperf software has been used to measure the TCP throughput of the wireless route

with 1 and 2 hops. Table 3.1 reports the results of TCP iperf from 3 runs, each with the

measurement period of 100 seconds. In order to measure the average RTT, a ping program

is used. Here, 200 ICMP packets have been generated for each run and the average RTT

value from each run is shown in Table 3.2.

Tables 3.1 and 3.2 confirm that the OVS forwarding rules of in-band control can provide

effectively the necessary control plane for the implementation of data packet forwarding. In

addition, based on the expected target usage scenario of a road network traffic monitoring,

the reported round-trip time results confirm that the current network settings can be applied

beneficially in the future large-scale road traffic monitoring system. In practice, even for

an automatic control of traffic signal light based on the wireless sensor network, a latency

as high as a second should be acceptable. Future investigations are, however, needed to

thoroughly confirm the usability of this SDWMN for that practical application.

Table 3.1: Average TCP throughput in preliminary outdoor SDWMN testbed
(Mbit/sec).

Average Throughput Average Throughput
for 1 hop for 2 hop

Test 1 10.9 7.1
Test 2 9.1 2.8
Test 3 10.7 2

Total Average
10.2 3.9

Throughput

In this section, we have designed and implemented the preliminary outdoor SDWMN

testbed for measuring the network throughput and round-trip time performance of an out-

door medium-range SDWMN testbed. In-band control approach has been implemented

28

Table 3.2: Average RTT in preliminary outdoor SDWMN testbed (ms).

Average RTT for Average RTT for
1 hop 2 hops

Test 1 13.318 45.84
Test 2 8.954 46.784
Test 3 7.017 38.077

Total Average 9.763 43.567
RTT

successfully to save the extra hardware cost. The network covers only up to 2 hops simpli-

fied routing with 1 gateway. Our ongoing work is to increase the number of mesh nodes in

between the two gateways, where OpenFlow-based routing adaptation needs to be verified.

To enable the final SDWMN testbed robustness, a 24-hour test span is in the plan, whereby

the effect of other environmental conditions (e.g. ambient temperature, time of day) can

be further studied.

Chapter 4

Proposed Fault-Tolerant Multi-hop Routed

SDWMN with Node Failure

In this chapter, the criteria for the implementation of the final proposed outdoor

medium-range SDWMN testbed along the road with multi-hop routing scenario is de-

scribed. Firstly, the design criteria of the proposed outdoor SDWMN testbed is the same

as what we have implemented in the preliminary outdoor SDWMN testbed in Chapter 3.

The main difference is that the number of wireless components will be increased and the

extended plan to resist the seasonal challenges be added in the final proposed outdoor SD-

WMN testbed. The number of wireless mesh nodes is increased to six wireless mesh nodes

of Raspberry Pi’s and two gateways which are the Intel R©NUC7i7BNH computers.

The proposed topology of the outdoor medium-range SDWMN testbed for road traffic

monitoring over a bi-directional road of car lanes between two intersections is illustrated in

Figure 4.1.

Figure 4.1: Topology of proposed outdoor SDWMN testbed for road traffic
monitoring over bi-directional road of car lanes between two intersections.

30

4.1 Installation Preparation on Phaya Thai Road

The final outdoor SDWMN testbed is set up with 2 gateways and 6 wireless mesh nodes

on Phaya Thai road segment between Rama 1 road and Rama 4 road in Bangkok. The total

distance between two gateways is around 1100 meters. Each gateway is placed at the traffic

police box. The topology of final outdoor SDWMN testbed in summarized in Figure 4.1.

Between two traffic police boxes, there are three crossover bridges which are high enough

to install the box for wireless mesh node and the average distance between each crossover

bridge is 250 meters. RYU controller is installed at Gateway1.

The function of the wireless mesh node and the gateway are also the same as what

we have discussed in the previous chapter. To recall their function, there are two main

jobs for a wireless mesh node. The first job is to relay packets (control packet and data

packet) which come from the other wireless mesh nodes to Gateway 1 or Gateway 2. The

second job is to send data packets from the sensor such as the images from the attached

camera of that wireless mesh node. The main job for a gateway is to receive the packets

continuously from the wireless mesh nodes. The software tools for implementation of the

proposed outdoor SDWMN testbed will be the same as that we have applied to implement

the preliminary outdoor SDWMN testbed. The names of the software tools and the function

of each software tool are recalled in Table 4.1.

Table 4.1: Software tools for implementing proposed outdoor SDWMN testbed.

Software Function
Open vSwitch Virtual OpenFlow Switch

RYU SDN Controller Application
Ubuntu Mate Linux Operating System

Ubuntu Linux Operating System
Iperf TCP/UDP Throughput Measurement Tool

We have described our experience in preparation from the software part for the final

outdoor proposed SDWMN testbed. Installation the application of RYU controller, Open-

Vswitch does not give any problems for us. However, the installation of the driver of EDUP

EP-AC1605 into Linux devices gives a problem for us because the original driver which

is supported by the company does not support for the Linux kernel version of 4.4. The

modified driver version of EDUP EP-AC1605 can be downloaded from GitHub and that

31

modified driver version can be installed in Linux kernel version of 4.4. As Linux kernel ver-

sion of 4.4, modified driver version of EDUP EP-AC1605 can be installed. However, Linux

kernel version of Intel NUC device is 4.13 and we install a driver for EDUP EP-AC1605

antenna which can support Linux kernel version of 4.13. However, the problem we have

faced is that shutting downtime for Intel NUC take at least 25 minutes when an external

antenna is attached at Intel NUC. Therefore we downgrade the Linux kernel version from

4.13 to 4.4 at Intel NUC and that problem is solved. Based on our experience, Linux kernel

version plays an important role to install a driver of an external antenna for a Linux-based

operating system.

Another important thing in this work is the plan for the proposed outdoor SDWMN

testbed to overcome the seasonal challenges, especially for the rainy season. Each gateway

will be placed inside the traffic police box and therefore the gateways do not need to

be waterproofed. A waterproof enclosure with an IP67 standard which needs to be wide

enough to put a wireless mesh node and a power bank with 30000 mAh to feed the power

to a wireless mesh node must be installed.

4.2 Implementation of Multi-hop Routing

After discussing the design criteria for the proposed outdoor SDWMN testbed, the detail

procedures to implement the multi-hop routing scenario for the proposed outdoor SDWMN

testbed are described.

Firstly, the detailed architecture of the proposed outdoor SDWMN testbed over a bi-

directional road of car lanes between two intersections is summarized in Figure 4.2.

OVS 1,2,3,4,5,6 have been installed in the wireless mesh nodes and OVS 7,8 have been

installed in the two gateways. A wireless interface of the wireless mesh nodes and the

gateways is added to the OVS. The packet forwarding behavior of a wireless mesh node is

summarized as a flowchart in Figure 4.3.

The application for routing running at the northbound interface of RYU controller must

assign necessary OpenFlow forwarding rules to the wireless mesh nodes and the gateways

in order to enable the in-band multi-hop routing. The control plane has been implemented

in the same way that we have implemented at the preliminary outdoor SDWMN testbed

32

Figure 4.2: Architecture of proposed outdoor medium-range SDWMN testbed.

Figure 4.3: Forwarding procedure of wireless mesh node.

33

by installing pre-existing rules at each OVS of six wireless mesh nodes and two gateways.

Figure 4.4 illustrates the proposed outdoor SDWMN testbed with the primary routes

for the control plane.

Figure 4.4: Illustration of routing for control plane in proposed outdoor SD-
WMN testbed.

RYU controller is installed in Gateway 1. The routing information of the control plane

in the proposed outdoor medium-range SDWMN testbed is described in Table 4.2.

Table 4.2: Routing information for control plane of proposed outdoor SDWMN
testbed.

Routing path for control plane Primary Route

Between RYU and Raspi 1 Raspi 1 - Gateway 1

Between RYU and Raspi 2
Raspi 2 - Raspi 1 -

Gateway 1

Between RYU and Raspi 3
Raspi 3 - Raspi 2 - Raspi 1 -

Gateway 1

Between RYU and Raspi 4 Raspi 4 - Gateway 1

Between RYU and Raspi 5 Raspi 5 - Raspi 4 - Gateway 1

Between RYU and Raspi 6
Raspi 6 - Raspi 5 - Raspi 4 -

Gateway 1

Between RYU and Gateway 2
Gateway 2 - Raspi 3 - Raspi 2 - Raspi 1 -

Gateway 1

In the proposed outdoor SDWMN testbed, the wireless mesh nodes will send the data

packets such as a captured image from the attached camera in a Raspberry Pi continuously

34

to Gateway 1 and Gateway 2. Therefore the destination IP address of the data packets

from each wireless mesh node is the IP address of Gateway 1 or IP address of Gateway 2.

There are two gateways and six Raspberry Pi’s in the proposed outdoor SDWMN testbed.

Sending the data packets from the Raspberry Pi to only one gateway can lead to the traffic

congestion at that gateway and therefore we separate nodes into two groups where each

group includes one gateway and three wireless mesh nodes. For instance, Raspi 1, Raspi

2, Raspi 4, Gateway 1 is in one group and Raspi 3, Raspi 5, Raspi 6, Gateway 2 is in

the other group. Each wireless mesh node sends the data to the nearest gateway. The

shortest path between each wireless mesh node and gateway is not needed to be calculated

by RYU controller as the distance between gateways and wireless mesh nodes have been

already known. The routing principle for the data plane for the proposed outdoor SDWMN

is summarized in Figure 4.5. The routing information of the primary route for data plane

is summarized in Table 4.3.

Figure 4.5: Illustration of routing for data plane in proposed outdoor SDWMN
testbed.

The proposed outdoor SDWMN along the road is a static network and the location of

the wireless mesh nodes and the gateways will be at the fixed location. Therefore, the case

of the wireless mesh node mobility and the mobility-influenced changes of the topology will

not be considered in this thesis.

35

Table 4.3: Routing information for data plane of proposed outdoor SDWMN
testbed.

Switch ID Primary route for data plane
Raspi 1 Raspi 1 - Gateway 1
Raspi 2 Raspi 2 - Raspi 1 - Gateway 1
Raspi 3 Raspi 3 - Gateway 2
Raspi 4 Raspi 4 - Gateway 1
Raspi 5 Raspi 5 - Raspi 6 -Gateway 2
Raspi 6 Raspi 6 - Gateway 2

4.3 Implementation of Restoration Mechanisms Upon Fail-

ure Scenario of Wireless Mesh Node

In this thesis, we also consider the simple necessary restoration mechanisms based on

the failure of the wireless mesh node. The process of OpenFlow based rerouting based on

the failure of a wireless mesh node from RYU controller contains:

1. The mechanism for RYU controller to detect the failure of the wireless mesh node.

2. The rerouting program which is implemented at the northbound interface of RYU

controller will assign the OpenFlow forwarding rules reactively to the functioning

wireless mesh nodes to establish alternative routes.

3. When the failed wireless mesh node is recovered back, RYU controller will assign back

the primary route.

The mechanism for RYU controller to detect the failure of the wireless mesh node based

on the messages of echo request and echo reply. Echo message is used to exchange the

information of latency, bandwidth, liveness and echo request/reply message can be sent

from either from an SDN controller or from an OpenFlow switch [17]. The exchange of echo

request/reply message between an SDN controller and an OpenFlow switch is summarized

in Figure 4.6.

In detecting the failure of a wireless mesh node, RYU controller sends the echo request

message to a wireless mesh node to detect the liveness between RYU controller and wireless

mesh nodes. The meaning of liveness between RYU controller and wireless mesh nodes is the

active connection status between RYU controller and wireless mesh nodes. If wireless mesh

36

Figure 4.6: Echo message exchange between SDN controller and OpenFlow
switch [17].

nodes cannot reply to the echo request message from RYU controller, then RYU controller

will decide that the connection between RYU controller and the unreplying wireless mesh

node is failed.

The rerouting program for the SDWMN network is implemented at the application layer

of RYU controller to reroute the wireless mesh node when one of the wireless mesh nodes

inside the SDWMN is failed. For rerouting purpose, RYU controller uses a set configuration

request messages in order to install the necessary forwarding rules to build the alternative

route. An example of rerouting scenario based on three wireless mesh nodes and one gateway

is illustrated in Figure 4.7.

Figure 4.7: Example of node failure rerouting based on three wireless mesh
nodes and one gateway.

37

Let Raspi 3, Raspi 2 and Raspi 1 represent the wireless mesh nodes and Gateway 1

represents a gateway. In this example, we consider the case of routing between Raspi 3 and

Gateway 1. There are two possible primary routes between Raspi 3 and Gateway 1 which

are Raspi 3 - Raspi 1 - Gateway 1 and Raspi 3 - Raspi 2 - Gateway 1.

In this example, the primary route is Raspi 3 - Raspi 1 - Gateway 1 for Raspi 3 and the

alternative route for Raspi 3 is Raspi 3 - Raspi 2 - Gateway 1 when Raspi 1 is failed. The key

idea behind the rerouting scenario is a configuration request message and hard timeout. In

order to establish the primary route in this example, the default forwarding rules at Raspi

1 to relay the control packet from Raspi 3 to Gateway 1 and assign the default forwarding

rules at Raspi 2 to drop the control packet from Raspi 3 to Gateway 1. When all wireless

mesh nodes such as Raspi 3, Raspi 2 and Raspi 1 in this example are connected with the

RYU controller, RYU controller will keep silent without sending a configuration request

message to the connected wireless mesh node. When Raspi 1 is failed, RYU controller

sends a configuration request message to currently connected switch such as Raspi 2 in

this example and assign the backup forwarding rules at Raspi 2 to forward the control

packet from Raspi 3 to Gateway 1 with a specified amount of hard timeout. Those backup

forwarding rules need to be a higher priority than that of default forwarding rules. Due to

the temporarily assigned forwarding rules at Raspi 2, Raspi 2 forwards the control packet

from Raspi 3 to Gateway 1 to build the alternative route. When Raspi 1 is back to the

operational stage, RYU controller will stop sending the configuration request message.

We have explained the example of rerouting scenario and the more detailed rerouting

scenario for the proposed outdoor SDWMN testbed is discussed here. The forwarding rules

for the primary route are installed at the bootstrapping stage of each wireless nodes and

therefore, the primary route is established whenever wireless nodes including all wireless

mesh nodes and two gateways are turned on.

The predefined primary routes let wireless nodes to send OFPT HELLO messages and

RYU controller will respond that OFPT HELLO message to wireless mesh node when

RYU controller receives that packet. After OFPT HELLO message has been exchanged

successfully between wireless mesh node and RYU controller, RYU controller decides that

the connection between wireless mesh node and RYU controller has been established. The

38

scenario of exchanging the OFPT HELLO messages between wireless mesh node and RYU

controller is illustrated in Figure 4.8.

Figure 4.8: Illustration of exchanging OFPT HELLO messages between wireless
mesh node and RYU controller.

Once a wireless node has been connected with RYU controller, RYU controller puts that

connected wireless nodes to the set of all nodes reachable by RYU controller. RYU controller

keeps monitoring the connectivity status with wireless nodes by using echo request and echo

reply message. In the current configuration, RYU controller sends an echo request message

to all connected wireless nodes every 3 seconds. If wireless mesh nodes cannot reply to

the echo request message from RYU controller for 4 retrial times, then RYU controller will

decide that the connection between RYU controller and the unreplied wireless mesh node

is failed or unreachable. The timeout for echo request interval is 5 seconds. Since echo

request message will be sent to a wireless mesh node for every 3 seconds and therefore the

fourth echo request message will be sent after 12 seconds of the first echo request message.

The fourth echo request message will be expired in 5 seconds, the total required time for

RYU controller to detect the failure is 17 seconds theoretically. If wireless mesh nodes are

disconnected from RYU controller, RYU controller would delete the disconnected wireless

nodes from the set of all nodes reachable by RYU controller. If all wireless mesh nodes are

still connected with RYU controller, then RYU controller will simply need to keep sending

only echo request message and listening to the echo reply message from each wireless node.

If one or many of the wireless mesh nodes are disconnected from RYU controller, then RYU

controller will send a configuration request message to every current connected switches

39

with RYU controller and assigns the necessary predefined forwarding rules to establish

the alternative route with the purpose of rerouting. These new rules are treated here as

the temporarily remedial rules because all the nodes are not moving and it is believed

that the firstly predefined rules automatically assigned at the node’ s boosting time must

be nominally the best. Therefore, these new rules will be assigned the OpenFlow flow

entry priority values which are higher than those of the predefined rules preinstalled at the

boosting time. Consequently, with the presence of rerouting rules, the node will use these

rerouting rules instead of using the predefined rules. In addition, since these new rules

are treated merely as temporarily remedial of occasionally occurring node unreachability

instances, these rerouting rules are assigned a relatively small value of hard timeout. So,

after the rule is installed for a longer time than that hard timeout setting, the rule simply

expires. The job of RYU controller therefore in our algorithm is to keep sending out those

rerouting rules to all the switches periodically with the period that must be configured

smaller than the hard timeout settings. We have chosen to implement our rerouting in this

way because we have to deal with the in-band control approach. So we must make sure that

at least as the last resort, when all nodes are rebooted, the flow entries initially assigned

must be a good starting plan to establish the control plane and the data plane at least in the

case that all nodes are reachable SDN controller. If all wireless mesh nodes get connected

back with RYU controller, RYU controller will stop sending a configuration request message

to all currently connected switches. The algorithm of rerouting is discussed below and the

assumption before starting rerouting algorithm is that all wireless mesh nodes get connected

to RYU controller initially.

Algorithm: Rerouting Input : Rc= sdn controller

G = number of gateway nodes connected to Rc

N = number of wireless mesh nodes connected to Rc

mrequest = echo request message

mreply = echo reply message

mc = configuration request message

τe = echo request interval

τc = configuration request interval

40

τh = hard timeout duration

ue n = unreplied echo request for each wireless mesh node

La = active node queue or set of all nodes reachable by Rc

Initialize : τe= 3s , ue n = 0, τc = 8s, τh = 10s, La = N, G = 2, N = 6

1. Begin

2. For n = 1,.,N Do

3. Rc sends mrequest to n every τe

4. if Rc receives mreply from n then

5. mark n as connected active node i.e. put n into La and

set ue n = 0

6. else ue n + = 1

7. if ue n = 4 then

8. delete n from La

9. Rc sends mc to remaining active nodes in La every τc and

install necessary forwarding rules to build the alternative route as

predefined in Tables 4.4 and 4.5 with τh

10. End For

11. End

Since the in-band control approach is applied in the implementation of the outdoor

medium-range SDWMN testbed, rerouting scenario from RYU controller needs to be con-

sidered not only for the control plane but also for the data plane. Consider the network

topology in Figure 4.1 for the target testbed to be implemented.

Table 4.4 shows the rerouting information of the alternative routes to recover the control

plane when primary routes for control plane are failed because of the failure of wireless

mesh node. Table 4.5 shows the rerouting information of the alternative routes to restore

the data plane when primary routes for the data plane are failed because of the failure

of wireless mesh node. According to the routing information of primary route for control

plane in Table 4.4, the failure of Raspi 6 does not affect it‘s neighbor wireless mesh node‘s

control plane. Therefore, the failure of Raspi 6 is not considered in rerouting process for

the control plane. The alternative routes for data plane in Table 4.5 are also the predefined

41

alternative routes to a nearest gateway. Failed node in Tables 4.4 and 4.5 is defined as a

wireless mesh node which has no active connection with RYU controller. Affected node in

Tables 4.4 and 4.5 is defined as a wireless mesh node which connects between RYU controller

is disabled due to failed neighbor wireless mesh node. The alternative routes in Tables 4.4

and 4.5 are the predefined backup routes to recover the respective affected nodes due to the

failure of neighboring wireless mesh node.

Table 4.4: Rerouting information with failure of wireless mesh node for control
plane.

Failed node Affected node Alternative route

Raspi 1 Raspi 2
Raspi 2 - Raspi 5 - Raspi 4 -

Gateway 1

Raspi 2 Raspi 3
Raspi 3 - Raspi 6 - Raspi 5 - Raspi 4 -

Gateway 1

Raspi 3
Raspi 3 - Raspi 6 - Raspi 5 - Raspi 4 -

Gateway 1

Raspi 3 Gateway 2
Gateway 2 - Raspi 6 - Raspi 5 - Raspi 4 -

Gateway 1

Raspi 4 Raspi 5
Raspi 5 - Raspi 2 - Raspi 1 -

Gateway 1

Raspi 5 Raspi 6
Raspi 6 - Raspi 3 - Raspi 2 - Raspi 1 -

Gateway 1

Gateway 2
Gateway 2 - Raspi 6 - Raspi 5 - Raspi 4

Gateway 1

Table 4.5: Rerouting information with failure of wireless mesh node for data
plane.

Failed node Affected node Alternative route

Raspi 1 Raspi 2
Raspi 2 - Raspi 5 - Raspi 4 -

Gateway 1

Raspi 6 Raspi 5
Raspi 5 - Raspi 2 - Raspi 3 -

Gateway 2

According to primary routes for data plane in Table 4.3, Raspi 4 and Raspi 3 do not

need to relay the data packets from Raspi 2 and Raspi 5. If Raspi 4 and Raspi 5 are failed,

then the data packets from Raspi 2 can still be sent through the route of Raspi 2 - Raspi

1 - Gateway 1 and the data packets from Raspi 5 can still be sent through the route of

Raspi 5 - Raspi 6 - Gateway 2. If Raspi 2 and Raspi 5 fail, then the data packets from

42

Raspi 1, Raspi 4 can still be sent to Gateway 1 and the data packets from Raspi 3 and

Raspi 6 can still be sent to Gateway 2. Only Raspi 1 needs to relay the data packets from

Raspi 2 to Gateway 1 and Raspi 6 needs to relay the data packets from Raspi 5 to Gateway

2. If Raspi 1 is failed, then the data packets from Raspi 2 are rerouted to the alternative

route which is Raspi 2 - Raspi 5 - Gateway 2 and the data packets from Raspi 5 is rerouted

to the alternative route which is Raspi 5 - Raspi 3 - Gateway 1 if Raspi 6 is failed. The

predefined alternative routes in Tables 4.4 and 4.5 are based on the shortest path scenario.

In this work scope, the alternative routes to recover the control plane and data plane when

a wireless mesh node is failed are only simple predefined alternative routes.

4.4 Monitoring Program for CPU Temperature of Wireless

Mesh Node

The hardware specification of Raspberry Pi 3 is still limited and there is no CPU cooling

system in the hardware of a Raspberry Pi. CPU temperature of a Raspberry Pi is suspected

to be increased when applications are operated. The total temperature of a Raspberry Pi

results from the addition of the device temperature and the ambient temperature. The

maximum operable temperature of a Raspberry Pi is 85-degree Celsius and therefore the

expected maximum temperature for system operation must be less than 80-degree Celsius

with a safety margin of 5-degree Celsius. Since an ambient temperature is not controllable,

the variation of actual operating temperature needs to be analyzed after the network is set

up. Each Raspberry Pi will be placed inside a waterproof enclosure in the final testbed,

and the CPU temperature of a Raspberry Pi is expected to be increased due to ambient

temperature, especially in the summer season. The monitoring program for CPU tempera-

ture of wireless mesh node is implemented in each wireless mesh node in order to monitor

the CPU temperature of a wireless mesh node due to ambient temperature by running the

wireless mesh node for at least a continuous period of a whole day with 24 hours.

Temperature monitoring program which is summarized in 4.9 is implemented in each

wireless mesh node. In the implemented temperature monitoring program, the wireless

mesh node will be rebooted when the device temperature of the wireless mesh node is

43

Figure 4.9: Temperature monitoring Python program installed in each wireless
mesh node.

beyond 80-degree Celsius.

Chapter 5

Experiment of Final Outdoor SDWMN Testbed

inside Campus

5.1 Setting of One-Hop Reachability Test inside Campus

The measurement of network reachability is taken along the road inside the campus

area of the Chulalongkorn University and the position of the testing for wireless network

reachability is summarized in Figure 5.1. The way of testing for the reachability of wireless

Figure 5.1: Testing scenario of wireless network reachability inside campus area
of Chulalongkorn University.

network is summarized in Figures 5.2, 5.3, 5.4 and 5.5.

Figure 5.2: 100-metre wireless network reachability testing.

In 100 meters, two wireless mesh nodes are placed at the same side of the road as shown

45

Figure 5.3: 200-metre wireless network reachability testing.

Figure 5.4: 300-metre wireless network reachability testing.

Figure 5.5: 400-metre wireless network reachability testing.

46

in Figure 5.2 and there is an electric pole between two wireless mesh nodes which can block

signal between two wireless mesh nodes. In 200 meters, two wireless mesh nodes are placed

at the opposite side of the road and no trees between two wireless mesh nodes. In those

two scenarios, the two wireless mesh nodes are placed on the small bush which is on the

platform of the road as shown in Figure 5.2 and the height of the wireless mesh node inside

the box from the ground is the same at every location. During the testing for 300 meters,

one person has raised up the wireless mesh node instead of placing the wireless mesh node

on the small bush. We tried to test TCP throughput in 400 meters as the same way what

we have tested in 300 meters. Due to the large distance in 400 meters, TCP throughput

and UDP throughput are the lowest among all testing experiments. The investigation has

been conducted on Sunday 15th October inside the campus of Chulalongkorn University

and therefore, there have been only a few cars which can block the signal during testing

time. Two wireless mesh nodes have been configured at 5.66 GHz (132 channel) and the

values of TCP and UDP throughput are summarized in Figures 5.7 and 5.8. The reason

for choosing that channel is that 132 channel at that time has not been used by others

according to the information of WiFi network analyzer from a smartphone.

5.2 Measurement Result of One-Hop Reachability

From the measurement result, the possible reason of causing the uncontrollable trend

of throughput values are is a multipath fading within a campus. However, the aim for

measuring the one-hop network reachability test is to know what is the maximum distance

of one-hop link. The result from Figure 5.7 confirms that the obtained TCP throughput

value at 400 meters which is still enough to support the intended future traffic monitoring

application which requires 600 kbit/sec for sending captured image from Raspberry Pi‘s

camera to traffic police box.

47

Figure 5.6: Comparison of 95-percent confidence interval for RTT in one-hop
reachability.

Figure 5.7: Comparison of 95-percent confidence interval for TCP throughput
in one-hop reachability.

48

Figure 5.8: Comparison of 95-percent confidence interval for UDP throughput
in one-hop reachability.

Chapter 6

Experiment of Final Outdoor SDWMN Testbed on

Phaya Thai Road

6.1 Setting Up of Actual Testbed Component Installation

In this section, the steps of implementation for the real outdoor SDWMN testbed on

Phaya Thai road between Rama 1 road and Rama 4 road is mainly discussed and Figure 6.1

shows the topology of real outdoor SDWMN testbed.

Figure 6.1: Topology of real outdoor SDWMN testbed on Phaya Thai road for
road traffic monitoring network.

Figure 6.2 illustrates the way of attaching the waterproof box at the fence of the crossover

bridge on Phaya Thai road.

Figure 6.2: Installation of waterproof box at fence of crossover bridge on Phaya
Thai Road.

50

Figure 6.3: Installation of wireless mesh node inside waterproof box over
crossover bridge on Phaya Thai Road.

Figure 6.3 shows the equipment of wireless mesh node inside the waterproof box. Inside

every waterproof box, there is a Raspberry Pi, a power bank with 30000 mAh, and external

omnidirectional antenna.

Figure 6.4: Crossover bridge on Phaya Thai Road.

Figure 6.4 is a picture of crossover bridge along the Phaya Thai road between Rama

1 road and Rama 4 road where wireless mesh nodes are installed. There are two wireless

mesh nodes installed on each crossover bridge and the position of attached waterproof box

at the crossover bridge is shown in Figure 6.5.

Two gateways in the outdoor SDWMN testbed are installed in two different traffic

police boxes. Gateway 1 is installed at the traffic police box which is close to SamYan and

Gateway 2 is installed at another traffic police box which is close to the MBK shopping

51

Figure 6.5: Position of wireless mesh node over crossover bridge on Phaya Thai
Road.

center along the Phaya Thai road. Figure 6.6 shows the installation of Gateway 1 inside

the building of traffic police box and Figures 6.7 and 6.8 represent the building of traffic

box where Gateway 2 is located.

Figure 6.6: Traffic police box near SamYan MRT station on Rama 4 road where
Gateway 1 is installed.

6.2 Measurement Result of Network Performance for Data

Plane Traffic

In this section, the network performance of primary routes for the data plane in the

outdoor SDWMN testbed is reported in terms of TCP throughput, UDP throughput, RTT

and packet loss ratio. Measurement has been conducted during both daytime and nighttime

in order to investigate the likely impact of vehicle presence crowd such as buses and cars on

the road which is denser in daytime than nighttime. The period of a daytime experiment

52

Figure 6.7: Traffic police box near Chulalongkorn Soi 12 where Gateway 2 is
installed.

Figure 6.8: Installation of Gateway 2 in traffic police box.

53

is from 11 AM to 9 PM and the period of a nighttime experiment is from 10 PM to 8 AM.

The time frame for daytime and nighttime testings are based on the standard responsible

working hours of the shift of local traffic police.

The road traffic situation on Phaya Thai road segment between Rama 1 and Rama 4

road is exemplified in Figures 6.9 and 6.10.

Figure 6.9: Traffic image captured with smart phone at daytime on Phaya Thai
road at 4 PM.

The routing information for the data plane of the implemented testbed is recalled in this

section. The routing information for the data plane is divided into two groups which are

the group for Gateway 1 and the group for Gateway 2. In the group of Gateway 1, wireless

mesh nodes of Raspi 1, Raspi 2 and Raspi 4 send the data packets to Gateway 1 and Raspi

3, Raspi 5 and Raspi 6 send the data packets to Gateway 2. The reason for grouping into

two groups is for traffic load balancing.

The intended future traffic monitoring application is Kafka [10] and that application

is based on TCP protocol for sending data packets such as image or video. Therefore, we

mainly measure TCP throughput for each group of a gateway in order to make sure current

network setting can support Kafka or not. We also have measured UDP throughput for a

comparative reference.

Each measurement procedure is conducted by using the applications of iperf3 and ping.

Iperf3 server has been run as a daemon in two gateways and an Iperf3 client is executed in

each wireless mesh node. Each testing for TCP throughput, UDP Throughput and RTT

based on ICMP packet with 1456 bytes sent for 3 minutes in a sequence which means iperf3

54

Figure 6.10: Traffic image captured with smart phone at nighttime on Phaya
Thai road at 4 AM.

55

is run for TCP throughput for 3 minutes, UDP throughput for 3 minutes and ping is run

for 3 minutes. We repeat the testing sequence 12 times.

Therefore, measuring the network performance at each wireless mesh node has taken

at least 1 hour and 48 minutes. If iperf3 is run at all wireless mesh nodes at the same

time, there will be some congestion being built up by the injected test traffics from all the

nodes and the actual available value of network performance cannot be obtained correctly.

Therefore, we measure the network performance at each wireless mesh node at a time.

For example, when we complete the testing scenario at Raspi 1, measurement for network

performance is started at Raspi 2. At least 10 hours are required to complete the testing

scenario for all mesh nodes. During this test operation, we have noticed that the network

interface of an attached external antenna has congested during the operation for measuring

UDP throughput. Since there is no congestion control in UDP communication, testing

the UDP throughput over medium-range wireless link has congested the external wireless

network interface. However, we will not use the UDP protocol in the future intended traffic

monitoring application.

Learning from the experiment of running the test for daytime operation, we change

the testing sequence for nighttime operation. Particularly, we run TCP iperf3 first for 12

times at each of wireless mesh nodes with one node at a time. After TCP throughput

measurement is finished, we run a ping program at each of wireless nodes for 12 times with

one node at a time. As the last experiment, UDP measurement is conducted.

Figures 6.11, 6.12, 6.13 and 6.14 report the compared values of TCP throughput,

UDP throughput and RTT during operation of daytime and nighttime as computed with

95-percent confidence interval.

Figure 6.11: Comparison of 95-percent confidence interval for TCP throughput
from Raspi 1, Raspi 2 and Raspi 4 to Gateway 1 between daytime and nighttime.

56

Figure 6.12: Comparison of 95-percent confidence interval for UDP throughput
from Raspi 1, Raspi 2 and Raspi 4 to Gateway 1 between daytime and nighttime.

Figure 6.13: Comparison of 95-percent confidence interval for RTT from Raspi
1, Raspi 2 and Raspi 4 to Gateway 1 between daytime and nighttime.

57

Figure 6.14: Comparison of packet loss ratio from Raspi 1, Raspi 2 and Raspi
4 to Gateway 1 between daytime and nighttime.

Figures 6.11 and 6.12 show that the implemented outdoor SDWMN provides better

network performance at nighttime than what it can provide at daytime. Figure 6.13 confirms

that more congested traffic situation at daytime can increase RTT of ICMP packet with

1456 bytes and packet loss ratio at daytime is higher than that of night time as seen from

Figure 6.14. As the wireless external antenna at Gateway 1 is placed inside the building

of traffic police box as shown in Figure 6.6, the signal between Gateway 1 and nearest

wireless mesh nodes can be blocked while big cars such as buses are about to passing the

intersection. From the real investigation result, the recommendation for future investigation

is in locating the wireless antenna as high as possible such as placing the antenna at the

roof of the traffic police box. In the group of Gateway 1, 2-hop communication from Raspi

2 to Gateway 1 provide lower than 600 kbit/sec which is an amount of bandwidth that

traffic monitoring application is required, there can be a delay sending the captured images

from the attached camera at Raspi 2 to Gateway 1. For other two nodes which are Raspi

1 and Raspi 2, the available TCP bandwidth can well support for Raspi 1 and Raspi 4 to

send captured images to Gateway 1.

Similar measuremet has been executed for the group of Gateway 2 and the results are

shown in Figures 6.15, 6.16, 6.17 and 6.18.

Before discuss the result of comparison for the group of Gateway 2, recall that the

physical location between Raspi 3 and Gateway 2 is shown in Figure 6.19.

Along the route between Gateway 2 and Raspi 3, there are many trees at the side of

the Phaya Thai road and the results of TCP throughput, UDP throughput between Raspi

3 and Gateway 2 in Figures 6.15 and 6.16 are the lowest in the nighttime. Likewise, RTT

value is also the largest between Raspi 3 and Gateway 2 in both daytime and nighttime

experiments. Due to many obstacles for the route between Raspi 3 and Gateway 2, obtained

58

Figure 6.15: Comparison of 95-percent confidence interval for TCP throughput
from Raspi 3, Raspi 5 and Raspi 6 to Gateway 2 between daytime and nighttime.

Figure 6.16: Comparison of 95-percent confidence interval for UDP throughput
from Raspi 3, Raspi 5 and Raspi 6 to Gateway 2 between daytime and nighttime.

59

Figure 6.17: Comparison of 95-percent confidence interval for RTT from Raspi
3, Raspi 5 and Raspi 6 to Gateway 2 between daytime and nighttime.

Figure 6.18: Comparison of packet loss ratio from Raspi, Raspi 5 Raspi 6 to
Gateway 2 between daytime and nighttime.

60

Figure 6.19: Physical location between Raspi 3 and Gateway 2.

TCP throughput result is not sufficient to support for future traffic monitoring application.

Figure 6.20: Physical location between Raspi 6 and Raspi 5.

The measurement value for TCP throughput from Raspi 5 and Raspi 6 is only 90 kbit/sec

which is very low to support necessary bandwidth for traffic monitoring application. The

possible problem is that there has been a lot of disconnection between the wireless link

between Raspi 5 and Raspi 6 as shown in Figure 6.20. The waterproof box in Figure 6.20

is Raspi 6 and Raspi 5 at the opposite side of the crossover bridge is at the same location.

Therefore, we shift the location of Raspi 5 from the side of the crossover bridge to the

middle of the crossover bridge for nighttime testing to avoid the obstacles. Since we moved

the location of Raspi 5 in order to avoid interference of trees between the route of wireless

link Raspi 5 and Raspi 6, we compare the obtained result as old location vs new location

61

in Figures 6.21, 6.22, 6.23 and 6.24.

Figure 6.21: Comparison of 95-percent confidence interval for TCP throughput
from Raspi 5 to Gateway 2 in old location and new location.

After we have moved the location of Raspi 5 from the side of the crossover bridge to

the middle of the crossover bridge, TCP, UDP throughput at the new location is better

than that of an old location. Adjusting the new location of Raspi 5 increases the network

performance. Apart from that part, the comparison has been made between nighttime and

daytime for the wireless link between Raspi 1 and Gateway 1, Raspi 2 and Gateway 1,

Raspi 3 and Gateway 2, Raspi 4 and Gateway 1, Raspi 5 and Gateway 2 and Raspi 6 and

Gateway 2.

From the experiment result, we have observed that the current measurement value of

TCP throughput from Raspi 4 - Gateway 1, from Raspi 1 to Gateway 1, from Raspi 6

to Gateway 2 is enough for the whole day to support future traffic monitoring application

which is required at 600 kbps. From Raspi 2 to Gateway 1, From Raspi 5 (new location)

to Gateway 2, TCP and UDP throughput are enough when there is a light traffic condition

but there can be a delay for traffic monitoring application in sending the captured images

to the traffic box. The comparison of daytime vs nighttime values shows that network

performance is better than at nighttime than daytime due to traffic density on the road

especially, there can be only a few big cars at nighttime. Therefore, the position an antenna

should be high enough to receive the better signal from wireless mesh node at each gateway

in future investigation. The impact of trees on the throughput value between Raspi 3 and

Gateway 2 is a good lesson for designing the routing for future work as trees can be an

unavoidable obstacle for road traffic monitoring network. In the physical location for the

group of Gateway 2 as per described in Figure 6.26, the distance between Raspi 3 and

Gateway 2 and the distance between Raspi 6 and Gateway 2 are mostly same but there is

a huge difference in obtained TCP, UDP throughput. For the group of Gateway 1, TCP

and UDP throughput between Raspi 4 and Gateway 1 are larger in twice than the value

62

Figure 6.22: Comparison of 95-percent confidence interval for UDP throughput
from Raspi 5 to Gateway 2 in old location and new location.

Figure 6.23: Comparison of 95-percent confidence interval for RTT from Raspi
5 to Gateway 2 in old location and new location.

63

Figure 6.24: Comparison of packet loss ratio from Raspi 5 to Gateway 2 in old
location and new location.

Figure 6.25: Physical location between Raspi 1, Raspi 4 and Gateway 1.

64

Figure 6.26: Physical location between Raspi 3, Raspi 6 and Gateway 2.

of TCP and UDP throughput between Raspi 1 and Gateway 1. Therefore, we recommend

considering the routing pattern of zigzag instead of a straight line if wireless mesh node

needs to be installed at the side of the road instead of being installed at the crossover

bridges.

6.3 Practical Deployment Trial for Integrated SDWMN and

Traffic Monitoring Application on Phaya Thai Road

In our final demonstration test case, we have installed and tested SDWMN with the

intended road traffic monitoring application for 16 hours starting from 5 PM to 10:47 AM.

During the operation, Raspi 2, Raspi 4 send the captured images of road traffic situation

to Gateway 1 and Raspi 3, Raspi 5 send the captured images of road traffic situation

to Gateway 2. The captured images are taken by the attached camera at the board of

Raspberry Pi. The primary objective of this work is to provide the necessary network

layer for that application and the status of outdoor SDWMN network during the operation

of data plane is summarized in Figure 6.28. During this operation, wireless mesh nodes

are often disconnected from RYU controller and the number of unreachable times of each

wireless mesh node to RYU controller is summarized in Table 6.1 and the operation of traffic

monitoring application over implemented SDWMN testbed is illustrated in Figure 6.27.

Figure 6.1 reports that the number of unreachable times from Gateway 2 to RYU con-

troller is the highest. The control traffic from Gateway 2 needs to be relayed by Raspi 3,

Raspi 2 and Raspi 1 in order to reach to RYU controller on the primary route. Moreover,

the distance from Gateway 1 and Gateway 2 is 1100 meters which can cause an unstable

connection. However, the number of unreachable time from wireless mesh nodes to RYU

controller is not too much difference which means that up to 3-Hops connection for control

plane can be applied well while 4-Hops connection (Gateway 2 to RYU controller) is not

suitable to be applied in the implemented outdoor SDWMN testbed. The overall status

of the control plane from RYU controller during the 16 hours operation is summarized in

65

Figure 6.27: Running traffic monitoring application over SDWMN testbed.

Table 6.1: Status of network during 16 hours of practical deployment operation.

Node
Number of Hops to Number of

RYU Controller Unreachable Time
Raspi 1 1 15
Raspi 2 2 29
Raspi 3 3 34
Raspi 4 1 16
Raspi 5 2 29
Raspi 6 3 26

Gateway 1 0 0
Gateway 2 4 394

66

Figure 6.28.

Figure 6.28: Practical operation status for 16 hours of outdoor SDWMN on
Phaya Thai road

The overhead of OpenFlow traffic is measured by capturing OpenFlow traffic with Wire-

shark tool from 12:30 AM to 5 AM and overhead of OpenFlow traffic is summarized in

Figure 6.31. The measurement of OpenFlow overhead traffic is calculated based on the

captured OpenFlow protocol packets.

According to the summarized value of overhead OpenFlow traffic in Figure 6.31, the

average overhead OpenFlow traffic is around 12 kbit/sec before 4:25:00 AM on 27th Novem-

ber 2018. After 4:25:00 AM, the average overhead OpenFlow traffic is jumped to around

20 kbit/sec and the increment is caused due to the failure of Raspi 6 at 4:27:00 AM. The

duration of Raspi 6’s unreachable to RYU controller was long. In the algorithm of rerouting

RYU application, RYU sends configuration request message when one of the wireless mesh

nodes is disconnected from RYU controller. Before 4:25:00 AM, all wireless mesh nodes are

connected with RYU controller and RYU controller keeps in silence without sending any

configuration request message to all alive wireless mesh node and therefore, the overhead

is around 12 kbit/sec. Another observation is that the status of the control plane is quite

stable before 6 AM. The density of the car could be very low at that time. However, Fig-

ure 6.28 shows that the connection between Raspi 1, Raspi 4 and RYU controller starts

being fluctuated after 6 AM. The potential reason is an obstacle such as public bus which

can block the signal between RYU controller and two neighbor nodes which are Raspi 1 and

Raspi 4. Since the height of the attached antenna at Gateway 1 is not high, an obstacle

67

Figure 6.29: Overhead of OpenFlow traffic.

can easily interrupt the signal between RYU controller and two wireless mesh nodes (Raspi

1 and Raspi 4). In Section 6.2, RTT of ICMP packets between Raspi 1 and Gateway 1

and between Raspi 4 and Gateway 1 is higher in daytime than the values of RTT in the

nighttime. Figure 6.30 is a picture which is captured at the location of Gateway 1 while

the public bus in red color is passing through an intersection.

Figure 6.30: Captured image at location of Gateway 1 while public bus is
passing through intersection which potentially blocks the line-of-sight of signal
propagation in between the nearest wireless mesh nodes and Gateway 1.

6.4 Temperature Measurement of Wireless Mesh Node Dur-

ing Outdoor Network Operation

In this Section, the status of device temperature of wireless mesh node during outdoor

network operation with traffic monitoring application is mainly discussed. Recalling the

68

value of maximum operable temperature for a raspberry pi is 85-degree Celsius. Therefore,

the temperature of the wireless mesh node needs to be under 85-degree Celsius. We collect

the temperature status of each wireless mesh node while the road traffic monitoring appli-

cation is running on the outdoor SDWMN network. Temperature value of each wireless

mesh node based on the day of 26th November in 2018 in Phaya Thai Road in Bangkok.

Figure 6.31: Status of temperature of wireless mesh node at outdoor network
operation.

A temperature of a wireless mesh node while intended traffic monitoring application

working with SDWMN is lower than the threshold level.

Figures 6.32 and 6.33 are screenshots of the information of the ambient tem-

perature of 26th November 2018 and 27th November 2018 in Bangkok from

https://www.timeanddate.com.

Ambient temperature during network operation is not hot and therefore wireless mesh

node can run properly in the winter season in Thailand. Based on the actual measurement

here, we have found that the selected Rasberry Pi hardware can tolerate the actual temper-

ature during the real deployment. Therefore, our prepared Python watchdog program to

reset the wireless mesh node when being overheated has not been triggered. As the result,

the practical node failure due to temperature concern has not yet been realized in practice.

And the disconnection of nodes from the RYU controller is mainly influenced instead by the

wireless link connectivity. However, all our tests so far have been carried out in November,

where the ambient temperature is considered the lowest annually. In the future work, it

is recommended that the test should also be carried out in the summer so we could eval-

uate properly how this SDWMN system would function in a warmer condition. Then, the

temperature-triggered software prepared in this research should be evaluated again.

69

Figure 6.32: Weather information from www.timeanddate.com for 26th Novem-
ber 2018 in Bangkok.

Figure 6.33: Weather information from www.timeanddate.com for 27th Novem-
ber 2018 in Bangkok.

70

6.5 Measurement Result of Rerouting Performance

Since rerouting application is based on the failure of wireless mesh node, the testing for

rerouting is conducted by rebooting each wireless mesh node manually for three times and

restoration time for the affected wireless mesh node is analyzed. Firstly, the information of

wireless mesh node is summarized in Table 6.2.

Table 6.2: MAC and IP addresses of wireless mesh nodes and gateways.

Wireless Mesh Node MAC address IP address
Raspi 1 e8:4e:06:5e:6b:09 10.0.0.1
Raspi 2 e8:4e:06:5f:47:59 10.0.0.2
Raspi 3 e8:4e:06:40:d3:7f 10.0.0.3
Raspi 4 e8:4e:06:40:d3:db 10.0.0.4
Raspi 5 e8:4e:06:40:dc:62 10.0.0.5
Raspi 6 e8:4e:06:40:94:20 10.0.0.6

Gateway 1 e8:4e:06:40:d3:4b 10.0.0.8
Gateway 2 e8:4e:06:5e:6a:b1 10.0.0.9

6.5.1 Case of Raspi 1’s Failure

When Raspi 1 is failed, Raspi 2, Raspi 3 and Gateway 2 will be unreachable to Gateway

1 according to the information of predefined primary routes for the control plane. Raspi

1 is a relay node not only for the control plane but also for the data plane because Raspi

2 sends both control packets and data packets to Gateway 1 through the route Raspi 2 -

Raspi 1 - Gateway 1. Likewise, Raspi 3 and Gateway 2 send the control packets through

the routes Raspi 3 - Raspi 2 - Gateway 1 and Gateway 2 - Raspi 3 - Raspi 2 - Raspi 1 and

Gateway 1, respectively.

Figure 6.34: Information of received control packet from Raspi 2 to Gateway 1
through primary route.

71

Figure 6.35: Information of received control packet from Raspi 3 to Gateway 1
through primary route.

Figure 6.36: Information of received control packet from Gateway 2 to Gateway
1 through primary route.

72

Figures 6.34, 6.35 and 6.36 are the informations of packets which Gateway 1 receives

from Raspi 2, Raspi 3 and Gateway 2 when Raspi 1 is in normal situation and those three

figures show that Gateway 1 receives the packet from Raspi 2, Raspi 3 and Gateway 2

through MAC address of Raspi 1 on the predefined primary routes.

Table 6.3: Rerouting information of control plane for failure case of Raspi 1 in
round 1.

Node
IP Down Up Restoration

Remark
address Time Time Time

Raspi 1 10.0.0.1 14:44:34

Raspi 2 10.0.0.2 14:44:34 14:44:39 23 seconds
17 (detection time)

+ 5 (rerouting time)

Raspi 3 10.0.0.3 14:44:32 14:44:47 32 seconds
17 (detection time)

+ 15 (rerouting time)

Gateway 2 10.0.0.9 14:44:30 14:44:40 27 seconds
17 (detection time)

+ 10 (rerouting time)

Table 6.4: Rerouting information of control plane for failure case of Raspi 1 in
round 2.

Node
IP Down Up Restoration

Remark
address Time Time Time

Raspi 1 10.0.0.1 14:54:25

Raspi 2 10.0.0.2 14:54:26 14:54:32 23 seconds
17 (detection time)

+ 6 (rerouting time)

Raspi 3 10.0.0.3 14:54:27 14:54:31 21 seconds
17 (detection time)

+ 4 (rerouting time)

Gateway 2 10.0.0.9 14:54:24 14:54:32 25 seconds
17 (detection time)

+ 8 (rerouting time)

Referring to the restoration time values in Tables 6.3, 6.4 and 6.5, affected nodes (Raspi

2, Raspi 3 and Gateway 2) in the failure of Raspi 1 are restored within half a minute in

most of the cases.

Configuration request message plays at the key role in the restoration of affected wireless

mesh nodes. RYU controller assigns the necessary forwarding rules to establish the alterna-

tive routes with the purpose of rerouting by using the config request message and the way

of sending configuration request message between RYU controller and wireless mesh node

is described in Figure 6.37. In Figure 6.37, the wireless mesh node responds the configu-

ration request message from RYU controller only when one of the wireless mesh nodes is

disconnected from RYU controller.

The role of raspi 4 in this rerouting process is to relay the packets from Raspi 2, Raspi

3 and Gateway 2 to Gateway 1 and the relayed packets from Raspi 4 are captured with

73

Table 6.5: Rerouting information of control plane for failure case of Raspi 1 in
round 3.

Node
IP Down Up Restoration

Remark
address Time Time Time

Raspi 1 10.0.0.1 14:59:28

Raspi 2 10.0.0.2 14:59:25 14:59:41 33 seconds
17 (detection time)

+ 5 (rerouting time)

Raspi 3 10.0.0.3 14:59:28 14:59:29 18 seconds
17 (detection time)

+ 1 (rerouting time)

Gateway 2 10.0.0.9 14:59:28 14:59:30 19 seconds
17 (detection time)

+ 2 (rerouting time)

Figure 6.37: Configuration reply messages from wireless mesh nodes to RYU
controller.

74

Wireshark tool at Gateway 1. In alternative route, Gateway 1 must receives the packets

from Raspi 2, Raspi 3 and Gateway 2 from Raspi 4.

Figure 6.38: Control packet received at Gateway 1 from Raspi 2 through alter-
native route.

Figure 6.39: Control packet received at Gateway 1 from Raspi 3 through alter-
native route.

For the data plane, Raspi 1 relays a data packet from Raspi 2 to Gateway 1. If Raspi

1 is failed, Raspi 4 is responsible to relay the data packet to Gateway 1. The status of a

received data packet at Gateway 1 from Raspi 2 when Raspi 1 is working and the time that

Raspi 1 is failed is summarized in Figures 6.41 and 6.42, respectively.

In Figure 6.42, when Raspi 1 ia failed, Gateway 1 cannot receive a data packet from

Raspi 2 at 16:44:17. After 29 seconds, data plane between Raspi 2 and Gateway 1 is rerouted

from the primary route Raspi 2 - Raspi 1 - Gateway 1 to the alternative route Raspi 2 -

Raspi 5 - Raspi 4 - Gateway 1. Then, Gateway 1 receives back a data packet from Raspi 2

75

Figure 6.40: Control packet received at Gateway 1 from Gateway 2 through
alternative route.

Figure 6.41: Control packet received at Gateway 1 from Raspi 2 through pri-
mary route.

Figure 6.42: Control packet received at Gateway 1 from Raspi 2 through alter-
native route in round 1.

76

through Raspi 4. In round 1, total 29 seconds is required to reroute the data packets from

Raspi 2 to Gateway 1.

Figure 6.43: Control packet received at Gateway 1 from Raspi 2 through alter-
native route in round 2.

In round 2, Figure 6.43 shows that 30 seconds is required to reroute the data packets

from Raspi 2 to Gateway 1 when Raspi 1 is failed.

Figure 6.44: Control packet received at Gateway 1 from Raspi 2 through alter-
native route in round 3.

In round 3, Figure 6.44 shows that 25 seconds is required to reroute the data packets

from Raspi 2 to Gateway 1 when Raspi 1 is failed.

For the case of failure of Raspi 1, the maximum required time for rerouting in all 3

rounds is 33 seconds.

77

6.5.2 Case of Raspi 2’s Failure

Recalling the rerouting process of the failure of Raspi 2, the impacted wireless mesh

nodes are Raspi 3 and Gateway 2 as Raspi 2 needs to relay the control packets from Raspi

3 and Gateway 2 to Raspi 1 for establishing the primary route.

Table 6.6: Rerouting information of control plane for failure case of Raspi 2 in
round 1.

Node
IP Down Up Restoration

Remark
address Time Time Time

Raspi 2 10.0.0.2 16:50:45

Raspi 3 10.0.0.3 16:50:44 16:50:58 31 seconds
17 (detection time)

+ 14 (rerouting time)

Gateway 2 10.0.0.9 16:50:43 16:50:50 24 seconds
17 (detection time)

+ 7 (rerouting time)

Table 6.7: Rerouting information of control plane for failure case of Raspi 2 in
round 2.

Node
IP Down Up Restoration

Remark
address Time Time Time

Raspi 2 10.0.0.2 16:54:14

Raspi 3 10.0.0.3 16:54:13 16:54:27 31 seconds
17 (detection time)

+ 14 (rerouting time)

Gateway 2 10.0.0.9 16:54:10 16:54:16 23 seconds
17 (detection time)

+ 6 (rerouting time)

Table 6.8: Rerouting information of control plane for failure case of Raspi 2 in
round 3.

Node
IP Down Up Restoration

Remark
address Time Time Time

Raspi 2 10.0.0.2 16:56:55

Raspi 3 10.0.0.3 16:56:54 16:57:09 32 seconds
17 (detection time)

+ 15 (rerouting time)

Gateway 2 10.0.0.9 16:56:52 16:56:58 23 seconds
17 (detection time)

+ 6 (rerouting time)

Tables 6.6, 6.7 and 6.8 confirm that all of the affected wireless mesh nodes are restored

within 32 seconds when Raspi 2 is failed. Since Raspi 2 does not relay any data packets,

rerouting is only considered for restoration of the control plane.

78

6.5.3 Case of Raspi 3’s Failure

Raspi 3 relays the control packets from Gateway 2 to Gateway 1 to establish the Open-

Flow control plane between Gateway 1 and Gateway 2. When Raspi 3 is failed, the traffic

for control plane from Gateway 2 to Gateway 1 is rerouted from the primary route Gateway

2 - Raspi 3 - Raspi 2 - Raspi 1 - Gateway 1 to the alternative route Gateway 2 - Raspi 6

- Raspi 5 - Raspi 4 - Gateway 1. The information of rerouting for the failure of Raspi 3 is

summarized in Tables 6.9, 6.10 and 6.11.

Table 6.9: Rerouting information of control plane for failure case of Raspi 3 in
round 1.

Node
IP Down Up Restoration

Remark
address Time Time Time

Raspi 3 10.0.0.3 16:08:50

Gateway 2 10.0.0.9 16:08:40 16:09:04 41 seconds
17 (detection time)

+ 24 (rerouting time)

Table 6.10: Rerouting information of control plane for failure case of Raspi 3
in round 2.

Node
IP Down Up Restoration

Remark
address Time Time Time

Raspi 3 10.0.0.3 16:11:35

Gateway 2 10.0.0.9 16:11:33 16:12:02 46 seconds
17 (detection time)

+ 29 (rerouting time)

Table 6.11: Rerouting information of control plane for failure case of Raspi 3
in round 3.

Node
IP Down Up Restoration

Remark
address Time Time Time

Raspi 3 10.0.0.3 16:25:44

Gateway 2 10.0.0.9 16:25:43 16:26:10 46 seconds
17 (detection time)

+ 29 (rerouting time)

The required time for rerouting the impacted wireless mesh node when Raspi 3 is failed

is increased to 46 seconds. In the cases of failure of Raspi 1, 2 and 3 , Raspi 4 needs to

relay the control packets from Raspi 2, 3 and Gateway 2 to Gateway 1 according to the

predefined alternative routes because Raspi 4 is only the wireless mesh node in order to

maintain the control plane between RYU controller and the remaining wireless nodes. The

captured packets with Wireshark tool [5] at Gateway 1 from Raspi 4 during the rerouting

process is the same which has been described in Figures 6.38, 6.39 and 6.40.

79

6.5.4 Case of Raspi 4’s Failure

The scenario of rerouting when there is a failure at Raspi 4, Raspi 5 and Raspi 6 are

similar to the scenario when there is a failure at Raspi 1, Raspi 2 and Raspi 3. When Raspi

4 is failed, Raspi 1 needs to relay the packets from Raspi 5 through the route Raspi 5 -

Raspi 2 - Raspi 1 - Gateway 1 and relays the packets from Raspi 6 through the route Raspi

6 - Raspi 2 - Raspi 1 - Gateway 1. In this subsection ,the failure of Raspi 4 is considered

for 3 times and the rerouting information is summarized in Tables 6.12, 6.13 and 6.14.

Table 6.12: Rerouting information of control plane for failure case of Raspi 4
in round 1.

Node
IP Down Up Restoration

Remark
address Time Time Time

Raspi 4 10.0.0.4 15:13:28

Raspi 5 10.0.0.5 15:13:19 15:13:47 45 seconds
17 (detection time)

+ 28 (rerouting time)

Raspi 6 10.0.0.6 15:13:28 15:13:32 21 seconds
17 (detection time)

+ 4 (rerouting time)

Table 6.13: Rerouting information of control plane for failure case of Raspi 4
in round 2.

Node
IP Down Up Restoration

Remark
address Time Time Time

Raspi 4 10.0.0.4 15:17:47

Raspi 5 10.0.0.5 15:17:48 15:18:01 30 seconds
17 (detection time)

+ 13 (rerouting time)

Raspi 6 10.0.0.6 15:17:45 15:17:59 31 seconds
17 (detection time)

+ 14 (rerouting time)

Table 6.14: Rerouting information of control plane for failure case of Raspi 4
in round 3.

Node
IP Down Up Restoration

Remark
address Time Time Time

Raspi 4 10.0.0.4 15:20:48

Raspi 5 10.0.0.5 15:20:46 15:21:03 34 seconds
17 (detection time)

+ 17 (rerouting time)

Raspi 6 10.0.0.6 15:20:47 15:21:03 33 seconds
17 (detection time)

+ 16 (rerouting time)

In Rounds 1, 2 and 3, the required time for restoration for Raspi 5 and Raspi 6 when

Raspi 4 is failed in Round 2 and Round 3 is around 34 seconds. In Round 1, the required

80

time for restoration take longer than other two rounds. The reason is that at Round 1, RYU

controller decided the unreachable of Raspi 5 with only 3 unreplied echo request message

and the connection stauts between Raspi 5 and Gateway 1 is captured with wireshark tool

which is summarized in Figure 6.45.

Figure 6.45: Control packet received at Gateway 1 from Raspi 5 through prim-
iary route.

Figures 6.46 and 6.47 show the information of the received packet from Raspi 5 and

Raspi 6 at Gateway 1. Source MAC address of those received packets from Raspi 5 and

Raspi 6 through the primary route is a MAC address of Raspi 4 which means that Raspi 4

successfully relays the packets from Raspi 5 and Raspi 6 to Gateway 1.

Figure 6.46: Control packet received at Gateway 1 from Raspi 5 through prim-
iary route.

When Raspi 4 is failed, the control packet from Raspi 5 is rerouted through the alterna-

tive rouute which is Raspi 5 - Raspi 2 - Raspi 1 - Gateway 1. Likewise, the control packet

from Raspi 6 is reoruted throught alternative route which is Raspi 6 - Raspi 3 - Raspi 2

- Raspi 1 - Gateway 1. Figures 6.48 and 6.49 shows that Gateway 1 receives the control

packet from Raspi 5 and Raspi 6 from Raspi 1 when Raspi 4 is failed.

81

Figure 6.47: Control packet received at Gateway 1 from Raspi 6 through prim-
iary route.

Figure 6.48: Control packet received at Gateway 1 from Raspi 5 through alter-
native route.

82

Figure 6.49: Control packet received at Gateway 1 from Raspi 6 through alter-
native route.

6.5.5 Case of Raspi 5’s failure

In the primary route, Raspi 5 relays the control packet form Raspi 6 to Gateway 1 and

therefore restoration for the control path between Raspi 6 and Raspi 5 is also required to be

considered if Raspi 5 is failure stage. The rerouting informations of Raspi 5 are summarized

in Tables 6.15, 6.16 and 6.17.

Table 6.15: Rerouting information of control plane for failure case of Raspi 5
in round 1.

Node
IP Down Up Restoration

Remark
address Time Time Time

Raspi 5 10.0.0.5 15:35:39

Raspi 6 10.0.0.6 15:35:38 15:35:52 31 seconds
17 (detection time)

+ 4 (rerouting time)

6.5.6 Case of Raspi 6’s failure

There is no impact for the control plane when Raspi 6 is failed because Raspi 6 does

not need to relay any control packet to Gateway 1. However, Raspi 6 is used to relay the

data packets from Raspi 5 to Gateway 2. Figure 6.50 shows the status of receiving incoming

packets at Gateway 2 from Raspi 5 when Raspi 6 is in operational state ane Figure 6.51

shows the stutus of receiving incoming packets at Gateway from Raspi 5 with the situation

of Raspi 6 is in failure state. When Raspi 6 is falied, Gateway 2 receives the data packet

from Raspi 5 with the help from Raspi 3.

In Figures 6.50 and 6.51, Gateway 2 does not receive the data packets from Raspi 5

at 16:38:20 when Raspi 6 is failed and data packet from Raspi 5 is rerouted through the

83

Table 6.16: Rerouting information of control plane for failure case of Raspi 5
in round 2.

Node
IP Down Up Restoration

Remark
address Time Time Time

Raspi 5 10.0.0.5 15:40:40

Raspi 6 10.0.0.6 15:40:38 15:40:54 33 seconds
17 (detection time)

+ 16 (rerouting time)

Table 6.17: Rerouting information of control plane for failure case of Raspi 5
in round 3.

Node
IP Down Up Restoration

Remark
address Time Time Time

Raspi 5 10.0.0.5 16:02:01

Raspi 6 10.0.0.6 16:02:02 16:02:14 29 seconds
17 (detection time)

+ 12 (rerouting time)

Figure 6.50: Status of received data packet from Raspi 5 at Gateway 2 while
Raspi 6 is working.

Figure 6.51: Status of received data packet from Raspi 5 at Gateway 2 when
Raspi 6 is failed.

84

alternative route Raspi 5 - Raspi 2 - Raspi 3 - Gateway 2 and Gateway 2 receives back

the data packets from Raspi 5 at 16:38:43 with the source MAC address is Raspi 3’s MAC

address. In round 1, total 23 seconds are required for rerouting.

Figure 6.52: Status of received data packet from Raspi 5 at Gateway 2 when
Raspi 6 is failed in round 2.

Figure 6.53: Status of received data packet from Raspi 5 at Gateway 2 when
Raspi 6 is failed in round 3.

In round 2 and round 3, the total required time for rerouting the data packets from

Raspi 2 are 25 seconds and 15 seconds respectively. Therefore, the maximum required time

rerouting during experiment time is 25 seconds.

6.5.7 Summary of Rerouting Performance

In this work, rerouting is only based on the failure of the wireless mesh nodes. Another

assumption for rerouting is that the wireless link between two wireless mesh nodes on

85

the same crossover bridge works properly before the process of rerouting is started. The

maximum required time to reroute for control plane in all cases is 46 seconds. The maximum

time for rerouting has occurred at the case of Raspi 3’s Failure. In addition, the maximum

required time to reroute for data plane is 30 seconds. The results of restoration time

confirm that the predefined forwarding rules for the alternative routes work as intended.

However, based on the physical location, the performance of rerouting can vary if rerouting

is based on the predefined alternative routes. In our work, each wireless mesh node is placed

high enough which has less possibility to be blocked line-of-sight by a car. However, the

wireless link between wireless mesh nodes and Gateway 1 can be blocked by a big bus or

the wireless link between wireless mesh nodes can also be blocked by cars if a wireless mesh

node is not placed at the high place. Therefore, we recommend that the predefined rules for

rerouting should be changed accordingly based on the physical location of outdoor SDWMN

network or in the future an adaptive routing should be aimed at instead for a more robust

deployment.

Chapter 7

Conclusion

In this thesis, we have designed the prototype of outdoor SDWMN testbed for road

traffic monitoring network on Phaya Thai road between Rama 1 road and Rama 4 road by

using Raspberry Pi. The main purpose is to apply the programmability of SDN to build

the wireless network, where routing function can be programmed at the application layer of

RYU controller. By using the strategy of mesh networking, captured images from Raspberry

Pi’s camera can be sent in near real-time through the wireless ad-hoc routes which can save

the operational cost for sending data. In this prototype network, the routing functionalities

are implemented as predefined forwarding rules for the primary route and alternative route

which are based on the minimum-hop-path. The primary route is installed by predefined

forwarding rules at the bootstrapping stage in all wireless nodes. The implemented rerouting

application will assign the predefined backup rules to the respective wireless mesh nodes to

build the alternative routes for rerouting by using standard OpenFlow configuration request

messages. In-band control scenario is applied in SDWMN and therefore, the primary route

and the alternative route are required to be considered for both the control plane and data

plane over a single wireless network interface.

Firstly, we have designed and developed all components in preparation for the actual

installation SDWMN testbed on Phaya Thai road. In the preparation, both software and

hardware parts have been carried out. The software parts include the installation of Open-

Vswitch, RYU, a driver for an external WiFi adapter in all wireless nodes and routing for

outdoor SDWMN. Linux kernel version 4.4 has been used with the driver for an applied

antenna in this thesis. A waterproof box is designed for installation on the crossover bridges

on Phaya Thai road.

After preparation has been done, we set up the small-scale SDWMN testbed on Phaya

Thai road between Rama 1 road and Rama 4 road. The total distance between two gateways

is 1100 meters. On Phaya Thai road, the average distance between adjacent crossover

bridges is 250-350 meters. Two gateways are installed at the traffic police boxes and two

wireless mesh nodes are installed at each crossover bridge on Phaya Thai road.

The testing for network performance has been performed in order to investigate for

the characteristic of SDN based outdoor wireless network. Firstly, we have measured TCP

throughput, UDP throughput, ICMP packet with packet size 1456 bytes in 100 meters,

200 meters, 300 meters, and 400 meters. We make the measurement in different distances

and the result confirms that one-hop distance at the outdoor SDWMN can be sufficiently

increased up to 400 meters for road traffic monitoring application.

Secondly, the outdoor wireless characteristic has been investigated from the implemented

outdoor SDWMN on Phaya Thai road. From an investigation result of performing the

network performance for data plane traffic, we have learned about the impacts of obstacles

such as buses, trees, and trucks which block the wireless signal. The results of daytime and

87

nighttime comparison show that we need to carefully design the pattern of routing based

on the physical location of outdoor and placing the wireless nodes in order to avoid the

obstacles to get the better network performance.

Thirdly, we have integrated the intended traffic monitoring application and SDWMN

network and run the traffic monitoring application on SDWMN network for 16 hours on

26th November 2018. The status of the control plane while traffic monitoring application is

being operated is quite stable but the control plane starts being fluctuated after 6 AM when

the trend of the density of vehicle lead to be increased. Due to the low ambient temperature

in the winter season of Thailand, device temperature of wireless mesh node can be operated

for the whole day. The more investigation is required for the temperature of the wireless

mesh node, especially in the summer season.

Finally, the investigation for rerouting experiment is tested by rebooting the wireless

mesh nodes for three times. From the real measurement, the maximum time for rerouting

the control plane is 46 seconds and maximum time for rerouting the data plane is 30 seconds.

The predefined forwarding rules for the primary routes and the alternative routes are still

effective for this such a kind of small-scale testbed. However, the forwarding rules should

be changed to dynamic forwarding rules with the consideration of wireless link status to

be more robust deployment when small-scale of existing SDWMN testbed is increase to a

large-scale network. This work confirms that predefined routing can be operated well in

a small-scale testbed. However, dynamic routing should be changed when the scale of the

network is increased. In a large-scale network, the control plane status cannot be operated

well if the number of hops is increased from RYU controller. Therefore, instead of placing

RYU controller in only one gateway, RYU controller should be placed at the cloud or the

scenario of using multiple RYU controller should be considered in a future work.

References

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker and J. Turner, “OpenFlow: enabling innovation in campus networks,”

ACM SIGCOMM Computer Communication Review, pp. 69-74, 2008.

[2] Open Network Foundation,“Software Defined Networking: The new norm for networks,”

ONF White Paper, 2012.

[3] M. E. M. Campista, P. M. Esposito, I. M. Moraes, L. H. M. K. Costa, O. C. M. B. Duarte,

U. F. D. G. Passos, C. V. N. D. Albuquerque, D. C. M. Saade and

U. F. F. M. G. Rubinstein, “Routing metrics and protocols for wireless mesh

networks,” IEEE Network 22, No. 1, pp. 6-12, 2008.

[4] WiFi [Online]. Available from : https://www.wi-fi.org/ [July 8, 2018].

[5] WIRESHARK [Online]. Available from : https://www.wireshark.org/ [July 8, 2018].

[6] ONOS [Online]. Available from : https://onosproject.org/ [July 12, 2018].

[7] A. Neumann, C. E. Aichele and M. Lindner, “B.A.T.M.A.N. Status

Report,” [Online] . Available from : http://downloads.open-mesh.org/batman/

papers/batman-status.pdf , 2007.

[8] Open vSwitch [Online]. Available from : http://openvswitch.org [April 10, 2018].

[9] NS3 [Online]. Available from : https://www.nsnam.org/ [July 12, 2018].

[10] KAFKA [Online]. Available from : https://kafka.apache.org/ [Dec 5, 2018].

[11] NS2 [Online]. Available from : https://www.isi.edu/nsnam/ns/ [July 12, 2018].

[12] ZigBee [Online]. Available from : https://www.zigbee.org/ [July 12, 2018].

[13] Raspberry Pi 3 [Online]. Available from : https://www.raspberrypi.org/ [August 18,

2018].

[14] Intel R©NUC7i7BNH [Online]. Available from : https://www.intel.com/content/www/

us/en/products/boards-kits/nuc/kits/nuc7i7bnh.html [August 18, 2018].

[15] Ubunut-Mate [Online]. Available from : https://ubuntu-mate.org/ [August 18, 2018].

[16] Mininet [Online]. Available from : http://mininet.org/ [July 12, 2018].

[17] Ben. P, B. Lantz and B. Heller, “OpenFlow switch specification, version 1.3.0,” Open

Networking Foundation (2012).

[18] Open Vswitch Release 2.9.2 [Online]. Available from : https://media.readthedocs.org/

pdf/openvswitch/stable/openvswitch.pdf [August 19, 2018].

89

[19] RYU SDN Framework [Online]. Available from : https://osrg.github.io/ryu-book/en/

Ryubook.pdf [April 20,2018].

[20] PC Engines Single Board Computer [Online]. Available from : http://www.pcengines.

ch/alix3d3.htm [August 8,2018].

[21] iPerf [Online]. Available from : https://iperf.fr/ [July 13, 2018].

[22] P. Enns, “NETCONF Configuration Protocol,” Juniper Networks, RFC 4741, 2006.

[23] OF-CONFIG 1.2: OpenFlow Management and Configuration Protocol. http://goo.gl/

1JnFWN, 2014.

[24] EDUP EP-AC1605 [Online]. Available from : http://www.szedup.com/ [July 14, 2018].

[25] M. Seyedzadegan, M. Othman, B. M. Ali and S. Subramaniam, “Wireless mesh

networks: WMN overview, WMN architecture.,” International Conference on

Communication Engineering and Networks IPCSIT, Vol. 19, pp. 12-18, 2011.

[26] M. Antikainen, T. Aura and M. Särelä, “Spook in your network: Attacking an SDN with

a compromised OpenFlow switch,” Nordic Conference on Secure IT Systems, pp.

229-244, 2014.

[27] D. B. Green and M. S. Obaidat, “An accurate line of sight propagation performance

model for ad-hoc 802.11 wireless LAN (WLAN) devices,” IEEE International

Conference on Communications, pp. 3424-3428, 2002.

[28] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum and L. Viennot,

“Optimized link state routing protocol for ad hoc networks,” IEEE International

Multi Topic Conference (IEEE INMIC 2001), pp. 62-68, 2001.

[29] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” 2nd IEEE

Workshop on Mobile Computing Systems and Applications, pp. 90-100, 1999.

[30] T. Oda, D. Elmazi, M. Yamada, R. Obukata, L. Barolli and M. Takizawa,

“Experimental results of a Raspberry Pi based WMN testbed in indoor

environment: a comparison study of LoS and NLoS scenarios,” 19th International

Conference on Network-Based Information Systems (NBiS), pp. 9-14, 2016.

[31] G. Bianchi, F. Formisano and D. Giustiniano, “802.11 b/g link level measurements

for an outdoor wireless campus network,” International Symposium on World of

Wireless, Mobile and Multimedia Networks, pp. 525-530, 2006.

[32] N. M. Anas, F. K. Hashim, H. Mohamad, M. H. Baharudin and M. P. Sulong,

“Performance analysis of outdoor wireless mesh network using BATMAN

advanced,” IEEE/ACIS 16th International Conference on Software Engineering,

Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD),

pp. 1-4, 2015.

90

[33] K. C. Lan, Z. Wang, R. Berriman, T. Moors and M. Hassan, “Implementation of a

wireless mesh network testbed for traffic control,” 16th International Conference

on Computer Communications and Networks, pp. 1022-1027, 2007.

[34] D. Wu, D. Gupta and P. Mohapatra, “QuRiNet: A wide-area wireless mesh testbed

for research and experimental evaluations,” 2nd International Conference on

COMmunication Systems and NETworks (COMSNETS 2010), pp. 1221-1237,

2010.

[35] P. Dely, K. Andreas and B. Nico, “Openflow for wireless mesh networks,” 20th

International Conference on Computer Communications and Networks (ICCCN),

pp. 1-6, 2011.

[36] A. Detti, C. Pisa, S. Salsano and N. Blefari-Melazzi, “Wireless mesh software defined

networks (wmSDN),” IEEE 9th International Conference on Wireless and Mobile

Computing, Networking and Communications (WiMob), pp.89-95, 2013.

[37] W. J. Lee, J. W. Shin, H. Y. Lee and M. Y. Chung, “Testbed implementation for

routing WLAN traffic in software defined wireless mesh network,” 8th International

Conference on Ubiquitous and Future Networks(ICUFN), pp. 1052-1055, 2016.

[38] H. Yang, B. Chen and P. Fu, “OpenFlow-based load balancing for wireless mesh

network,” International Conference on Cloud Computing and Security, pp. 368-

379, 2015.

[39] P. Patil, A. Hakiri, Y. Barve and A. Gokhale, “Enabling software-defined networking

for wireless mesh networks in smart environments,” IEEE 15th International

Symposium on Network Computing and Applications (NCA), pp. 153-157, 2016.

[40] K. P. Arun, A. Chakraborty and B. S. Manoj, “Communication overhead of an openflow

wireless mesh network,” IEEE International Conference on Advanced Networks

and Telecommuncations Systems (ANTS), pp. 1-6, 2014.

[41] A. V. Mamidi, S. Babu and B. S. Manoj, “Dynamic multi-hop switch handoffs

in software defined wireless mesh networks,” IEEE International Conference on

Advanced Networks and Telecommuncations Systems (ANTS), pp. 1-6, 2015.

[42] K. Bao, J. D. Matyjas, F. Hu and S. Kumar, “Intelligent software-defined mesh networks

with link-failure adaptive traffic balancing,” IEEE Transactions on Cognitive

Communications and Networking, Vol. 4, No. 2, pp. 266-276, 2018.

[43] O. Salman, I. H. Elhajj, A. Kayssi and A. Chehab, “SDN controllers: A comparative

study,” 18th Mediterranean Electrotechnical Conference (MELECON), pp. 1-6,

2016.

[44] S. Y. Htet, K. Leevangtou, P. M. Thet, K. Kawila, and C. Aswakul, “Design of Medium-

Range Outdoor Wireless Mesh Network with Open-Flow Enabled Raspberry Pi,”

91

33rd International Technical Conference on Circuits/Systems, Computers and

Communications (ITC-CSCC), pp. 192-195, 2018.

[45] IEEE 802.11 Working Group, “IEEE standard for information technology -

telecommunications and information exchange between systems local and

metropolitan area networks - specific requirements - Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) specifications,” IEEE

Std 802.11 (2016).

Appendices

93

Appendix A

Network Configuration of

Software-Defined Wireless Mesh Network

(SDWMN)

1 #Network Configuration in Raspi 1 to set wireless interface as ad-hoc mode

2 sudo nano /etc/network/interfaces

3

4 auto lo

5 iface lo inet loopback

6 #Configure Wireless Ad-Hoc in Linux

7 auto wlan0

8 iface wlan0 inet static

9 address 10.0.0.1

10 netmask 255.0.0.0

11 wireless -channel 132

12 wireless -mode ad-hoc

13 wireless -essid 222

1 #Network Configuration in Raspi 2 to set wireless interface as ad-hoc mode

2 sudo nano /etc/network/interfaces

3

4 auto lo

5 iface lo inet loopback

6 #Configure Wireless Ad-Hoc in Linux

7 auto wlan0

8 iface wlan0 inet static

9 address 10.0.0.2

10 netmask 255.0.0.0

11 wireless -channel 132

12 wireless -mode ad-hoc

13 wireless -essid 222

1 #Network Configuration in Raspi 3 to set wireless interface as ad-hoc mode

2 sudo nano /etc/network/interfaces

3

4 auto lo

5 iface lo inet loopback

6 #Configure Wireless Ad-Hoc in Linux

7 auto wlan0

8 iface wlan0 inet static

9 address 10.0.0.3

10 netmask 255.0.0.0

11 wireless -channel 132

12 wireless -mode ad-hoc

13 wireless -essid 222

1 #Network Configuration in Raspi 4 to set wireless interface as ad-hoc mode

2 sudo nano /etc/network/interfaces

3

4 auto lo

5 iface lo inet loopback

6 #Configure Wireless Ad-Hoc in Linux

94

7 auto wlan0

8 iface wlan0 inet static

9 address 10.0.0.4

10 netmask 255.0.0.0

11 wireless -channel 132

12 wireless -mode ad-hoc

13 wireless -essid 222

1 #Network Configuration in Raspi 5 to set wireless interface as ad-hoc mode

2 sudo nano /etc/network/interfaces

3

4 auto lo

5 iface lo inet loopback

6 #Configure Wireless Ad-Hoc in Linux

7 auto wlan0

8 iface wlan0 inet static

9 address 10.0.0.5

10 netmask 255.0.0.0

11 wireless -channel 132

12 wireless -mode ad-hoc

13 wireless -essid 222

1 #Network Configuration in Raspi 6 to set wireless interface as ad-hoc mode

2 sudo nano /etc/network/interfaces

3

4 auto lo

5 iface lo inet loopback

6 #Configure Wireless Ad-Hoc in Linux

7 auto wlan0

8 iface wlan0 inet static

9 address 10.0.0.6

10 netmask 255.0.0.0

11 wireless -channel 132

12 wireless -mode ad-hoc

13 wireless -essid 222

1 #Network Configuration in Gateway 1 to set wireless interface as ad-hoc mode

2 sudo nano /etc/network/interfaces

3

4 auto lo

5 iface lo inet loopback

6 #Configure Wireless Ad-Hoc in Linux

7 auto wlan0

8 iface wlan0 inet static

9 address 10.0.0.8

10 netmask 255.0.0.0

11 wireless -channel 132

12 wireless -mode ad-hoc

13 wireless -essid 222

1 #Network Configuration in Gateway 2 to set wireless interface as ad-hoc mode

2 sudo nano /etc/network/interfaces

3

4 auto lo

5 iface lo inet loopback

6 #Configure Wireless Ad-Hoc in Linux

7 auto wlan0

8 iface wlan0 inet static

95

9 address 10.0.0.9

10 netmask 255.0.0.0

11 wireless -channel 132

12 wireless -mode ad-hoc

13 wireless -essid 222

96

Appendix B

Installing Necessary Package

To Develop SDWMN

1 #Gateway1 (RYU controller)

2 #Installing RYU application in Ubuntu 16.04 (Kernel Version 4.4)

3 sudo apt -get install python -pip

4 sudo pip install ryu

5 #Update the installed packages

6 sudo apt -get update

7 #

8

9 \begin{lstlisting}

10 #In all wireless nodes

11 #Installing openvswitch in all wireless nodes

12 sudo apt -get install openvswitch -switch

13 #Update the installed packages

14 sudo apt -get update

1 #In all wireless mesh nodes

2 #Installation for EDUP EP-AC1605 in Raspberry Pi 3 (for Ubuntu Mate with Kernel

Version 4.4.38 -v7+)

3 Reference from https :// github.com/jurobystricky/Netgear -A6210

4 sudo apt -get install git raspberrypi -kernel -headers

5 git clone https :// github.com/jurobystricky/Netgear -A6210.git

6 cd Netgear -A6210

7 make

8 sudo make install

9 #Update the installed packages

10 sudo apt -get update

11 #For testing for TCP/UDP Iperf

12 sudo apt -get install iperf3

1 #In gateway1 and gateway 2

2 #Installation for EDUP EP-AC1605 in two gateways (for Ubuntu with Kernel Version 4.4)

3 Reference from https :// github.com/jurobystricky/Netgear -A6210

4 git clone https :// github.com/jurobystricky/Netgear -A6210.git

5 cd Netgear -A6210

6 make

7 sudo make install

8 #Update the installed packages

9 sudo apt -get update

10 #For testing for TCP/UDP Iperf

11 sudo apt -get install iperf3

97

Appendix C

Python Program for Monitoring Temperature of

Wireless Mesh Node

1 #This program is written by Soe Ye Htet from Chulalongkorn University

2 #This program is to monitor the device temperature of wireless mesh node

3

4 import os #os package is to execute the linux command line in python program

5 import time

6

7 def reboot ():#To reboot Raspberry Pi

8 os.system(’sudo reboot ’)

9

10 def test():#TO monitor the temperature

11 os.popen("vcgencmd measure_temp >>

/home/admin3/Desktop/rrtresult/temp26_11_2018.txt")

12 os.popen("date >> /home/admin3/Desktop/rrtresult/temp26_11_2018.txt")

13 temp=os.popen("vcgencmd measure_temp|cut -c6 -9").readline ()

14 if temp <=str (80):

15 print("Raspberry Pi’s Temperature is ok")

16 else:

17 time.sleep (10)

18 os.popen("echo Device has bee restart >>

/home/admin3/Desktop/rrtresult/temp26_11_2018.txt")

19 if __name__ == "__main__":

20 reboot ()

21 try:

22 while True:#To execute forever

23 if __name__ == "__main__":

24 time.sleep (20)

25 test()

26

27 except:

28 print("Keyboard Error")

Listing C.1: Temperature monitoring program at wireless mesh node

1 #To execute the temperature program at bootstrapping stage

2 sudo crontab -e

3 @reboot sudo python /home/admin3/Desktop/pythonprogram/final/temperature.py &

4 #admin3 is the username of raspberry pi

98

Appendix D

Developing Predefined Forwarding Rules For

Primary Route in OpenVswitch of Wireless Nodes

1 #To install the Primary OpenFlow Rules in Raspi 1

2 sudo nano /etc/rc.local

3 #rc.local file is to execute the linux command line in bootstrapping stage

4 sleep 3 #sleep is required to make sure the command line inside the rc.local file

execute at the bootstrapping stage

5 sudo ovs -vsctl --if-exists del -br br0

6 #bridge is added to OpenVswitch

7 sudo ovs -vsctl add -br br0

8 sudo ovs -vsctl set bridge br0 other -config:datapath -id =1000000000000001

9 #Configure OpenVswitch in Userspace of Linux

10 sudo ovs -vsctl set bridge br0 datapath_type=netdev #Set OpenVswitch in userspace

11 #added wireless interface under bridge in OpenVswitch

12 sudo ovs -vsctl add -port br0 wlan0 -- set Interface wlan0 ofport_request =1

13 sudo ifconfig br0 10.0.0.1 netmask 255.0.0.0 up

14 sudo ifconfig wlan0 0

15 sudo iptables -A INPUT -i wlan0 -j DROP #For only OpenVswitch in userspace

16 sudo iptables -A FORWARD -i wlan0 -j DROP #For only OpenVswitch in userspace

17 #Connect to RYU controller

18 sudo ovs -vsctl set -controller br0 tcp :10.0.0.8:6633

19 sudo ovs -vsctl set controller br0 connection -mode=out -of -band

20 sudo ovs -vsctl set -fail -mode br0 secure

21 #Receive the incoming traffic to Raspi 1 (10.0.0.1) from Raspi 2, Raspi 4 and

Gateway 1

22 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:40: d3:4b,arp_tpa =10.0.0.1 , actions=LOCAL

23 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:5f:47:59 , arp_tpa =10.0.0.1 , actions=LOCAL

24 sudo ovs -ofctl add -flow br0 arp ,priority =100, in_port=1,arp_spa =10.0.0.4 , actions=LOCAL

25 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:40: d3:4b,nw_dst =10.0.0.1 , actions=LOCAL

26 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:5f:47:59 , nw_dst =10.0.0.1 , actions=LOCAL

27 sudo ovs -ofctl add -flow br0 ip ,priority =100, in_port=1,nw_src =10.0.0.4 , actions=LOCAL

28 #Send the packet from Raspi 1 to other wireless node

29 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=LOCAL ,arp_tpa =10.0.0.8 , actions=output :1

30 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=LOCAL ,arp_tpa =10.0.0.4 , actions=output :1

31 sudo ovs -ofctl add -flow br0

arp ,priority =90, in_port=LOCAL ,arp_spa =10.0.0.1 , actions =" resubmit (,4)"

32 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.8 , actions=output :1

33 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.4 , actions=output :1

34 sudo ovs -ofctl add -flow br0

ip,priority =90, in_port=LOCAL ,nw_src =10.0.0.1 , actions =" resubmit (,4)"

35 #Relay the incoming traffic to other wireless nodes not to Raspi 1

36 sudo ovs -ofctl add -flow br0

arp ,priority =90, in_port=1,dl_src=e8:4e:06:5f:47:59 , actions =" resubmit (,3)"

37 sudo ovs -ofctl add -flow br0

arp ,priority =90, in_port=1,dl_src=e8:4e:06:40: d3:4b,actions =" resubmit (,4)"

99

38 sudo ovs -ofctl add -flow br0

ip,priority =90, in_port=1,dl_src=e8:4e:06:40: d3:4b,actions =" resubmit (,4)"

39 sudo ovs -ofctl add -flow br0

ip,priority =90, in_port=1,dl_src=e8:4e:06:5f:47:59 , actions =" resubmit (,3)"

40 #Table 3 is to rewrite the destinatio MAC address into Gateway 1’s MAC address

41 sudo ovs -ofctl add -flow br0

table=3,actions=mod_dl_dst:e8:4e:06:40: d3:4b,"load:0-> OXM_OF_IN_PORT [],resubmit (,5)"

42 #Table 4 is to rewrite the destinatio MAC address into Raspi 2’s MAC address

43 sudo ovs -ofctl add -flow br0

table=4,actions=mod_dl_dst:e8:4e:06:5f:47:59 ," load:0-> OXM_OF_IN_PORT [],resubmit (,5)"

44 #Table 5 is to forward to wireless interface

45 sudo ovs -ofctl add -flow br0 table=5,actions=output :1

46 #To prevent the infinite loop

47 sudo ovs -ofctl add -flow br0 priority=1,in_port=1,actions=drop

48 sudo ovs -vsctl set bridge br0 protocol=OpenFlow10 ,OpenFlow11 ,OpenFlow12 ,OpenFlow13

49 sudo sysctl -p

50 exit 0

1 #To install the Primary OpenFlow Rules in Raspi 2

2 sudo nano /etc/rc.local

3 #rc.local file is to execute the linux command line in bootstrapping stage

4 sleep 3

5 sudo ovs -vsctl --if-exist del -br br0

6 #bridge is added to OpenVswitch

7 sudo ovs -vsctl add -br br0

8 sudo ovs -vsctl set bridge br0 other -config:datapath -id =1000000000000002

9 #Configure OpenVswitch in Userspace of Linux

10 sudo ovs -vsctl set bridge br0 datapath_type=netdev

11 #added wireless interface under bridge in OpenVswitch

12 sudo ovs -vsctl add -port br0 wlan0 -- set Interface wlan0 ofport_request =1

13 sudo ifconfig wlan0 0

14 sudo ifconfig br0 10.0.0.2 netmask 255.0.0.0 up

15 sudo iptables -A INPUT -i wlan0 -j DROP #For only OpenVswitch in userspace

16 sudo iptables -A FORWARD -i wlan0 -j DROP#For only OpenVswitch in userspace

17 #Connect to RYU controller

18 sudo ovs -vsctl set -controller br0 tcp :10.0.0.8:6633

19 sudo ovs -vsctl set controller br0 connection -mode=out -of -band

20 sudo ovs -vsctl set -fail -mode br0 secure

21 sudo ovs -vsctl set bridge br0 stp_enable=true

22 #Receive the incoming traffic to Raspi 2 (10.0.0.2) from Raspi 1, Raspi 5 and Raspi 3

23 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:40: dc:62, arp_tpa =10.0.0.2 , actions=LOCAL

24 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:5e:6b:09, arp_tpa =10.0.0.2 , actions=LOCAL

25 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:40: d3:7f,arp_tpa =10.0.0.2 , actions=LOCAL

26 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,arp_spa =10.0.0.10 , arp_tpa =10.0.0.2 , actions=LOCAL

27 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:40: dc:62, nw_dst =10.0.0.2 , actions=LOCAL

28 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:5e:6b:09, nw_dst =10.0.0.2 , actions=LOCAL

29 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:40: d3:7f,nw_dst =10.0.0.2 , actions=LOCAL

30 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,nw_src =10.0.0.10 , nw_dst =10.0.0.2 , actions=LOCAL

31 #Send the packet from Raspi 2 to other wireless node

32 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=LOCAL ,arp_spa =10.0.0.2 , actions =" resubmit (,1)"

100

33 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.1 , actions=output :1

34 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.3 , actions=output :1

35 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.5 , actions=output :1

36 sudo ovs -ofctl add -flow br0

ip,priority =90, in_port=LOCAL ,nw_src =10.0.0.2 , actions =" resubmit (,1)"

37 #Relay the incoming traffic to other wireless nodes not to Raspi 2

38 sudo ovs -ofctl add -flow br0

arp ,priority =90, in_port=1,dl_src=e8:4e:06:40: d3:7f,actions =" resubmit (,3)"

39 sudo ovs -ofctl add -flow br0

arp ,priority =90, in_port=1,dl_src=e8:4e:06:5e:6b:09, actions =" resubmit (,4)"

40 sudo ovs -ofctl add -flow br0

ip,priority =90, in_port=1,dl_src=e8:4e:06:40: d3:7f,actions =" resubmit (,3)"

41 sudo ovs -ofctl add -flow br0

ip,priority =90, in_port=1,dl_src=e8:4e:06:5e:6b:09, actions =" resubmit (,4)"

42 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:40: d3:7f,nw_dst =10.0.0.8 , actions =" resubmit (,3)"

43 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:5e:6b:09, nw_dst =10.0.0.3 , actions =" resubmit (,4)"

44 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:5e:6b:09, nw_dst =10.0.0.9 , actions =" resubmit (,4)"

45 #Table 1 is to rewrite the destinatio MAC address into broadcast MAC address

46 sudo ovs -ofctl add -flow br0

table=1,actions=mod_dl_dst:ff:ff:ff:ff:ff:ff ," resubmit (,5)"

47 #Table 2 is to rewrite the destinatio MAC address into Raspi 5’s MAC address

48 sudo ovs -ofctl add -flow br0

table=2,actions=mod_dl_dst:e8:4e:06:40: dc:62," load:0-> OXM_OF_IN_PORT [],resubmit (,5)"

49 #Table 3 is to rewrite the destinatio MAC address into Raspi 1’s MAC address

50 sudo ovs -ofctl add -flow br0

table=3,actions=mod_dl_dst:e8:4e:06:5e:6b:09," load:0-> OXM_OF_IN_PORT [],resubmit (,5)"

51 #Table 4 is to rewrite the destinatio MAC address into Raspi 3’s MAC address

52 sudo ovs -ofctl add -flow br0

table=4,actions=mod_dl_dst:e8:4e:06:40: d3:7f,"load:0-> OXM_OF_IN_PORT [],resubmit (,5)"

53 #Table 5 is to forward to wireless interface

54 sudo ovs -ofctl add -flow br0 table=5,actions=output :1

55 #To prevent the infinite loop

56 sudo ovs -ofctl add -flow br0 priority=1,in_port=1,actions=drop

57 sudo sysctl -p

58 exit 0

1 #To install the Primary OpenFlow Rules in Raspi 3

2 sudo nano /etc/rc.local

3 sleep 3

4 sudo ovs -vsctl --if-exists del -br br0

5 #bridge is added to OpenVswitch

6 sudo ovs -vsctl add -br br0

7 sudo ovs -vsctl set bridge br0 other -config:datapath -id =1000000000000003

8 #Configure OpenVswitch in Userspace of Linux

9 sudo ovs -vsctl set bridge br0 datapath_type=netdev

10 #added wireless interface under bridge in OpenVswitch

11 sudo ovs -vsctl add -port br0 wlan0 -- set Interface wlan0 ofport_request =1

12 sudo ifconfig wlan0 0

13 sudo ifconfig br0 10.0.0.3 netmask 255.0.0.0 up

14 sudo iptables -A INPUT -i wlan0 -j DROP #For only OpenVswitch in userspace

15 sudo iptables -A FORWARD -i wlan0 -j DROP #For only OpenVswitch in userspace

16 #Connect to RYU controller

17 sudo ovs -vsctl set -controller br0 tcp :10.0.0.8:6633

101

18 sudo ovs -vsctl set controller br0 connection -mode=out -of -band

19 sudo ovs -vsctl set -fail -mode br0 secure

20 sudo ovs -vsctl set bridge br0 protocol=OpenFlow10 ,OpenFlow11 ,OpenFlow12 ,OpenFlow13

21 #Receive the incoming traffic to Raspi 3 (10.0.0.3) from Raspi 2, Raspi 6 and

Gateway 2

22 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:5f:47:59 , arp_tpa =10.0.0.3 , actions=LOCAL

23 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:40:94:20 , arp_tpa =10.0.0.3 , actions=LOCAL

24 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:5e:6a:b1,arp_tpa =10.0.0.3 , actions=LOCAL

25 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:5f:47:59 , nw_dst =10.0.0.3 , actions=LOCAL

26 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:40:94:20 , nw_dst =10.0.0.3 , actions=LOCAL

27 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:5e:6a:b1 ,nw_dst =10.0.0.3 , actions=LOCAL

28 #Send the packet from Raspi 3 to other wireless node

29 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=LOCAL ,arp_spa =10.0.0.3 , actions =" resubmit (,1)"

30 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.9 , actions=output :1

31 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.2 , actions=output :1

32 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.6 , actions=output :1

33 sudo ovs -ofctl add -flow br0

ip,priority =90, in_port=LOCAL ,nw_src =10.0.0.3 , actions =" resubmit (,1)"

34 #Relay the incoming traffic to other wireless nodes not to Raspi 3

35 sudo ovs -ofctl add -flow br0

arp ,priority =90, in_port=1,dl_src=e8:4e:06:5f:47:59 , arp_tpa =10.0.0.9 , actions =" resubmit (,4)"

36 sudo ovs -ofctl add -flow br0

arp ,priority =90, dl_src=e8:4e:06:5e:6a:b1,in_port=1,actions =" resubmit (,3)"

37 sudo ovs -ofctl add -flow br0

ip,priority =90, in_port=1,dl_src=e8:4e:06:5f:47:59 , nw_dst =10.0.0.9 , actions =" resubmit (,4)"

38 sudo ovs -ofctl add -flow br0

ip,priority =90, dl_src=e8:4e:06:5e:6a:b1,in_port=1,actions =" resubmit (,3)"

39 #Table 1 is to rewrite the destinatio MAC address into broadcast MAC address

40 sudo ovs -ofctl add -flow br0

table=1,actions=mod_dl_dst:ff:ff:ff:ff:ff:ff ," resubmit (,5)"

41 #Table 2 is to rewrite the destinatio MAC address into Raspi 6’s MAC address

42 sudo ovs -ofctl add -flow br0

table=2,actions=mod_dl_dst:e8:4e:06:40:94:20 ," load:0-> OXM_OF_IN_PORT [],resubmit (,5)"

43 #Table 3 is to rewrite the destinatio MAC address into Raspi 2’s MAC address

44 sudo ovs -ofctl add -flow br0

table=3,actions=mod_dl_dst:e8:4e:06:5f:47:59 ," load:0-> OXM_OF_IN_PORT [],resubmit (,5)"

45 #Table 4 is to rewrite the destinatio MAC address into Gateway 2’s MAC address

46 sudo ovs -ofctl add -flow br0

table=4,actions=mod_dl_dst:e8:4e:06:5e:6a:b1 ,"load:0-> OXM_OF_IN_PORT [],resubmit (,5)"

47 #Table 5 is to forward to wireless interface

48 sudo ovs -ofctl add -flow br0 table=5,actions=output :1

49 #To prevent the infinite loop

50 sudo ovs -ofctl add -flow br0 priority=1,in_port=1,actions=drop

51 sudo sysctl -p

52 exit 0

1 #To install the Primary OpenFlow Rules in Raspi 4

2 sudo nano /etc/rc.local

3 sleep 3

102

4 sudo ovs -vsctl --if-exists del -br br0

5 #Bridge is added to OpenVswitch

6 sudo ovs -vsctl add -br br0

7 sudo ovs -vsctl set bridge br0 other -config:datapath -id =1000000000000004

8 #Configure OpenVswitch in Userspace of Linux

9 sudo ovs -vsctl set bridge br0 datapath_type=netdev

10 #Added wireless interface under bridge in OpenVswitch

11 sudo ovs -vsctl add -port br0 wlan0 -- set Interface wlan0 ofport_request =1

12 sudo ifconfig wlan0 0

13 sudo ifconfig br0 10.0.0.4 netmask 255.0.0.0 up

14 sudo iptables -A INPUT -i wlan0 -j DROP#For only OpenVswitch in userspace

15 sudo iptables -A FORWARD -i wlan0 -j DROP#For only OpenVswitch in userspace

16 #Connect to RYU controller

17 sudo ovs -vsctl set -controller br0 tcp :10.0.0.8:6633

18 sudo ovs -vsctl set controller br0 connection -mode=out -of -band

19 sudo ovs -vsctl set -fail -mode br0 secure

20 sudo ovs -vsctl set bridge br0 stp_enable=true

21 sudo ovs -vsctl set bridge br0 protocol=OpenFlow10 ,OpenFlow11 ,OpenFlow12 ,OpenFlow13

22 #Receive the incoming traffic to Raspi 4 (10.0.0.4) from Raspi 1, Raspi 5 and

Gateway 1

23 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:40: d3:4b,nw_dst =10.0.0.4 , actions=LOCAL

24 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:40: dc:62, nw_dst =10.0.0.4 , actions=LOCAL

25 sudo ovs -ofctl add -flow br0 ip ,priority =100, in_port=1,nw_src =10.0.0.1 , actions=LOCAL

26 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:40: d3:4b,arp_tpa =10.0.0.4 , actions=LOCAL

27 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:40: dc:62, arp_tpa =10.0.0.4 , actions=LOCAL

28 sudo ovs -ofctl add -flow br0 arp ,priority =100, in_port=1,arp_spa =10.0.0.1 , actions=LOCAL

29 #Send the packet from Raspi 4 to other wireless node

30 sudo ovs -ofctl add -flow br0

arp ,priority =95, in_port=LOCAL ,arp_spa =10.0.0.4 , actions =" resubmit (,2)"

31 sudo ovs -ofctl add -flow br0

ip,priority =95, in_port=LOCAL ,nw_dst =10.0.0.8 , actions=output :1

32 sudo ovs -ofctl add -flow br0

ip,priority =95, in_port=LOCAL ,nw_dst =10.0.0.1 , actions=output :1

33 sudo ovs -ofctl add -flow br0

ip,priority =90, in_port=LOCAL ,nw_src =10.0.0.4 , actions =" resubmit (,4)"

34 #Relay the incoming traffic to other wireless nodes not to Raspi 4

35 sudo ovs -ofctl add -flow br0

arp ,priority =90, in_port=1,dl_src=e8:4e:06:40: dc:62, actions =" resubmit (,3)"

36 sudo ovs -ofctl add -flow br0

ip,priority =90, in_port=1,dl_src=e8:4e:06:40: dc:62, actions =" resubmit (,3)"

37 sudo ovs -ofctl add -flow br0

arp ,priority =90, in_port=1,dl_src=e8:4e:06:40: d3:4b,actions =" resubmit (,4)"

38 sudo ovs -ofctl add -flow br0

ip,priority =90, in_port=1,dl_src=e8:4e:06:40: d3:4b,actions =" resubmit (,4)"

39 #Table 2 is to rewrite the destinatio MAC address into broadcast MAC address

40 sudo ovs -ofctl add -flow br0

table=2,actions=mod_dl_dst:ff:ff:ff:ff:ff:ff ,"load:0-> OXM_OF_IN_PORT [],resubmit (,5)"

41 #Table 3 is to rewrite the destinatio MAC address into Gateway 1’s MAC address

42 sudo ovs -ofctl add -flow br0

table=3,actions=mod_dl_dst:e8:4e:06:40: d3:4b,"load:0-> OXM_OF_IN_PORT [],resubmit (,5)"

43 #Table 4 is to rewrite the destinatio MAC address into Raspi 5’s MAC address

44 sudo ovs -ofctl add -flow br0

table=4,actions=mod_dl_dst:e8:4e:06:40: dc:62," load:0-> OXM_OF_IN_PORT [],resubmit (,5)"

45 #Table 5 is to forward to wireless interface

46 sudo ovs -ofctl add -flow br0 table=5,actions=output :1

103

47 sudo ovs -ofctl add -flow br0 priority=1,in_port=1,actions=drop

48 sudo sysctl -p

49 exit 0

1 #To install the Primary OpenFlow Rules in Raspi 5

2 sudo nano /etc/rc.local

3 sleep 3

4 sudo ovs -vsctl --if-exists del -br br0

5 #Bridge is added to OpenVswitch

6 sudo ovs -vsctl add -br br0

7 sudo ovs -vsctl set bridge br0 other -config:datapath -id =1000000000000005

8 #Configure OpenVswitch in Userspace of Linux

9 sudo ovs -vsctl set bridge br0 datapath_type=netdev

10 #Added wireless interface under bridge in OpenVswitch

11 sudo ovs -vsctl add -port br0 wlan0 -- set Interface wlan0 ofport_request =1

12 sudo ifconfig wlan0 0

13 sudo ifconfig br0 10.0.0.5 netmask 255.0.0.0 up

14 sudo iptables -A INPUT -i wlan0 -j DROP#For only OpenVswitch in userspace

15 sudo iptables -A FORWARD -i wlan0 -j DROP#For only OpenVswitch in userspace

16 #Connect to RYU controller

17 sudo ovs -vsctl set -controller br0 tcp :10.0.0.8:6633

18 sudo ovs -vsctl set controller br0 connection -mode=out -of -band

19 sudo ovs -vsctl set -fail -mode br0 secure

20 sudo ovs -vsctl set bridge br0 stp_enable=true

21 #Receive the incoming traffic to Raspi 5 (10.0.0.5) from Raspi 2, Raspi 4 and Raspi 6

22 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:5f:47:59 , arp_tpa =10.0.0.5 , actions=LOCAL

23 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:40: d3:db,arp_tpa =10.0.0.5 , actions=LOCAL

24 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:40:94:20 , arp_tpa =10.0.0.5 , actions=LOCAL

25 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:5f:47:59 , nw_dst =10.0.0.5 , actions=LOCAL

26 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:40: d3:db ,nw_dst =10.0.0.5 , actions=LOCAL

27 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:40:94:20 , nw_dst =10.0.0.5 , actions=LOCAL

28 #Send the packet from Raspi 5 to other wireless node

29 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.2 , actions=output :1

30 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.4 , actions=output :1

31 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.6 , actions=output :1

32 sudo ovs -ofctl add -flow br0

ip,priority =95, in_port=LOCAL ,nw_src =10.0.0.5 , actions =" resubmit (,1)"

33 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=LOCAL ,arp_spa =10.0.0.5 , actions =" resubmit (,1)"

34 #Relay the incoming traffic to other wireless nodes not to Raspi 5

35 sudo ovs -ofctl add -flow br0

arp ,priority =90, in_port=1,dl_src=e8:4e:06:40:94:20 , actions =" resubmit (,3)"

36 sudo ovs -ofctl add -flow br0

arp ,priority =90, in_port=1,dl_src=e8:4e:06:40: d3:db,actions =" resubmit (,4)"

37 sudo ovs -ofctl add -flow br0

ip,priority =90, in_port=1,dl_src=e8:4e:06:40:94:20 , actions =" resubmit (,3)"

38 sudo ovs -ofctl add -flow br0

ip,priority =90, in_port=1,dl_src=e8:4e:06:40: d3:db,actions =" resubmit (,4)"

39 #Table 1 is to rewrite the destinatio MAC address into broadcast MAC address

40 sudo ovs -ofctl add -flow br0

104

table=1,actions=mod_dl_dst:ff:ff:ff:ff:ff:ff ,"load:0-> OXM_OF_IN_PORT [],resubmit (,5)"

41 #Table 2 is to rewrite the destinatio MAC address into Raspi 2’s MAC address

42 sudo ovs -ofctl add -flow br0

table=2,actions=mod_dl_dst:e8:4e:06:5f:47:59 ," load:0-> OXM_OF_IN_PORT [],resubmit (,5)"

43 #Table 3 is to rewrite the destinatio MAC address into Raspi 4’s MAC address

44 sudo ovs -ofctl add -flow br0

table=3,actions=mod_dl_dst:e8:4e:06:40: d3:db ,"load:0-> OXM_OF_IN_PORT [],resubmit (,5)"

45 #Table 4 is to rewrite the destinatio MAC address into Raspi 6’s MAC address

46 sudo ovs -ofctl add -flow br0

table=4,actions=mod_dl_dst:e8:4e:06:40:94:20 ," load:0-> OXM_OF_IN_PORT [],resubmit (,5)"

47 #Table 5 is to forward to wireless interface

48 sudo ovs -ofctl add -flow br0 table=5,actions=output :1

49 #To prevent the infinite loop

50 sudo ovs -ofctl add -flow br0 priority=1,in_port=1,actions=drop

51 sudo ovs -vsctl set bridge br0 protocol=OpenFlow10 ,OpenFlow11 ,OpenFlow12 ,OpenFlow13

52 sudo sysctl -p

53 exit 0

1 #To install the Primary OpenFlow Rules in Raspi 6

2 sudo nano /etc/rc.local

3 sleep 3

4 sudo ovs -vsctl --if-exists del -br br0

5 #Bridge is added to OpenVswitch

6 sudo ovs -vsctl add -br br0

7 sudo ovs -vsctl set bridge br0 other -config:datapath -id =1000000000000006

8 #Configure OpenVswitch in Userspace of Linux

9 sudo ovs -vsctl set bridge br0 datapath_type=netdev

10 #Added wireless interface under bridge in OpenVswitch

11 sudo ovs -vsctl add -port br0 wlan0 -- set Interface wlan0 ofport_request =1

12 sudo ifconfig wlan0 0

13 sudo iptables -A INPUT -i wlan0 -j DROP#For only OpenVswitch in userspace

14 sudo iptables -A FORWARD -i wlan0 -j DROP#For only OpenVswitch in userspace

15 sudo ifconfig br0 10.0.0.6 netmask 255.0.0.0 up

16 #Connect to RYU controller

17 sudo ovs -vsctl set -controller br0 tcp :10.0.0.8:6633

18 sudo ovs -vsctl set controller br0 connection -mode=out -of -band

19 sudo ovs -vsctl set -fail -mode br0 secure

20 sudo ovs -vsctl set bridge br0 protocol=OpenFlow10 ,OpenFlow11 ,OpenFlow12 ,OpenFlow13

21 #Receive the incoming traffic to Raspi 6 (10.0.0.6) from Raspi 3, Raspi 5 and

Gateway 2

22 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:40: d3:7f,arp_tpa =10.0.0.6 , actions=LOCAL

23 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:40: dc:62, arp_tpa =10.0.0.6 , actions=LOCAL

24 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:5e:6a:b1,arp_tpa =10.0.0.6 , actions=LOCAL

25 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:40: d3:7f,nw_dst =10.0.0.6 , actions=LOCAL

26 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:40: dc:62, nw_dst =10.0.0.6 , actions=LOCAL

27 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:5e:6a:b1 ,nw_dst =10.0.0.6 , actions=LOCAL

28 #Send the packet from Raspi 6 to other wireless node

29 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=LOCAL ,arp_spa =10.0.0.6 , actions =" resubmit (,1)"

30 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.9 , actions=output :1

31 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.5 , actions=output :1

105

32 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.3 , actions=output :1

33 sudo ovs -ofctl add -flow br0

ip,priority =95, in_port=LOCAL ,nw_src =10.0.0.6 , actions =" resubmit (,1)"

34 #To prevent duplicate message from Gateway 2 to Gateway 1

35 sudo ovs -ofctl add -flow br0

arp ,priority =95, in_port=1,dl_src=e8:4e:06:5e:6a:b1,arp_tpa =10.0.0.8 , actions=drop

36 sudo ovs -ofctl add -flow br0

ip,priority =95, in_port=1,dl_src=e8:4e:06:5e:6a:b1,nw_dst =10.0.0.8 , actions=drop

37 #Relay the incoming traffic to other wireless nodes not to Raspi 6

38 sudo ovs -ofctl add -flow br0

arp ,priority =90, in_port=1,dl_src=e8:4e:06:5e:6a:b1,actions =" resubmit (,3)"

39 sudo ovs -ofctl add -flow br0

arp ,priority =90, in_port=1,dl_src=e8:4e:06:40: dc:62, actions =" resubmit (,4)"

40 sudo ovs -ofctl add -flow br0

ip,priority =90, in_port=1,dl_src=e8:4e:06:5e:6a:b1,actions =" resubmit (,3)"

41 sudo ovs -ofctl add -flow br0

ip,priority =90, in_port=1,dl_src=e8:4e:06:40: dc:62, actions =" resubmit (,4)"

42 #Table 1 is to rewrite the destinatio MAC address into broadcast MAC address

43 sudo ovs -ofctl add -flow br0

table=1,actions=mod_dl_dst:ff:ff:ff:ff:ff:ff ,"load:0-> OXM_OF_IN_PORT [],resubmit (,5)"

44 #Table 2 is to rewrite the destinatio MAC address into Raspi 3’s MAC address

45 sudo ovs -ofctl add -flow br0

table=2,actions=mod_dl_dst:e8:4e:06:40: d3:7f,"load:0-> OXM_OF_IN_PORT [],resubmit (,5)"

46 #Table 3 is to rewrite the destinatio MAC address into Raspi 5’s MAC address

47 sudo ovs -ofctl add -flow br0

table=3,actions=mod_dl_dst:e8:4e:06:40: dc:62," load:0-> OXM_OF_IN_PORT [],resubmit (,5)"

48 #Table 4 is to rewrite the destinatio MAC address into Gateway 2’s MAC address

49 sudo ovs -ofctl add -flow br0

table=4,actions=mod_dl_dst:e8:4e:06:5e:6a:b1 ,"load:0-> OXM_OF_IN_PORT [],resubmit (,5)"

50 #Table 5 is to forward to wireless interface

51 sudo ovs -ofctl add -flow br0 table=5,actions=output :1

52 #To prevent the infinite loop

53 sudo ovs -ofctl add -flow br0 priority=1,in_port=1,actions=drop

54 sudo sysctl -p

55 exit 0

1 #To install the Primary OpenFlow Rules in Gateway 1

2 sudo nano /etc/rc.local

3 sleep 3

4 sudo ovs -vsctl --if-exist del -br br0

5 #Bridge is added to OpenVswitch

6 sudo ovs -vsctl add -br br0

7 #Configure OpenVswitch in Userspace of Linux

8 sudo ovs -vsctl set bridge br0 datapath_type=netdev

9 sudo ovs -vsctl set bridge br0 other -config:datapath_id =1000000000000008

10 #Added wireless interface under bridge in OpenVswitch

11 sudo ovs -vsctl add -port br0 wlan0 -- set Interface wlan0 ofport_request =1

12 sudo ifconfig wlan0 0

13 sudo ifconfig br0 10.0.0.8 netmask 255.0.0.0 up

14 sudo iptables -A INPUT -i wlan0 -j DROP#For only OpenVswitch in userspace

15 sudo iptables -A FORWARD -i wlan0 -j DROP#For only OpenVswitch in userspace

16 #Connect to RYU controller

17 sudo ovs -vsctl set -controller br0 tcp :10.0.0.8:6633

18 sudo ovs -vsctl set controller br0 connection -mode=out -of -band

19 sudo ovs -vsctl set -fail -mode br0 secure

20 sudo ovs -vsctl set bridge br0 protocol=OpenFlow10 ,OpenFlow11 ,OpenFlow12 ,OpenFlow13

21 sudo ovs -vsctl set bridge br0 stp_enable=true

22 #Receive the incoming traffic to Raspi 3 (10.0.0.3) coming from Raspi 1 and Raspi 4

106

23 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:5e:6b:09, arp_tpa =10.0.0.8 , actions=LOCAL

24 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:5e:6b:09, nw_dst =10.0.0.8 , actions=LOCAL

25 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:40: d3:db ,nw_dst =10.0.0.8 , actions=LOCAL

26 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:40: d3:db,arp_tpa =10.0.0.8 , actions=LOCAL

27 #Send the packet from Gateway1 to other wireless node

28 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=LOCAL ,arp_tpa =10.0.0.4 , actions =" resubmit (,3)"

29 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=LOCAL ,arp_tpa =10.0.0.5 , actions =" resubmit (,3)"

30 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=LOCAL ,arp_tpa =10.0.0.6 , actions =" resubmit (,3)"

31 sudo ovs -ofctl add -flow br0

arp ,priority =90, in_port=LOCAL ,arp_spa =10.0.0.8 , actions =" resubmit (,2)"

32 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.4 , actions =" resubmit (,3)"

33 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.5 , actions =" resubmit (,3)"

34 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.6 , actions =" resubmit (,3)"

35 sudo ovs -ofctl add -flow br0

ip,priority =90, in_port=LOCAL ,nw_src =10.0.0.8 , actions =" resubmit (,2)"

36 #Table 2 is to rewrite the destinatio MAC address into Raspi 1’s MAC address

37 sudo ovs -ofctl add -flow br0

table=2,actions=mod_dl_dst:e8:4e:06:5e:6b:09," resubmit (,4)"

38 #Table 3 is to rewrite the destinatio MAC address into Raspi 4’s MAC address

39 sudo ovs -ofctl add -flow br0

table=3,actions=mod_dl_dst:e8:4e:06:40: d3:db ," resubmit (,4)"

40 #Table 4 is to forward to wireless interface

41 sudo ovs -ofctl add -flow br0 table=4,actions=output :1

42 #To prevent the infinite loop

43 sudo ovs -ofctl add -flow br0 priority=1,in_port=1,actions=drop

44 sudo sysctl -p

45 exit 0

1 #To install the Primary OpenFlow Rules in Gateway 2

2 sudo nano /etc/rc.local

3 sleep 3

4 sudo ovs -vsctl --if-exist del -br br0

5 #Bridge is added to OpenVswitch

6 sudo ovs -vsctl add -br br0

7 sudo ovs -vsctl set bridge br0 other -config:datapath -id =1000000000000009

8 #Configure OpenVswitch in Userspace of Linux

9 sudo ovs -vsctl set bridge br0 datapath_type=netdev

10 #Added wireless interface under bridge in OpenVswitch

11 sudo ovs -vsctl add -port br0 wlan0 -- set Interface wlan0 ofport_request =1

12 sudo iptables -A INPUT -i wlan0 -j DROP

13 sudo iptables -A FORWARD -i wlan0 -j DROP

14 sudo ifconfig wlan0 0

15 sudo ifconfig br0 10.0.0.9 netmask 255.0.0.0 up

16 #Connect to RYU controller

17 sudo ovs -vsctl set -controller br0 tcp :10.0.0.8:6633

18 sudo ovs -vsctl set controller br0 connection -mode=out -of -band

19 sudo ovs -vsctl set -fail -mode br0 secure

20 #Receive the incoming traffic to Gateway 2 (10.0.0.9)

21 sudo ovs -ofctl add -flow br0

107

ip,priority =100, in_port=1,dl_src=e8:4e:06:40:94:20 , nw_dst =10.0.0.9 , actions=LOCAL

22 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=1,dl_src=e8:4e:06:40: d3:7f,nw_dst =10.0.0.9 , actions=LOCAL

23 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,arp_spa =10.0.0.10 , actions=LOCAL

24 sudo ovs -ofctl add -flow br0 ip ,priority =100, in_port=1,nw_src =10.0.0.10 , actions=LOCAL

25 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:40: d3:7f,arp_tpa =10.0.0.9 , actions=LOCAL

26 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=1,dl_src=e8:4e:06:40:94:20 , arp_tpa =10.0.0.9 , actions=LOCAL

27 #Send the packet from Gateway 2 to other wireless node

28 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.3 , actions=output :1

29 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.6 , actions=output :1

30 sudo ovs -ofctl add -flow br0

ip,priority =100, in_port=LOCAL ,nw_dst =10.0.0.10 , actions=output :1

31 sudo ovs -ofctl add -flow br0

ip,priority =95, in_port=LOCAL ,nw_src =10.0.0.9 , actions =" resubmit (,2)"

32 sudo ovs -ofctl add -flow br0

arp ,priority =100, in_port=LOCAL ,arp_spa =10.0.0.9 , actions =" resubmit (,2)"

33 #Table 2 is to rewrite the destinatio MAC address into broadcast MAC address

34 sudo ovs -ofctl add -flow br0

table=2,actions=mod_dl_dst:ff:ff:ff:ff:ff:ff ," resubmit (,4)"

35 #Table 5 is to forward to wireless interface

36 sudo ovs -ofctl add -flow br0 table=4,actions=output :1

37 #To prevent the infinite loop

38 sudo ovs -ofctl add -flow br0 priority=1,in_port=1,actions=drop

39 sudo sysctl -p

40 exit 0

108

Appendix E

Developing Rerouting RYU Program

1 #This program is written by Soe Ye Htet from Chulalongkorn University

2 #This program is for rerouting in outdoor SDWMN testbed in RYU controller

3 #

4 from ryu.base import app_manager

5 from ryu.controller import ofp_event

6 from ryu.controller.handler import CONFIG_DISPATCHER , MAIN_DISPATCHER ,

DEAD_DISPATCHER

7 from ryu.controller.handler import set_ev_cls

8 from ryu.ofproto import ofproto_v1_3

9 from ryu.lib import hub

10 import time

11 import os

12 #Datapath ID of each wireless node

13 raspi1 =1152921504606846977

14 raspi2 =1152921504606846978

15 raspi3 =1152921504606846979

16 raspi4 =1152921504606846980

17 raspi5 =1152921504606846981

18 raspi6 =1152921504606846982

19 gateway1 =255421810004811

20 gateway2 =1152921504606846985

21

22 #MAC addresses of each wireless nodes

23 r1="e8:4e:06:5e:6b:09"

24 r2="e8:4e:06:5f:47:59"

25 r3="e8:4e:06:40: d3:7f"

26 r4 ="e8:4e:06:40: d3:db"

27 r5="e8:4e:06:40: dc:62"

28 r6="e8:4e:06:40:94:20"

29 gw2="e8:4e:06:5e:6a:b1"

30 gw1="e8:4e:06:40: d3:4b"

31

32 #IP addresses of each wireless node

33 gw1ip="10.0.0.8"

34 r1ip="10.0.0.1"

35 r2ip="10.0.0.2"

36 r3ip="10.0.0.3"

37 r4ip="10.0.0.4"

38 r5ip="10.0.0.5"

39 r6ip="10.0.0.6"

40 gw2ip="10.0.0.9"

41

42

43 class node_failure (app_manager.RyuApp):

44 OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

45

46 def __init__(self ,*args ,** kwargs):

47 super(node_failure ,self).__init__ (*args ,** kwargs)

48 self.switch_table = {}

49 self.datapaths = {}

50 self.monitor_thread = hub.spawn(self._monitor)

51 #require to send configuration request message in every 8 seconds

52

109

53 #Define the funtion to add flow rules

54 def add_flow(self ,datapath ,table ,priority ,match ,actions ,hard):

55 ofproto = datapath.ofproto

56 parser = datapath.ofproto_parser

57 inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS ,actions)]

58 mod =

parser.OFPFlowMod(datapath=datapath ,table_id=table ,command=ofproto.OFPFC_ADD ,

59

priority=priority ,match=match ,instructions=inst ,hard_timeout=hard)

60 datapath.send_msg(mod)

61

62 #Define the function to add flow rule with the action of gototable

63 def add_gototable(self ,datapath ,table ,n,priority ,match ,hard): #n is a number of

table

64 parser = datapath.ofproto_parser

65 ofproto = datapath.ofproto

66 inst = [parser.OFPInstructionGotoTable(n)]

67 mod =

parser.OFPFlowMod(datapath=datapath ,table_id=table ,command=ofproto.OFPFC_ADD ,

68

priority=priority ,match=match ,hard_timeout=hard ,instructions=inst)

69 datapath.send_msg(mod)

70

71 @set_ev_cls(ofp_event.EventOFPSwitchFeatures , CONFIG_DISPATCHER)

72 def switch_features_handler(self , ev):

73 dp = ev.msg.datapath

74 datapath = ev.msg.datapath

75 ofproto = datapath.ofproto

76 parser = datapath.ofproto_parser

77 self.logger.info("Switch_ID %s (IP address %s) is

connected ,1",dp.id,dp.address)

78

79 #Define the function to detect when wireless nodes connect to RYU controller or

leave from RYU controller

80 @set_ev_cls(ofp_event.EventOFPStateChange ,[MAIN_DISPATCHER , DEAD_DISPATCHER])

81 def _state_change_handler(self , ev):

82 current_time = time.asctime(time.localtime(time.time()))

83 datapath = ev.datapath

84 if ev.state == MAIN_DISPATCHER:

85 if datapath.id not in self.datapaths:

86 self.logger.debug(’register datapath: %016x’, datapath.id)

87 self.logger.info("(Switch ID %s),IP address is connected %s in

%s,1",datapath.id ,datapath.address ,current_time)

88 self.datapaths[datapath.id] = datapath

89 self.logger.info("Current Conneced Switches to RYU controller are

%s",self.datapaths.keys())

90 elif ev.state == DEAD_DISPATCHER:

91 if datapath.id in self.datapaths:

92 self.logger.debug(’unregister datapath: %016x’, datapath.id)

93 self.logger.info("(Switch ID %s),IP address is leaved %s in %s,0",

datapath.id, datapath.address ,current_time)

94 del self.datapaths[datapath.id]

95 self.logger.info("Current Conneced Switches to RYU controller are

%s", self.datapaths.keys())

96

97 #Define the function to send configuraion request message in every second

98 def _monitor(self):

99 while True:

110

100 #To send configuration request message only when one of the wireless

mesh nodes leave from RYU controller

101 if (raspi1 not in self.datapaths or raspi2 not in self.datapaths or

raspi3 not in self.datapaths or

102 raspi4 not in self.datapaths or raspi5 not in self.datapaths or

raspi6 not in self.datapaths):

103 for datapath in self.datapaths.values ():

104 self.send_get_config_request(datapath)

105 hub.sleep (8)

106

107 #Define the function for configuration request message

108 def send_get_config_request(self , datapath):

109 ofp_parser = datapath.ofproto_parser

110 req = ofp_parser.OFPGetConfigRequest(datapath)

111 datapath.send_msg(req)

112

113 #Define the function to add flow rules with configuration request message

114 @set_ev_cls(ofp_event.EventOFPGetConfigReply , MAIN_DISPATCHER)

115 def get_config_reply_handler(self ,ev):

116 current_time = time.asctime(time.localtime(time.time()))

117 datapath = ev.msg.datapath

118 parser = datapath.ofproto_parser

119 self.logger.info(’IP address %s sends OFPConfigReply message in %s’,

datapath.address , current_time)

120 if ((raspi1 not in self.datapaths and raspi2 in self.datapaths and raspi3 in

self.datapaths and raspi4 in self.datapaths and raspi5 in self.datapaths and

raspi6 in self.datapaths)

121 or (raspi1 not in self.datapaths and raspi2 not in self.datapaths and

raspi3 in self.datapaths and raspi4 in self.datapaths and raspi5 in

self.datapaths and raspi6 in self.datapaths)

122 or (raspi1 not in self.datapaths and raspi2 not in self.datapaths and

raspi3 not in self.datapaths and raspi4 in self.datapaths and raspi5 in

self.datapaths and raspi6 in self.datapaths)):

123 self.logger.info("case1")

124 local = datapath.ofproto.OFPP_LOCAL

125 if datapath.id == raspi5:

126 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r2,

arp_tpa = gw1ip)

127 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay to Raspi 4

128

129 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r2,

ipv4_dst = gw1ip)

130 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay to Raspi 4

131 #These two rules make the route Raspi 2 to Raspi 4 from Raspi 5

Raspi 2 - Raspi 5 - Raspi 4 - GW1

132

133 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r4,

arp_tpa = r2ip)

134 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 4 is to

relay to Raspi 2

135

136 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r4,

ipv4_dst = r2ip)

137 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 4 is to

relay to Raspi 2

138 #These two rules make the route GW1 to Raspi 2 through the route GW1

- Raspi 4 - Raspi 5 - Raspi 2

111

139

140 if datapath.id == raspi6:

141 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r3,

arp_tpa = gw1ip)

142 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay to Raspi 5

143

144 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r3,

ipv4_dst = gw1ip)

145 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay to Raspi 5

146

147 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=gw2 ,

arp_tpa=gw1ip)

148 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay to Raspi 5

149

150 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=gw2 ,

ipv4_dst=gw1ip)

151 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay to Raspi 5

152

153 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r5,

arp_tpa = r3ip)

154 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 3

155

156 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r5,

ipv4_dst = r3ip)

157 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 3

158

159 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r5,

arp_tpa = gw2ip)

160 self.add_gototable(datapath , 0, 4, 160, match , 10)#Table 4 is to

relay Gateway 2

161

162 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r5,

ipv4_dst = gw2ip)

163 self.add_gototable(datapath , 0, 4, 160, match , 10)#Table 4 is to

relay Gateway 2

164

165 elif datapath.id == gateway1: #Gateway1

166 match = parser.OFPMatch(in_port=local ,eth_type =0x0806 ,arp_tpa=r2ip)

167 self.add_gototable(datapath , 0, 3, 160, match , 10) #Table 3 is to

relay Raspi 4

168

169 match = parser.OFPMatch(in_port=local , eth_type =0x0800 ,ipv4_dst=r2ip)

170 self.add_gototable(datapath , 0, 3, 160, match , 10) #Table 3 is to

relay Raspi 4

171

172 match = parser.OFPMatch(in_port=local ,eth_type =0x0806 ,arp_tpa=r3ip)

173 self.add_gototable(datapath , 0, 3, 160, match , 10) #Table 3 is to

relay Raspi 4

174

175 match = parser.OFPMatch(in_port=local , eth_type =0x0800 ,ipv4_dst=r3ip)

176 self.add_gototable(datapath , 0, 3, 160, match , 10) #Table 3 is to

relay Raspi 4

177

112

178 match = parser.OFPMatch(in_port=local , eth_type =0x0806 , arp_tpa=r2ip)

179 self.add_gototable(datapath , 0, 3, 160, match , 10) # Table 3 is to

relay Raspi 4

180

181 match = parser.OFPMatch(in_port=local , eth_type =0x0800 ,

ipv4_dst=r2ip)

182 self.add_gototable(datapath , 0, 3, 160, match , 10) # Table 3 is to

relay Raspi 4

183

184 match = parser.OFPMatch(in_port=local , eth_type =0x0806 ,

arp_tpa=gw2ip)

185 self.add_gototable(datapath , 0, 3, 160, match , 10) # Table 3 is to

relay Raspi 4

186

187 match = parser.OFPMatch(in_port=local , eth_type =0x0800 ,

ipv4_dst=gw2ip)

188 self.add_gototable(datapath , 0, 3, 160, match , 10) # Table 3 is to

relay Raspi 4

189

190 elif ((raspi2 not in self.datapaths and raspi3 in self.datapaths and raspi1

in self.datapaths and raspi4 in self.datapaths and raspi5 in self.datapaths and

raspi6 in self.datapaths)

191 or (raspi2 not in self.datapaths and raspi3 not in self.datapaths and

raspi1 in self.datapaths and raspi4 in self.datapaths and raspi5 in

self.datapaths and raspi6 in self.datapaths)):

192 self.logger.info("Case 2")

193 local = datapath.ofproto.OFPP_LOCAL

194 if datapath.id == raspi6:

195 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r3,

arp_tpa=gw1ip)

196 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay to Raspi 5

197

198 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r3,

ipv4_dst=gw1ip)

199 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay to Raspi 5

200

201 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=gw2 ,

arp_tpa=gw1ip)

202 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay to Raspi 5

203

204 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=gw2 ,

ipv4_dst=gw1ip)

205 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay to Raspi 5

206

207 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r5,

arp_tpa=r3ip)

208 self.add_gototable(datapath , 0, 2, 160, match , 10) # Table 2 is to

relay Raspi 3

209

210 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r5,

ipv4_dst=r3ip)

211 self.add_gototable(datapath , 0, 2, 160, match , 10) # Table 2 is to

relay Raspi 3

212

113

213 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r5,

arp_tpa=gw2ip)

214 self.add_gototable(datapath , 0, 4, 160, match , 10) #Table 4 is to

relay Gateway 2

215

216 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r5,

ipv4_dst=gw2ip)

217 self.add_gototable(datapath , 0, 4, 160, match , 10) #Table 4 is to

relay Gateway 2

218

219 if ev.msg.datapath.id == gateway1: #Gateway1

220 match = parser.OFPMatch(in_port=local ,eth_type =0x0806 ,arp_tpa=r3ip)

221 self.add_gototable(datapath , 0, 3, 160, match , 10) #Table 3 is to

relay Raspi 4

222

223 match = parser.OFPMatch(in_port=local , eth_type =0x0800 ,ipv4_dst=r3ip)

224 self.add_gototable(datapath , 0, 3, 160, match , 10) #Table 3 is to

relay Raspi 4

225

226 match = parser.OFPMatch(in_port=local ,eth_type =0x0806 ,arp_tpa=gw2ip)

227 self.add_gototable(datapath , 0, 3, 160, match , 10) #Table 3 is to

relay Raspi 4

228

229 match = parser.OFPMatch(in_port=local ,

eth_type =0x0800 ,ipv4_dst=gw2ip)

230 self.add_gototable(datapath , 0, 3, 160, match , 10) #Table 3 is to

relay Raspi 4

231

232 elif (raspi3 not in self.datapaths and raspi1 in self.datapaths and raspi2

in self.datapaths and raspi4 in self.datapaths and raspi5 in self.datapaths and

raspi6 in self.datapaths):

233 self.logger.info("Case 3")

234 local = datapath.ofproto.OFPP_LOCAL

235 if datapath.id == raspi6:

236 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=gw2 ,

arp_tpa=gw1ip)

237 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay to Raspi 5

238

239 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=gw2 ,

ipv4_dst=gw1ip)

240 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay to Raspi 5

241

242 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r5,

arp_tpa=gw2ip)

243 self.add_gototable(datapath , 0, 4, 160, match , 10)#Table 4 is to

relay Gateway 2

244

245 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r5,

ipv4_dst=gw2ip)

246 self.add_gototable(datapath , 0, 4, 160, match , 10)#Table 4 is to

relay Gateway 2

247

248 if datapath.id == gateway1:

249 match = parser.OFPMatch(in_port=local ,eth_type =0x0806 ,arp_tpa=gw2ip)

250 self.add_gototable(datapath , 0, 3, 160, match , 10) #Table 3 is to

relay Raspi 4

251

114

252 match = parser.OFPMatch(in_port=local ,

eth_type =0x0800 ,ipv4_dst=gw2ip)

253 self.add_gototable(datapath , 0, 3, 160, match , 10) #Table 3 is to

relay Raspi 4

254

255 elif ((raspi4 not in self.datapaths and raspi5 in self.datapaths and raspi6

in self.datapaths and raspi1 in self.datapaths and raspi2 in self.datapaths and

raspi3 in self.datapaths)

256 or (raspi4 not in self.datapaths and raspi5 not in self.datapaths and

raspi6 in self.datapaths and raspi1 in self.datapaths and raspi2 in

self.datapaths and raspi3 in self.datapaths)

257 or (raspi4 not in self.datapaths and raspi5 not in self.datapaths and

raspi6 not in self.datapaths and raspi1 in self.datapaths and raspi2 in

self.datapaths and raspi3 in self.datapaths)):

258 self.logger.info("Case 4")

259 local = datapath.ofproto.OFPP_LOCAL

260 if datapath.id == raspi2:

261 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r5,

arp_tpa = gw1ip)

262 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay Raspi 1

263

264 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r5,

ipv4_dst = gw1ip)

265 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay Raspi 1

266

267 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r1,

arp_tpa = r5ip)

268 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 5

269

270 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r1,

ipv4_dst = r5ip)

271 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 5

272

273 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , arp_spa=gw2ip ,

arp_tpa=r5ip)

274 self.add_flow(datapath , 0, 160, match , [], 10)

275

276 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , ipv4_src=gw2ip ,

ipv4_dst=r5ip)

277 self.add_flow(datapath , 0, 160, match , [], 10)

278

279 if datapath.id == raspi3:

280 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r6,

arp_tpa = gw1ip)

281 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay Raspi 2

282

283 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r6,

ipv4_dst = gw1ip)

284 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay Raspi 2

285

286 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r2,

arp_tpa = r6ip)

115

287 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 6

288

289 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r2,

ipv4_dst = r6ip)

290 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 6

291

292 if datapath.id == gateway1:

293 match = parser.OFPMatch(in_port=local ,eth_type =0x0806 ,arp_tpa=r6ip)

294 self.add_gototable(datapath , 0, 2, 160, match , 10) #Table 2 is to

relay Raspi 1

295

296 match = parser.OFPMatch(in_port=local , eth_type =0x0800 ,ipv4_dst=r6ip)

297 self.add_gototable(datapath , 0, 2, 160, match , 10) #Table 2 is to

relay Raspi 1

298

299 match = parser.OFPMatch(in_port=local ,eth_type =0x0806 ,arp_tpa=r5ip)

300 self.add_gototable(datapath , 0, 2, 160, match , 10) #Table 2 is to

relay Raspi 1

301

302 match = parser.OFPMatch(in_port=local , eth_type =0x0800 ,ipv4_dst=r5ip)

303 self.add_gototable(datapath , 0, 2, 160, match , 10) #Table 2 is to

relay Raspi 1

304

305 elif (raspi4 not in self.datapaths and raspi5 in self.datapaths and raspi6

not in self.datapaths and raspi1 in self.datapaths and raspi2 in self.datapaths

and raspi3 in self.datapaths):

306 local = datapath.ofproto.OFPP_LOCAL

307 if datapath.id == raspi2:

308 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r5,

arp_tpa = gw1ip)

309 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay Raspi 1

310

311 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r5,

ipv4_dst = gw1ip)

312 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay Raspi 1

313

314 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r1,

arp_tpa = r5ip)

315 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 5

316

317 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r1,

ipv4_dst = r5ip)

318 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 5

319

320 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r5,

arp_tpa = gw2ip)

321 self.add_gototable(datapath , 0, 4, 160, match , 10)#Table 4 is to

relay Raspi 3

322

323 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r5,

ipv4_dst = gw2ip)

324 self.add_gototable(datapath , 0, 4, 160, match , 10)#Table 4 is to

relay Raspi 3

116

325

326 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r3,

arp_tpa = r5ip)

327 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 5

328

329 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r3,

ipv4_dst = r5ip)

330 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 5

331

332 if datapath.id == raspi3:

333 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r6,

arp_tpa = gw1ip)

334 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay Raspi 2

335

336 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r6,

ipv4_dst = gw1ip)

337 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay Raspi 2

338

339 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r2,

arp_tpa = r6ip)

340 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 6

341

342 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r2,

ipv4_dst = r6ip)

343 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 6

344

345 if datapath.id == gateway1:

346 match = parser.OFPMatch(in_port=local ,eth_type =0x0806 ,arp_tpa=r6ip)

347 self.add_gototable(datapath , 0, 2, 160, match , 10) #Table 2 is to

relay Raspi 1

348

349 match = parser.OFPMatch(in_port=local , eth_type =0x0800 ,ipv4_dst=r6ip)

350 self.add_gototable(datapath , 0, 2, 160, match , 10) #Table 2 is to

relay Raspi 1

351

352 match = parser.OFPMatch(in_port=local ,eth_type =0x0806 ,arp_tpa=r5ip)

353 self.add_gototable(datapath , 0, 2, 160, match , 10) #Table 2 is to

relay Raspi 1

354

355 match = parser.OFPMatch(in_port=local , eth_type =0x0800 ,ipv4_dst=r5ip)

356 self.add_gototable(datapath , 0, 2, 160, match , 10) #Table 2 is to

rleay Raspi 1

357

358 elif ((raspi5 not in self.datapaths and raspi1 in self.datapaths and raspi2

in self.datapaths and raspi3 in self.datapaths and raspi4 in self.datapaths and

raspi6 in self.datapaths)

359 or (raspi5 not in self.datapaths and raspi6 not in self.datapaths and

raspi1 in self.datapaths and raspi2 in self.datapaths and raspi3 in

self.datapaths and raspi4 in self.datapaths)):

360 self.logger.info("Case 5")

361 local = datapath.ofproto.OFPP_LOCAL

362 if datapath.id == raspi3:

117

363 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r6,

arp_tpa = gw1ip)

364 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay Raspi 2

365

366 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r6,

ipv4_dst = gw1ip)

367 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay Raspi 2

368

369 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r2,

arp_tpa = r6ip)

370 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 6

371

372 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r2,

ipv4_dst = r6ip)

373 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 6

374

375 if datapath.id == gateway1:

376 match = parser.OFPMatch(in_port=local ,eth_type =0x0806 ,arp_tpa=r6ip)

377 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 1

378

379 match = parser.OFPMatch(in_port=local , eth_type =0x0800 ,ipv4_dst=r6ip)

380 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 1

381

382 elif (raspi6 not in self.datapaths and raspi1 in self.datapaths and raspi2

in self.datapaths and raspi3 in self.datapaths and raspi4 in self.datapaths and

raspi5 in self.datapaths):

383 if datapath.id == raspi2:

384 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r5,

arp_tpa = gw2ip)

385 self.add_gototable(datapath , 0, 4, 160, match , 10)#Table 4 is to

relay Raspi 3

386

387 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r5,

ipv4_dst = gw2ip)

388 self.add_gototable(datapath , 0, 4, 160, match , 10)#Table 4 is to

relay Raspi 3

389

390 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r3,

arp_tpa = r5ip)

391 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 5

392

393 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r3,

ipv4_dst = r5ip)

394 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 5

395

396 elif ((raspi1 not in self.datapaths and raspi6 not in self.datapaths and

raspi2 in self.datapaths and raspi3 in self.datapaths and raspi4 in

self.datapaths and raspi5 in self.datapaths)

397 or (raspi1 not in self.datapaths and raspi2 not in self.datapaths and

raspi3 not in self.datapaths and raspi6 not in self.datapaths and raspi4 in

self.datapaths and raspi5 in self.datapaths)

118

398 or (raspi1 not in self.datapaths and raspi3 not in self.datapaths and

raspi6 not in self.datapaths and raspi2 in self.datapaths and raspi4 in

self.datapaths and raspi5 in self.datapaths)):

399 local = datapath.ofproto.OFPP_LOCAL

400 self.logger.info("Case 6")

401 if ev.msg.datapath.id == raspi2: # Raspi2 To assign the flow rules at

Raspi2 to reroute the control packet from raspi3 and gateway2 to gateway1

402 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r3,

arp_tpa=gw1ip)

403 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 5

404

405 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r3,

ipv4_dst=gw1ip)

406 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 5

407

408 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r5,

arp_tpa=r3ip)

409 self.add_gototable(datapath , 0, 4, 160, match , 10)#Table 4 is to

relay Raspi 3

410

411 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r5,

ipv4_dst=r3ip)

412 self.add_gototable(datapath , 0, 4, 160, match , 10)#Table 4 is to

relay Raspi 3

413

414 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r5,

arp_tpa=gw2ip)

415 self.add_gototable(datapath , 0, 4, 160, match , 10)#Table 4 is to

relay Raspi 3

416

417 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r5,

ipv4_dst=gw2ip)

418 self.add_gototable(datapath , 0, 4, 160, match , 10)#Table 4 is to

relay Raspi 3

419

420 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r3,

arp_tpa = r5ip)

421 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 5

422

423 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r3,

ipv4_dst = r5ip)

424 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 5

425

426

427 elif ev.msg.datapath.id == raspi5:

428 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r2,

arp_tpa=gw1ip)

429 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay Raspi 4

430

431 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r2,

ipv4_dst=gw1ip)

432 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay Raspi 4

433

119

434 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r4,

arp_tpa=r2ip)

435 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 2

436

437 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r4,

ipv4_dst=r2ip)

438 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 2

439

440 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r4,

arp_tpa=r3ip)

441 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 2

442

443 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r4,

ipv4_dst=r3ip)

444 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 2

445

446 match = parser.OFPMatch(in_port=1, eth_type =0x0806 , eth_src=r4,

arp_tpa=gw2ip)

447 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 2

448

449 match = parser.OFPMatch(in_port=1, eth_type =0x0800 , eth_src=r4,

ipv4_dst=gw2ip)

450 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 2

451

452 elif ev.msg.datapath.id == gateway1: # Gateway1

453 match = parser.OFPMatch(in_port=local ,eth_type =0x0806 ,arp_tpa=r1ip)

454 self.add_gototable(datapath , 0, 2, 160, match , 10) #Table 2 is to

relay Raspi 1

455

456 match = parser.OFPMatch(in_port=local , eth_type =0x0800 ,ipv4_dst=r1ip)

457 self.add_gototable(datapath , 0, 2, 160, match , 10) #Table 2 is to

relay Raspi 1

458

459 match = parser.OFPMatch(in_port=local ,eth_type =0x0806)

460 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay Raspi 4

461

462 match = parser.OFPMatch(in_port=local , eth_type =0x0800)

463 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay Raspi

464

465

466 elif ((raspi3 not in self.datapaths and raspi4 not in self.datapaths and

raspi1 in self.datapaths and raspi2 in self.datapaths and raspi5 in

self.datapaths and raspi6 in self.datapaths)

467 or (raspi3 not in self.datapaths and raspi4 not in self.datapaths

and raspi5 not in self.datapaths and raspi6 not in self.datapaths and raspi1 in

self.datapaths and raspi2 in self.datapaths)

468 or (raspi3 not in self.datapaths and raspi4 not in self.datapaths

and raspi6 not in self.datapaths and raspi1 in self.datapaths and raspi2 in

self.datapaths and raspi5 in self.datapaths)):

469 self.logger.info("Case 7")

470 local = datapath.ofproto.OFPP_LOCAL

120

471 if ev.msg.datapath.id == raspi5: #Raspi5 Assign the flow rules at Raspi5

to relay the packet from raspi6 to gateway1

472 match =

parser.OFPMatch(in_port=1,eth_type =0x0806 ,eth_src=r6,arp_tpa=gw1ip) #Table 2 is

to relay Raspi 2

473 self.add_gototable(datapath ,0,2,160,match ,10)

474

475 match =

parser.OFPMatch(in_port=1,eth_type =0x0800 ,eth_src=r6,ipv4_dst=gw1ip) #Table 2 is

to relay Raspi 2

476 self.add_gototable(datapath ,0,2,160,match ,10)

477

478 match =

parser.OFPMatch(in_port=1,eth_type =0x0806 ,eth_src=r2,arp_tpa=r6ip) #Table 4 is

to relay Raspi 6

479 self.add_gototable(datapath ,0,4,160,match ,10)

480

481 match =

parser.OFPMatch(in_port=1,eth_type =0x0800 ,eth_src=r2,ipv4_dst=r6ip) #Table 4 is

to relay Raspi 6

482 self.add_gototable(datapath ,0,4,160,match ,10)

483

484 match =

parser.OFPMatch(in_port=1,eth_type =0x0806 ,eth_src=r2,arp_tpa=gw2ip) #Table 4 is

to relay Raspi 6

485 self.add_gototable(datapath ,0,4,160,match ,10)

486

487 match =

parser.OFPMatch(in_port=1,eth_type =0x0800 ,eth_src=r2,ipv4_dst=gw2ip)#Table 4 is

to relay Raspi 6

488 self.add_gototable(datapath ,0,4,160,match ,10)

489

490 elif ev.msg.datapath.id == raspi2:

491 #Raspi2 To assign the flowrules at raspi2 to relay the control

packet from raspi5 ,raspi6 to gateway1

492 match =

parser.OFPMatch(in_port=1,eth_type =0x0806 ,eth_src=r5,arp_tpa=gw1ip) #Table 3 is

to relay Raspi 1

493 self.add_gototable(datapath ,0,3,160,match ,10)

494

495 match =

parser.OFPMatch(in_port=1,eth_type =0x0800 ,eth_src=r5,ipv4_dst=gw1ip)#Table 3 is

to relay Raspi 1

496 self.add_gototable(datapath ,0,3,160,match ,10)

497

498 match =

parser.OFPMatch(in_port=1,eth_type =0x0806 ,eth_src=r1,arp_tpa=r5ip) #Table 2 is

to relay Raspi 5

499 self.add_gototable(datapath ,0,2,160,match ,10)

500

501 match =

parser.OFPMatch(in_port=1,eth_type =0x0800 ,eth_src=r1,ipv4_dst=r5ip) #Table 2 is

to relay Raspi 5

502 self.add_gototable(datapath ,0,2,160,match ,10)

503

504 match =

parser.OFPMatch(in_port=1,eth_type =0x0806 ,eth_src=r1,arp_tpa=r6ip) #Table 2 is

to relay Raspi 5

505 self.add_gototable(datapath ,0,2,160,match ,10)

121

506

507 match =

parser.OFPMatch(in_port=1,eth_type =0x0800 ,eth_src=r1,ipv4_dst=r6ip)#Table 2 is

to relay Raspi 5

508 self.add_gototable(datapath ,0,2,160,match ,10)

509

510 match =

parser.OFPMatch(in_port=1,eth_type =0x0806 ,eth_src=r1,arp_tpa=gw2ip)#Table 2 is

to relay Raspi 5

511 self.add_gototable(datapath ,0,2,160,match ,10)

512

513 match =

parser.OFPMatch(in_port=1,eth_type =0x0800 ,eth_src=r1,ipv4_dst=gw2ip)#Table 2 is

to relay Raspi 5

514 self.add_gototable(datapath ,0,2,160,match ,10)

515

516 elif ev.msg.datapath.id == raspi6: #Raspi 6

517 match =

parser.OFPMatch(in_port=1,eth_type =0x0806 ,eth_src=gw2 ,arp_tpa=gw1ip)

518 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay Raspi 5

519

520 match =

parser.OFPMatch(in_port=1,eth_type =0x0800 ,eth_src=gw2 ,ipv4_dst=gw1ip)

521

522 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay Raspi 5

523

524 match = parser.OFPMatch(in_port=1,eth_type =0x0806 ,eth_#Table 3 is to

relay Raspi 5src=r5,arp_tpa=gw2ip)

525 self.add_gototable(datapath , 0, 3, 160, match , 10)

526

527 match =

parser.OFPMatch(in_port=1,eth_type =0x0800 ,eth_src=r5,ipv4_dst=gw2ip)

528 self.add_gototable(datapath , 0, 3, 160, match , 10)#Table 3 is to

relay Raspi 5

529

530 elif ev.msg.datapath.id == gateway1: #Gateway1

531 match = parser.OFPMatch(in_port=local ,eth_type =0x0806 ,arp_tpa=r5ip)

532 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 1

533

534 match = parser.OFPMatch(in_port=local ,eth_type =0x0806 ,arp_tpa=r6ip)

535 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 1

536

537 match = parser.OFPMatch(in_port=local ,eth_type =0x0806 ,arp_tpa=gw2ip)

538 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 1

539

540 match = parser.OFPMatch(in_port=local , eth_type =0x0800 ,

ipv4_dst=r5ip)

541 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 1

542

543 match = parser.OFPMatch(in_port=local , eth_type =0x0800 ,

ipv4_dst=r6ip)

544 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 1

122

545

546 match = parser.OFPMatch(in_port=local , eth_type =0x0800 ,

ipv4_dst=gw2ip)

547 self.add_gototable(datapath , 0, 2, 160, match , 10)#Table 2 is to

relay Raspi 1

Listing E.1: Run RYU Controller for Rerouting

1 #In order to detect the failure of wireless mesh node , echo request/reply message

need to be enabled

2 #Need to enable the paramter in controller.py in the soucecode of RYU controller

3 #Source code of RYU controller can be installed by

4 git clone git:// github.com/osrg/ryu.git

5 #Inside controller.py from source code and modify the parameters of echo request

interval and maximum -unreplied -echo -request as per following

6])

7 CONF.register_opts ([

8 cfg.FloatOpt(’socket -timeout ’,

9 default =5.0,

10 help=’Time , in seconds , to await completion of socket operations .’),

11 cfg.FloatOpt(’echo -request -interval ’,

12 default=3,

13 help=’Time , in seconds , between sending echo requests to a

datapath.’),

14 cfg.IntOpt(’maximum -unreplied -echo -requests ’,

15 default =4,#

16 min=0,

17 help=’Maximum number of unreplied echo requests before datapath is

disconnected .’)

18])

19 #After modifying the source code run for ryu program

20 sudo ryu -manager sdwmn_rerouting.py

123

Appendix F

Setting Network Parameters In All Wireless Nodes

1 #In all wireless nodes

2 sudo nano /etc/sysctl.conf

3

4 net.core.rmem_default =8388608

5 net.core.wmem_default =500000

6 net.core.rmem_max = 16777216

7 net.core.wmem_max = 16777216

8 net.ipv4.tcp_rmem = 4096 87380 4194304

9 net.ipv4.tcp_wmem = 4096 87380 4194304

10 net.ipv4.tcp_mem = 8388608 8388608 8388608

11 net.ipv4.tcp_window_scaling =1

124

VITA

Soe Ye Htet was born in 1993 in Yangon, Myanmar. He received B.Eng degree in
Electronic Engineering from West Yangon Technological University (WYTU), Myanmar, in
2014. From 2014 to 2016, he worked as a telecommunication engineer in Myanmar. He is a
Master’s degree student in the field of Wireless Network and Future Internet (STAR) Research
Group at Department of Electrical Engineering, Chulalongkorn University, Thailand. From
2017 to present, he is a recipient of scholarship program for ASEAN countries, Chulalongkorn
University, Thailand. His research interests include Future Internet Technology and Software
Defined Networking.

List of Publications

[1] S. Y. Htet, K. Leevangtou, P. M. Thet, K. Kawila, and C. Aswakul, “Design of
Medium-Range Outdoor Wireless Mesh Network with Open-Flow Enabled Raspberry Pi," 33rd
International Technical Conference on Circuits/Systems, Computers and Communications
(ITC-CSCC), pp. 192-195, 2018.

[2] A. M. Htut, S. Y. Htet, K. Leevangtou, K. Kawila, and C. Aswakul, “Testbed Design
of Near Real-time Wireless Image Streaming with Apache Kafka for Road Traffic Monitoring,"
33rd International Technical Conference on Circuits/Systems, Computers and Communications
(ITC-CSCC), pp. 188-191, 2018.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter 1 Introduction
	Chapter 2 Background and Literature Review
	Chapter 3 Proof-of-concept Investigation of OpenFlow Based2-hop Routing Scenario in Small-scale PreliminaryOutdoor SDWMN Testbed on Phaya ThaiRoad [44]
	Chapter 4 Proposed Fault-Tolerant Multi-hop RoutedSDWMN with Node Failure
	Chapter 5 Experiment of Final Outdoor SDWMN Testbedinside Campus
	Chapter 6 Experiment of Final Outdoor SDWMN Testbed onPhaya Thai Road
	Chapter 7 Conclusion
	References
	Appendices
	VITA

