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This thesis has designed and implemented the prototype of software-defined wireless
mesh network (SDWMN) testbed with in-band control approach for road traffic monitoring
system on Phaya Thai road between Rama 1 and Rama 4 roads. Wireless mesh nodes for
this outdoor SDWMN testbed are composed of 6 waterproof boxes, 6 Raspberry Pi’s, 6
cameras, and 6 power banks and 2 Intel NUC computers. Ad-hoc based IEEE 802.11 WiFi
standard is used to send the captured image from Raspberry. Two gateways are installed at
the traffic police boxes and two wireless mesh nodes are installed at each crossover bridge
on Phaya Thai road. The total distance between two gateways is 1100 meters. On Phaya
Thai road, the average distance between adjacent crossover bridges is 250-350 meters. In
summary, the main contributions of this thesis are as follows.

Firstly, we have designed and developed all components in preparation for the actual
installation SDWMN testbed. The software parts include the installation of OpenVswitch,
RYU, driver for external WiFi adapter in all wireless nodes and routing for outdoor
SDWMN. Linux kernel version 4.4 has been used with the driver for applied antenna in
this thesis. A waterproof box is designed for installation on the crossover bridges on
Phaya Thai road.

The primary route and the alternative route are built by predefined forwarding rules
based on minimum hop path. The primary route is installed by predefined forwarding
rules at bootstrapping stage in all wireless nodes and the alternative route is established by
predefined backup forwarding rules from RYU controller when one of the wireless mesh
nodes is failed with the usage of standard OpenFlow configuration request message.

Based on our measurement of network performance, OpenFlow control traffic requires
around 12 kbit/sec when all wireless mesh node are connected to RYU controller and
requires at least 20 kbit/sec when one of the wireless mesh nodes is disconnected from
RYU controller.

The failure of wireless mesh node is investigated by manually rebooting the wireless
mesh node. From our results, the required largest time to reroute for is 46 seconds and for
data plane is 30 seconds. The actual restoration time for individual failure cases depends
on the actual physical location where outdoor SDWMN is installed and the nodes that fail

Finally, we have integrated the intended traffic monitoring application and SDWMN
network. We have provided to traffic police for usages of traffic monitoring system for
16 hours on 26th November 2018 and the status of control plane during this practical
operation of a traffic monitoring system is investigated. During network operation with traffic
monitoring application in winter season of Thailand, the temperature of wireless mesh node
is lower than the maximum operable temperature which is 85-degree Celsius. Testing in the
warmer seasons is left as a future work together with the testing of resultant temperature-
dependent node inoperability and SDWMN reliability. The current network testbed will be
a baseline for those future implementation verification of large-scale SDWMN of road traffic
monitoring network.
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Chapter 1
Introduction

1.1 Research Motivation

Nowadays, road traffic congestion becomes a major problem for the people in their daily
life as the traffic density has been increasing year by year. In order to reduce the road traffic
congestion, researchers have tried to set up the wireless sensor network or wireless mesh
network or other types of networks to build the road traffic monitoring system. Under
the category of a road traffic monitoring system, we have focused to build up the outdoor
wireless network along the road in this thesis to support the future road traffic monitoring
application such as the application of real-time video streaming. The wireless outdoor
network of this work needs to be cost-effective, scalable and reliable.

In this case, IEEE 802.11 standard (WiFi) has been chosen for this work in order to
minimize the operating cost in sending video or other possible data within the implemented
outdoor wireless network. There are two options which can be utilized to establish the
wireless network based on IEEE 802.11 standard which is an ad-hoc mode and an infras-
tructure mode. In an infrastructure based network, a wireless access point (AP) is required
to build the wireless network and the range of wireless network can be extended by adding
more APs. In contrast, an ad-hoc mode allows two or more devices such as laptops to be
directly connected to each other without relying on the wireless access points. Therefore,
an ad-hoc based wireless network is easy to be set up and extended without any AP. A
wireless mesh network (WMN) is a multi-hop ad-hoc network and it can be established by
connecting wireless nodes or routers to each other with the radio standards such as WiFi [4],
ZigBee [12]. Since WMN can also eliminate the cost to purchase APs in expanding the net-
work range, WMN becomes a cost-effective solution to create an outdoor wireless network
to be deployed along a target congested road.

However, there are also challenges in WMN. The advantage of requiring no infrastruc-
ture based AP means that there is no central point to manage a WMN. To enable the
routing in WMN, there are three types of distributed mesh routing protocols, namely, (i)

proactive routing protocol (ii) reactive routing protocol and (iii) hybrid routing protocol [3].



Those distributed mesh routing protocols have a relatively restrictive functionality and their
distributive nature of protocol configurations are difficult to be managed efficiently. In order
to overcome the current limitation of WMN, software-defined networking (SDN) introduces
the feature of centralized network management by separating the control and data planes
with the open standard protocol such as OpenFlow [1]. By using the SDN in WMN, the
network becomes manageable, controllable and easy to be modified. SDN based routing
algorithms are easy to be configured or modified by using an available high-level program-
ming language to automate the forwarding function from the control plane. This thesis aims
at bringing the functionalities of SDN into the wireless mesh network and testing the real
outdoor software defined wireless mesh network (SDWMN) testbed along an actual road.
In this work, SDWMN testbed needs to be low cost and a Raspberry Pi 3 model B+ [13]
becomes an interestingly appropriate option as the wireless mesh node hardware because
it is a cheap and sufficiently powerful device. We design and implement the system with
the intention for a road traffic monitoring system in this thesis by using an SDWMN of
Raspberry Pi nodes to relay the road traffic video data from all the nodes to the gateway

nodes locating at the ending points of connected WMN topology.

1.2 Problem Statement

According to the intended future application in this work, the proposed SDWMN testbed
needs to be implemented in the outdoor environment along the targeted congested road.
However, the past implementation of SDWMN [35, 36, 37, 38, 39, 40, 41, 42] have been set
up in the indoor or only by emulated environments. While insightful results getting from
the emulated environment can be easily repeated in a laboratory, the result can be varied
by the type of emulated environments and can much differ from that in the actual outdoor
scenario.

In this work, we have proposed to implement a prototype for an outdoor medium-range
SDWMN testbed to be tested in real scenarios along the road. There are challenges to
deploy our intended network testbed. The major focuses in this work are weather condi-
tions, network reachability, and performance. The weather challenges are concerned with

the hot-humid country’s temperature and rain. The high temperature can cause the Rasp-



berry Pi‘s to be overheating and can be burnt. A heavy rain can degrade the wireless signal
strength such as decreasing RSSI (received signal strength indicator) value. For this rea-
son, the valid equipment hardware components must be chosen carefully in designing the
outdoor SDWMN network testbed. Finally, with the testbed constructed, we are interested
in testing network reachability and performance. Those challenges become our motivation
to investigate the actual achievable performance of SDWMN testbed and practical mea-
surement result from the real testbed is expectedly valuable for improving the proposed

SDWMN testbed design.

1.3 Objective

The main objective of this thesis is to design and implement the medium-range outdoor
wireless mesh network with OpenFlow-enabled Raspberry Pi’s for a road traffic monitoring
system. The network design criteria include the proper ISM WiFi frequency band selection,
preparation for seasonal weather challenges, selection of antenna type, and the measurement
location for the testbed performance. From the real implementation, the test includes the
measurement of network reachability, TCP throughput, packet loss ratio, a temperature of

Raspberry Pi and latency based on ICMP packets.

1.4 Scope of Thesis

The scope of this research are as follows:

1. Design of the outdoor medium-range SDWMN to prepare for the actual deployment

scenario challenges.

2. Development of a simple fault-tolerant multi-hop routing scenario for failure of wire-

less mesh node which is suitable to the proposed outdoor SDWMN testbed.

3. Implementation of the real outdoor SDWMN testbed along the selected road and test
TCP throughput, latency, packet loss ratio and the network reachability specified here
by the maximum per-hop distance between wireless nodes as well as the maximum

number of hops that can sustain the desired path throughput.



Chapter 2

Background and Literature Review

2.1 Wireless Mesh Network

Based on the IEEE 802.11 standard, a wireless network can be configured in two ways.
The first one is an infrastructure based network and the second one is an ad-hoc based
network. In an infrastructure based network, the wireless access point (AP) is required to
establish the wireless connection between the wireless nodes such as laptops and routers.
The range of the infrastructure based network can be extended by adding the APs. On the
other hand, the wireless nodes are able to directly connect to each other without APs in an
ad-hoc based network. An ad-hoc based network is easy to set up and it is inexpensive in
extending the range of the network because there is no need for the APs in extending the
network coverage. WMN is the multi-hop ad-hoc network and the typical architecture of

WDMN is demonstrated in Figure 2.1.

Figure 2.1: Typical architecture of WMN.

In Figure 2.1, WMN is composed of three kinds of wireless nodes which are mesh routers,
mesh gateway and mesh clients. Since WMN is based on the ad-hoc mode, each mesh router

and a mesh gateway can be directly connected to each other. Laptops, mobile phones can



be regarded as the mesh clients in this matter. A mesh gateway in Figure 2.1 is connected
to the wired network for the internet connection. Various communication standards such as
IEEE 802.15.4 (ZigBee), IEEE 802.11 (WiFi) can be applied to establish the WMN. There
are a lot of traditional mesh routing protocols such as optimized link state routing protocol
(OLSR) [28], ad-hoc on-demand distance vector (AODV) [29] implemented in the WMN for
each mesh router to operate its responsibilities which are forwarding and routing the pack-
ets. The network must be designed by considering a topology robustness with self-healing
characteristics as enabled by a proper mesh network routing. However, a conventional
WMN with distributed routing protocols is generally difficult to be managed. This is be-
cause of the complex structure of wireless mesh topology and hence a manual configuration
is often required upon significant network routing upgrades. Distributed routing also suffers
from the lack of the network global view, and this could raise an issue on routing protocol
efficiency. To cope with such difficulties, the feature of SDN is applied with an inherently
enhanced network programmability. The detail of the SDN is explained in Section 2.2.

There are two types of topologies [25]:
1. Full mesh topology.
2. Partial mesh topology.

Figure 2.2 gives an example of the topology of a full WMN. If the wireless nodes such
as mesh routers are fully interconnected to every other node, that topology is considered
as the full wireless mesh topology [25]. Figure 2.3 gives another example of the topology
of a partial WMN. If the wireless nodes are connected to each other but not to every other

node, such a kind of topology is regarded as the partial mesh topology [25].

2.2 SDN

SDN [2] is regarded as the next generation of network architecture. In conventional
networking, the control plane, data plane, and management plane are implemented in the
hardware of forwarding elements. Here, the forwarding elements refer to the routers and
switches. In SDN, the control plane and data plane are separated by an open standard

protocol such as OpenFlow [1] and the control plane is implemented as the software in



Figure 2.2: Typical topology of full WMN.

Figure 2.3: Typical topology of partial WMN.



a logically centralized SDN controller. Here, the centralized control plane is responsible
for commanding SDN switches by giving instructions on how to send the packets and a
data plane is responsible for forwarding incoming packets according to the instructions
from the control plane. SDN switch is referred to as the OpenFlow-enabled forwarding
elements and OpenFlow is an open standard protocol to enable the direct communication
between the SDN controller and SDN switches. The intelligence of network is separated
from the forwarding function and that the intelligence of network is located in the logically
centralized SDN controller. In this matter, SDN controller does not need to be physically
centralized but it must have the global view of the whole topology. Therefore, SDN can
simplify the network operation. High-level programming languages such as Python, Java
are allowed for the program development of software applications such as load balancing
algorithm, routing algorithm to run on top of (or so-called at the northbound interface of)
the SDN controller. Therefore, SDN network is easy to be managed and modified with
those SDN applications which can be executed in the SDN controller. The principle of SDN

is summarized in Figure 2.4.

Figure 2.4: Principle of SDN [2].

Basically, SDN is composed of three layers.
1. Infrastructure Layer.

2. Control Layer.



3. Application Layer.

The lowest layer is the infrastructure layer which is also known as the forwarding layer
and it is composed of SDN switches. The main difference between SDN switch and the
traditional router is that SDN switch does not have its own routing logic. That means every
SDN switch is not allowed to decide by itself how to forward each incoming packet. The
SDN controller assigns the forwarding flow tables to SDN switches and SDN switches have to
forward the packets according to the flow tables assigned by the SDN controller. The middle
layer is the control layer and it is executed by the SDN controller. The upper layer is the
application layer and it is composed of the SDN applications such as routing algorithm and
load balancing. The interface between the control layer and the infrastructure layer is the
southbound interface which is provided by the open standard interface such as OpenFlow [1].
SDN controller uses the southbound interface in order to install the forwarding rules into
SDN switches. A northbound interface is located between the application layer and the
control layer and that interface is used by the SDN application to run its service on the

SDN controller through the application programming interface (API).

2.3 OpenFlow

OpenFlow [1] is the first open standard protocol that provides the southbound interface
between the SDN controller and SDN switches. There are so far versions of OpenFlow
protocols from version 1.0 to 1.5. OpenFlow version 1.0 is the default version and it is
used in most SDN switches and SDN controllers. OpenFlow provides the communication
interface for an SDN controller to instruct SDN switches on how to forward the packets
by installing, deleting and modifying flow entries in SDN switches reactively or proactively.
The flow table of SDN switch is a set of flow entries and flow entries are executed with
match-action criteria. The main components of flow entry in a flow table is summarized in

Table 2.1 from OpenFlow version 1.3, which will be used in this thesis.

Table 2.1: Main components of flow entry in a flow table [17].

Match Field \ Priority \ Counters \ Instructions | Timeout \ Cookie ‘

Each flow table entry contains:



1. Match field : To filter the incoming packets by matching with the defined values in

the matching fields.

2. Priority : The matching preference of table entries. When an SDN switch receives a
packet, an incoming packet header is matched sequentially from the highest number

of priority to the lowest number of priority.

3. Counters : The counter is used to count the number of the matched packet. The

counter is updated with the number of matched packets.
4. Instructions : Action fields for each matched packet.

5. Cookie : Opaque data specified by the controller. Cookie value is used to filer the

flow modification, flow statistics and flow deletion.

In the matching field, the ingress port and the specific packet header values are included.
The ingress port is the port where the SDN switch receives the incoming packet. The
specific packet headers in the matching fields are the destination MAC address, source
MAC address, source IP address, destination IP address, TCP/UDP source port number,
TCP/UDP destination port number, for example.

The options available in the action field of the flow table are used to instruct the SDN
switches how they need to exactly handle the matched packet. Some available options in

the action field and their functions are listed in Table 2.2 from OpenFlow version 1.3.

Table 2.2: Names of action fields of OpenFlow and their function [17].

Actions Function
ouTpUT Forward the packets on a specific port
DROP Drop the packets
ALL Forward packets out to all physical ports
CONTROLLER Forward the packets to the controller as a packet in message
FLOOD Forward packet out to all physical ports except to the ingress port
LOCAL Forward the packets to the local port of the bridge
INPORT Forward the packets to the ingress port

The architecture of OpenFlow switch compliant with OpenFlow version 1.3 is summa-

rized in Figure 2.5. In this thesis, we use the OpenFlow version 1.3 because it can support
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the features of multiple flow tables. The feature of multiple flow tables can provide the flex-
ible OpenFlow switch pipeline. When the OpenFlow switch receives an incoming packet,
that incoming packet is matched and processed in the operational precedence starting from
the lowest number of tables e.g. table 0. The specific type of processing such as QoS,
routing can be separately defined conveniently by dedicated flow tables such as table 1 for
QoS, table 2 for routing. In this thesis, multiple flow tables are used for rewriting the packet

header of the incoming packet, for relaying the incoming packet for multi-hop routing.

Figure 2.5: Architecture of OpenFlow switch compliant with OpenFlow version
1.3 [17].

2.4 WiFi Frequency Band Selection

We have considered to set up an outdoor SDWMN testbed based on 2.4 GHz and 5 GHz
because those frequencies are unlicensed Industrial, Scientific and Medical (ISM) bands for
WiFi. Therefore, the characteristics of 2.4 GHz ISM band and 5 GHz ISM band are mainly
discussed in this subsection.

Under the standards of IEEE 802.11, there are generally five different IEEE 802.11
standards which are applied to 2.4 GHz ISM band and 5 GHz ISM band. Table 2.3 highlights
the different frequency ranges of IEEE 802.11 standards.

The characteristics of the 2.4 GHz and 5 GHz ISM frequency bands are summarised as

follows [45]:
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Table 2.3: Wireless standards of IEEE 802.11.

IEEE 802.11 standard | ISM band
802.11b 2.4 GHz
802.11¢g 2.4 GHz
802.11a 5 GHz
802.11ac 5 GHz
802.11n 2.4/5 GHz

1. Channels 1 to 14 can be used (FCC allows only 11 channels) in 2.4 GHz ISM band.
Among them, the maximum 3 non-overlapping channels can be applied [(1,6,11),
(2,7,12), (3,8,13), (4,9,14), (5,10)]. In 5 GHz ISM band, the maximum of 23 non-
overlapping channels can be applied. The number of non-overlapping channels in 2.4

GHz and 5 GHz ISM bands are based on 20 MHz channel bandwidth.

2. 2.4 GHz ISM band is widely used in Bluetooth, microwave oven, remote controller,
cordless phone and this can possibly lead to the overcrowded situation. Since 23 non-
overlapping channels can be applied in 5 GHz ISM band, there is less interference in

5 GHz ISM band.

3. Theoretically, 2.4 GHz can provide larger network coverage than network coverage
that 5 GHz can because the higher the frequency, the shorter the range based on the

same transmission power.

4. Based on 20 MHz channel width in 2.4 GHz and 5 GHz band, 5 GHz ISM band can
provide more non-overlapping channels and a lower level of interference. There is also
no overcrowded situation in 5 GHz band. Therefore, the performance of 5 GHz band

is better than 2.4 GHz ISM band expectedly in general.

Selection of frequency range is one of the important factors to design the outdoor-based
network to provide the stable and wide wireless connectivity. In this design, the location of
the proposed outdoor SDMWN testbed will be located inside the urban area because the
proposed testbed is intended for a road traffic monitoring system. If a proposed outdoor
SDWMN testbed is implemented with 2.4 GHz ISM band, the Bluetooth devices from cars
can potentially degrade a proposed outdoor SDWMN testbed. There is another point to be

contemplated in the selection of frequency range. The allowable WiFi transmission power is
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different according to the rules of the country. The maximum permitted WiFi transmission

power in Thailand is listed in Table 2.4.

Table 2.4: Allowed WiFi transmission power in Thailand.

Frequency (GHz) | Allowed WiFi transmission power | Type of Network
2.400 - 2.500 0.1 W (EIRP) Indoor/Outdoor
5.150 - 5.350 0.2 W (EIRP) Indoor
5.470 - 5.725 1.0 W (EIRP) Indoor/Outdoor
5.725 - 5.850 1.0 W (EIPR) Indoor/Outdoor

Effective Isotropically Radiated Power or Equivalent Isotropic Radiated Power (EIRP)
is equal to the output power of the transmitter minus cable loss plus antenna gain [27]. Note
from Table 2.4 that there are higher maximum wireless transmission power allowed in 5 GHz
band than in 2.4 GHz band. The wireless transmission power directly affects the network
reachability. In summary, from all the reasonings aforementioned, this thesis proposes to

utilize 5 GHz ISM band.

2.5 Type of Antenna

The type of WiFi antenna is another important factor for the outdoor network planning.
There are two major types of WiFi antennas: (i) omnidirectional antenna and (ii) directional
antenna. An omnidirectional antenna provides 360-degree horizontal radiation pattern.
Therefore, the number of required omnidirectional antennas for a wireless node does not
depend on the number of neighbor nodes due to its radiation pattern that can reach all the
neighbor nodes in all surrounding directions. A directional antenna is used to provide the
wireless signal in a specific direction. Since the transmission power is only needed to be
consumed for the specific direction, the directional antenna can provide a longer per-hop
distance based on the same EIRP transmission power allowed by law in comparison with
the omnidirectional antenna. The number of required directional antenna is also based on
the number of neighbor nodes for at least along a road the node must be able to relay both
forward and backward to its neighbors. Therefore, the implementation cost of the network
based on directional antennas will be higher than the network design which is based on

omnidirectional antennas. In order the save the implementation cost, an omnidirectional
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antenna is applied in the proposed outdoor medium-range SDWMN testbed.

2.6 Summary of Existing WMN Testbeds in Literature and

Proposed SDWMN

This section provides a survey of how existing WMN testbeds have been implemented
in the past and compares with the proposed SDWMN.

The small-scale Raspberry Pi based WMN testbed has been built in [30]. OpenWrt
operating system is installed in each Raspberry Pi mesh node. The main purpose of the
paper is in analyzing the performance of OLSR routing protocol in line-of-sight (LoS) and
non-line-of-sight (NLoS) propagations in an indoor environment.

The outdoor campus WMN based on the 802.11b/g wireless interfaces are implemented
on the roof of the university in [31]. Those wireless interfaces use fourth generation Atheros
chipset based on AR5213 MAC /baseband. The target of this paper is to analyze the outdoor
wireless link performance achievable by the 802.11b standard and the 802.11g standard.

Another outdoor campus WMN testbed has been established in [32]. In this case, Better
Approach To Mobile Ad-hoc Networking (B.A.T.M.A.N) [7] mesh routing protocol is used
to set up the testbed. The contribution of this work is in investigating the performance of
B.A.T.M.A.N routing protocol which is integrated at their proposed outdoor testbed.

The large-scale WMN testbed with static routing for road traffic control is proposed
in [33]. The main objective of this work is to control the road traffic by handling the traffic
light. The testbed is composed of 7 wireless mesh nodes each installed in a traffic light
pole. Three different radios are applied (900 MHz, 2.4 GHz, 3.5 GHz) to construct the
testbed. That testbed is located in the Sydney Central Bank Distinct which is an urban
environment. The range between each mesh node is from 200 meters to 500 meters. Link
characteristics of the testbed are analyzed in terms of latency.

QuRiNet has been set up in [34]. QuRiNet is the large-scale WMN testbed composed
of 30 wireless mesh nodes. The testbed is located in the Quail Ridge Natural Reserve in
California. The physical link distance between each wireless node is ranged from a hundred

meters. The author has described the detail challenges to install QuRiNet in the outdoor
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environment and explained how they have designed the QuRiNet to overcome the weather
challenge, equipment challenge, site location challenge, and antenna selection challenge.
Dynamic OLSR routing protocol is deployed to enable multi-hop routing for QuRiNet.

The proposed WMN testbeds [30, 32, 34] are fully distributed wireless networks and
the intelligence of the networks is maintained in each mesh node. Routing in the WMN
is achieved by the traditional routing protocols and those conventional routing protocols
provide a different kind of behaviors. The behavior of traditional mesh routing protocols is
difficult to be managed as the intelligence of the network is implemented distributively in
each mesh node.

The first architecture of SDWMN has been proposed in [35] to overcome the limited
functionality of the legacy routing protocol and the WMN has been managed from the
logically centralized SDN controller. In-band SDN control mechanism is applied by using
two separated virtual local area networks (VLANS) on the same network interface to set up
the control channel and data channel, respectively. One VLAN is used to carry the control
traffic and another VLAN is used to carry the data traffic. Traditional OLSR routing
protocol is used for control traffic routing.

The traditional routing protocol is often used for data traffic in SDWMN as the backup
plan in case of the centralized SDN controller is down. OLSR routing protocol has been
applied in [36] for control traffic and data traffic if the SDN controller is not working in the
proposed SDWMN framework in an NS3 [9]. The use case of [36] is the gateway balancing by
implementing a round-robin gateway selection algorithm in the POX controller. Implement-
ing traditional routing protocol inside the SDN based network may increase communication
overhead.

The testbed of SDWMN based on Raspberry Pi is proposed in [37]. The testbed is
set up in the laboratory with the WLAN APs and an ONOS (Open Network Operating
System) controller [6]. Each AP is composed of three Raspberry Pi’s for AP mode, station
(STA) mode and Open Virtual Switch (OVS). An ONOS controller is connected to the AP
via the wired network. The main purpose of the paper is in analyzing the performance of
each AP.

A small-scale SDWMN is implemented in [38] inside the laboratory with 4 wireless
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routers and an SDN controller. The out-of-band approach is applied by setting up the
control plane with the wired network and the data plane with the wireless interfaces. The
main objective of this paper is to propose the OpenFlow-based load balancing with the
concept of the data flow path redirecting between links of the wireless mesh nodes.

The three-staged routing algorithm for SDWMN is proposed in [39]. The authors in [39]
have used NS3 [9] and Mininet [16] to create the emulation environment for the testbed.
For stage 1, an SDN controller tries to connect the switch with the basic routing by sending
OF _Initial Path_Request message. For stage 2, the switch sends OF _Inital Path_Response
message to the controller. From the message from stage 2, an SDN controller knows the
information of neighbor nodes. For stage 3, an SDN controller installs the routing path
based on the shortest path algorithm. In this paper, they focus on the connection between
an SDN controller and switches and the connection between the switches.

Control overhead, CPU usage is investigated in an in-band control approach SDWMN
testbed with full mesh and partial mesh topologies inside the building in [40]. Tun/Tap
interface is applied to construct the in-band control. The topology in [40] is composed of
6 mesh routers and an SDN controller. OLSR routing protocol is used to construct the
communication between mesh routers and an SDN controller.

IISTMeshNet testbed is implemented in [41] with two RYU controllers [19] and three
mobile routers. ALIX.3d3 board [20] is used as a mobile router in the proposed testbed. In-
band control approach is applied. The main purpose of this paper is to propose two dynamic
multi-hop hand-off solutions based on the mobility of the OpenFlow-enabled routers. The
first solution is the Round-Trip-Time (RTT) based hand-off scheme and the second solution
is the Expected Transmission Count (ETX) based hand-off scheme.

Prediction-based link uncertainty solution in SD-WMN (PLUS-SW) is proposed in [42]
to predict the link failure in the control plane and data plane on the case of node mobility
by using the supervised learning model and to determine the optimal alternative route from
the SDN controller. The simulation is done in the Network Simulation 3 (NS3) by building
the network with 50 nodes in 300 m x 1500 m area.

Table 2.5 gives a comparative summary of the reviewed WMN and SDWMN systems.

Thanks to the authors in [34] who have built the QuRiNet which is the outdoor large
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WDMN, the characteristic of the outdoor wireless network has been studied. A conventional
outdoor WMN is set up in the urban environment in [33] for controlling road traffic. Indoor
and emulated SDWMN testbeds are implemented in [35, 36, 37, 38, 39, 40, 41, 42]. The
main difference between our work and those summarized works is that we will propose
the real outdoor based SDWMN testbed along the road for traffic monitoring. OpenFlow
based routing scenario is applied to establish a control plane and a data plane on a single
physical interface. By using the features of SDN which we have discussed in Section 2.2 in
building WMN testbed, our proposed SDWMN testbed is easy to be managed and modified.
From the proposed outdoor SDWMN testbed, the investigation for the performance of real

outdoor SDWMN testbed can be conducted.

Table 2.5: Summary of reviewed WMN testbeds and proposed SDWMN.

Papers OpenFlow Type of Testbed Routing
Enabled Control Environment Protocol
[30] No Distributed Indoor OLSR
[31] No Distributed Outdoor 802.11 b/g
[32] No Distributed Outdoor B.A'T.M.AN
[33] No Distributed Outdoor Static
[34] No Distributed Outdoor OLSR
[35] Yes In-Band Indoor OLSR & SDN
[36] Yes In-Band NS3 OLSR & SDN
[37] Yes Out-of-Band Indoor SDN
[38] Yes Out-of-Band Indoor SDN
[39] Yes Out-of-Band | NS3 & Mininet SDN
[40] Yes In-Band Indoor OLSR & SDN
[41] Yes In-Band Indoor OLSR
[42] Yes In-Band NS3 SDN
Proposed Work Yes In-Band Outdoor SDN




Chapter 3

Proof-of-concept Investigation of OpenFlow Based

2-hop Routing Scenario in Small-scale Preliminary
Outdoor SDWMN Testbed on Phaya Thai

Road [44]

Before we implement the final outdoor SDWMN testbed, we have implemented first
the small-scale outdoor preliminary SDWMN testbed with two Raspberry Pi’s and an
Intel @ NUCTi7TBNH [14] in order to analyze the performance of OpenFlow based 2-hop
routing. The preliminary testbed preparation in this research is concerned with the medium-
range outdoor WMN based on OpenFlow-enabled Raspberry Pi, thanks to Raspberry Pi
3’s cost-effectiveness and obtainable computational power within a compact form factor.
The design intention is for studying the achievable link and path throughputs upon the
medium achievable range of wireless connectivity based on off-the-shelf wireless ad-hoc link
antenna. Our design is aimed at a potential future application towards a road network
traffic monitoring, where each Raspberry Pi 3 serves both as a wireless signal relay as well

as a sensor e.g. by attaching with a small camera to monitor road traffic conditions.

3.1 Design of Preliminary Small-scale Outdoor SDWMN

Testbed

An example of future usage scenario of proposed outdoor SDWMN is depicted in Fig-
ure 3.1. The topology consists of 2 gateways and 6 mesh nodes. Each gateway is operated
as a server to receive sensor data from mesh nodes and to push the data potentially into a
data cloud. Here, a node running the gateway functionality can also run the SDN controller.
Intel® NUC7i7BNH is used as a gateway and a Raspberry Pi 3 model B+ with Quad-Core
CPU and 1-GByte RAM is used as a mesh node. Both the gateway and mesh nodes run

the Ubuntu MATE operating system [15] version 16.04 (32 bit). In each gateway and mesh
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node, a dual-band EDUP EP-AC1605 Wi-Fi USB adapter [24] with two omnidirectional
antennas is installed. Since EDUP EP-AC1605 is a dual-band antenna, 2.4 GHz ISM band
or 5.5 GHz ISM band can be selected. 5.5 GHz is applied in establishing the preliminary
outdoor SDWMN testbed and the reason has been already discussed in Section 2.4. The
high WiFi transmission power in 5.5 GHz according to Table 2.4 should allow a per-hop dis-
tance of at least between 100 meters and 500 meters, which is regarded here as the medium

range in this design.

Figure 3.1: Typical installation scenario of outdoor SDWMN to monitor road
network traffic (e.g. on Phaya Thai road, Bangkok).

A sample SDWMN testbed has been designed with a typical usage deployment area as
exemplified by the Phaya Thai road segment in between Rama 1 road and Rama 4 road
in Bangkok, for the convenience of future installation and testing preparation. Here, there
are five crossover bridges which are the suitable locations to place, wherever possible, the
Raspberry Pi’s in order to avoid the line-of-sight obstacles such as trucks or buses which
can block the wireless signal. The average distance between adjacent crossover bridges is
around 250 meters. An exception is on the distance between Raspi 3 and Raspi 5 over 400
meters, which are not long enough to relay the signal from Raspi 3 to Raspi 5 directly.
However, Raspi 4 can be placed on either side of the road in between Raspi 3 and Raspi 5.

Open Virtual Switch (OVS) [8] is installed in each mesh node and gateway to establish
a connection between an SDN controller and the mesh nodes. OVS runs the standard
OpenFlow protocol. RYU controller [19] is chosen in this thesis as the testbed’s SDN

controller. RYU controller is Python-based and can support up to OpenFlow version 1.5
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with usage convenience features e.g. GUI, OpenStack support, REST API. RYU controller
has been suggested as a good choice for small businesses and research applications [43].

For the implementation of the control plane for SDWMN, there is a challenge in that
most of the mesh nodes cannot reach the gateway directly in one wireless hop. This is unlike
the wired SDN, whereby a direct communication channel is easily dedicated to the estab-
lishment of a control interface. For SDWMN, there are two possible options to implement
the control plane i.e. with in-band control and out-of-band control [26].

Out-of-band control requires the separately dedicated control network and data network.
Since the outdoor SDWMN testbed is based on the IEEE 802.11 standard, at least two
USB Wi-Fi adapters would be required in each of mesh nodes and gateways if the design
is based on the out-of-band control approach [26]. An extra hardware cost for control
network is reducible in the in-band SDN approach, whereby the control and data planes are
implemented within the same physical interface at each node.

In the preliminary outdoor SDWMN testbed, therefore, the in-band SDN approach is
used in order to reduce the hardware cost. The in-band control plane is here established
by installing our properly defined forwarding rules to the OVS of each mesh node to relay
address resolution protocol (ARP) packets and transmission control protocol (T'CP) packets
between the mesh node and the SDN controller. These forwarding rules have been pre-
installed at the mesh node as a script that will be automatically executed every time that
the mesh node is restarted.

From Figure 3.1, as a preliminary testing, a gateway (Gateway 1) has been installed at
location 2, and two Raspberry Pi’s (Raspi 1 and Raspi 2) have been installed at locations
3 and 4.

Figures 3.2 and 3.3 show the equipment of gateway and mesh node.

3.2 Implementation of OpenFlow Based 2-hop Simplified

Routing

Generally, OVS can be configured with bridges and each bridge can consist of multiple

ports [18]. Bridge in OVS is needed to be connected with an SDN controller in order to
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Figure 3.2: Equipment of gateway in preliminary outdoor SDWMN testbed.

Figure 3.3: Equipment of mesh node in preliminary outdoor SDWMN testbed.
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establish OpenFlow connection between SDN controller and OVS [18]. Here, a port in a
bridge is regarded as OpenFlow port. OpenFlow port can be a logical port, a physical port,
and a local reserved port [17]. The example of OpenFlow logical port is VLAN port. A
physical port is a port that OVS define for a hardware interface such as wireless interface
which is added to a bridge of OVS. LOCAL port represents local networking stack of the
OVS and all network traffic coming to and from a bridge of OVS is required to pass through
a LOCAL port.

The preliminary outdoor medium-range SDWMN testbed is shown in Figure 3.4.

Figure 3.4: Architecture of preliminary outdoor medium-range SDWMN
testbed.

In this work, a physical wireless network interface of Gateway 1, Raspi 1 and Raspi 2
is added to bridges of OVS 1, OVS 2 and OVS 3, respectively. OVS 2 in Raspi 1 enables
the relay function of the wireless relay node between Gateway 1 and Raspi 2. All network
traffic passing through those added physical wireless network interfaces is required to be
handled by OVS 1, OVS 2 and OVS 3.

When an incoming packet arrives at the wireless network interface of a mesh node
(Raspi 1 or Raspi 2), the mesh node will check a destination IP address of an incoming
packet. If the destination IP address of an incoming packet is equal to the IP address of the
mesh node, then that mesh node will respond to that incoming packet such as sending back
reply packets (e.g. ARP reply, ICMP reply). If the destination IP address of an incoming
packet is not equal to the IP address of the mesh node, then that mesh node forwards it to
the next hop by rewriting the header of destination MAC address to the next hop’s MAC

address. There is a reason why destination MAC address needs to be modified into next
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hop’s MAC address to enable relay function. The problem of relaying the ARP packet in
2-hop simplified routing from Gateway 1 to Raspi 2 through Raspi 1 with the external USB

WiFi Adapter in the preliminary outdoor SDWMN testbed is summarized in Figure 3.5.

Figure 3.5: Problem of relaying ARP packet in 2-hop simplified routing from
Gateway 1 to Raspi 2 with external USB WiFi adapter.

As shown in Figure 3.5, Gateway 1 sends the ARP request packet to Raspi 2 and the
full message of ARP request packet is “Gateway 1’s MAC address > FF:FF:FF:FF:FF:FF
who has IP address (Raspi 2) tell IP address (Gateway 1)”. The wireless network interface
of Raspi 1 captures that packet and checks the destination IP address of that incoming
packet.

In this example, the destination IP address of an arrival packet at the wireless interface
of Raspi 1 is IP address of Raspi 2. Therefore, Raspi 1 forwards the arrival packet to Raspi
2. The wireless interface of Raspi 2 receives the ARP request packet from Gateway 1 and
replies that ARP request packet by sending the ARP reply packet. The full message of
ARP reply packet from Raspi 2 to Gateway 1 is “Raspi 2’s MAC address” > Gateway
1’s MAC address IP address (Raspi 2) is at MAC address of Raspi 2”. The ARP reply
packet from Raspi 2 to Gateway 1 is dropped by the wireless interface of Raspi 1 because
the applied external USB WiFi adapter at the wireless interface of Raspi 1 only accepts an
incoming packet with the destination MAC address being Raspi 1’s MAC address or the
broadcast MAC address FF:FF:FF:FF:FF:FF. Therefore, the wireless of Raspi 1 drops the

ARP reply packet from Raspi 2 to Gateway 1. The problem of relaying an ARP packet in
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this example is solved by rewriting the header of destination MAC address. The modified
process of relaying the ARP packets in 2-hop routing from Gateway 1 to Raspi 2 with the
external USB WiFi Adapter is summarized in Figure 3.6. We follow the same scenario not
only for the ARP packet but also the other types of packets such as IP packet, TCP packet,

UDP packet and so on.

Figure 3.6: Relaying ARP packet in 2-hop simplified routing from Gateway 1
to Raspi 2 with external USB WiFi adapter by modifying destination MAC
address.

In this work, we assume that each wireless mesh node and a gateway know each other’s
MAC address. The successful way of enabling the 2-hop routing scenario by modifying the
destination MAC address with external USB WiFi Adapter is demonstrated in Figure 3.6
with the process of sending the ARP packets between Gateway 1 and Raspi 2.

Figure 3.7 shows the OVS forwarding rules which enable an in-band network in this
preliminary testing. Figure 3.7(a) shows the forwarding rules of OVS 1, Figure 3.7(b)
and 3.7(c) show the forwarding rules of OVS 2 and OVS 3. Among these figures, the
forwarding rules in Figure 3.7(b) enable the relay function of a wireless relay node (Raspi
1) between Gateway 1 and Raspi 2. Here, the IP addresses of Gateway 1, Raspi 1 and 2 are
10.0.0.3, 10.0.0.1 and 10.0.0.2, respectively. Additionally, the MAC addresses of Gateway
1, Raspberry Pi’'s 1 and 2 are e8:4e:06:40:d3:4b, e8:4e:06:5f:47:59 and e8:4e:06:5e:6a:bl,
respectively.

In OVS 1 of Gateway 1, flow table 0 is to check all packets arrive at the wireless network
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Figure 3.7: OVS forwarding rules of in-band controlled preliminary SDWMN
at (a) OVS 1 (b) OVS 2 (wireless relay Node) (c) OVS 3.
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interface of Gateway 1. In the flow table 0, two flow rules of “ip, in_port=1, nw_dst=10.0.0.3,
actions=LOCAL” and “arp, in_port=1, arp_tpa=10.0.0.3, actions=LOCAL” will match
ARP packets and IP packets with the destination IP address 10.0.0.3 (IP address of Gate-
way 1) arrive at the wireless network interface of Gateway 1. If the incoming ARP packets
and IP packets are matched with those two flow rules, the matched packets are forwarded
to the LOCAL port of a bridge in order to be responded by OVS 1. The flow rule in
table 0 “in_port=LOCAL, actions=resubmit(,2)” submit all packets generated from OVS
3 to flow table 2. The flow rule with the lowest priority in flow table 0 “in_port=1, ac-
tions=drop” to drop the unmatched packet by the flow rules with higher priority in or-
der to prevent a problem of infinite loop. In flow table 2, the flow rule “table=2, ac-
tions=mod_dl_dst: e8:4e:06:5{:47:59 (MAC address of Raspi 1)” set destination MAC ad-
dress as e8:4e:06:5{:47:59 (Raspi 1’s MAC address) in all submitted packets from table 0.
In flow table 4, the flow rule “table=4, in_port=LOCAL, dl_dst: e8:4e:06:5f:47:59 (Raspi
1’s MAC address), actions=output:1” is to forward the modified packet submitted by the
flow table 2 to Raspi 1. The flow entries of OVS 3 in Raspi 2 are mostly equal with the
flow entries of OVS 1 in Gateway 1.

The flow rules of OVS 2 in Raspi 1 are also composed of three flow tables which are
table 0, table 1 and table 2 to enable the relay function. The main job of the flow table 0
in OVS 2 is to check all incoming packets at the wireless network interface of Raspi 1. The
flow rules in OVS 2 distinguish a target of an incoming packet by checking a destination
IP address of an incoming packet. In this configuration, there is only a single physical port
in each OVS. In OVS, an ingress port number and an output port number needs to be
different because OVS will drop a packet if a number of an ingress port and an output port
are the same [18]. The definition of an ingress port and output port is discussed in Section
2.3. For example, if a flow entry is “in_port=1, actions=output:1”, then OVS will drop the
packet which arrives at an ingress port number 1 even when we define the rules to forward
the matched packets to an output port number 1.

The two flow rules in OVS 2 “arp, in_port=1, arp_tpa=“10.0.0.2” (Raspi 2’s IP
address), actions=mod_dl.dst: e8:4e:06:5e:6a:bl, load:0>NXM_OF_IN_PORT| |, resub-

mit(,2)” and “ip, in_port=1, nw_dst=“10.0.0.2” (Raspi 2’s IP address), actions=mod_dl_dst:
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e8:4e:06:5e:6a:b1, load:0>NXM_OF_IN_PORT] |, resubmit(,2)” match incoming ARP pack-
ets and IP packets with destination IP address 10.0.0.2 (Raspi 2’s IP address) at the
wireless network interface of Raspi 1. If an incoming packet is matched with those two
flow rules, then the destination MAC address of that incoming packet is modified into
destination MAC address of Raspi 2. Then, number of ingress port is changed to be
different from the output port number and submit the modified packet into flow table
2. Likewise, the two flow rules in OVS 2 “arp, in_port=1, arp_-tpa=“10.0.0.3” ( Gate-
way 1’s IP address), actions=mod_dl_dst: e8:4e:06:40:d3:4b, load:0>NXM_OF_IN_PORT|
|, resubmit(,4)” and “ip, in_port=1, nw_dst=¢10.0.0.3" (Gateway 1’s IP address), ac-
tions=mod_dl_dst:e8:4e:06:40:d3:4b, load:0>NXM_OF_IN_PORT| |, resubmit(,4)” match
incoming ARP packets and IP packets with destination IP address 10.0.0.3 (Gateway 1’s IP
address) at the wireless network interface of Raspi 1. If an incoming ARP packet or incoming
IP packet is matched with those two rules, then destination MAC address of that incoming
packet is modified into destination MAC address of Gateway 1. Then, ingress port number
is changed to be different from the output port number and submits the modified packet
into flow table 4. Another two flow rules in OVS 2 “arp, in_port=1, arp_tpa=“10.0.0.1",
actions=LOCAL” and “ip, in_port=1, nw_dst=%10.0.0.1", actions=LOCAL” match an in-
coming IP packet and ARP packet with the destination IP address 10.0.0.1 (Raspi 1’s IP
address). The incoming IP packets and ARP packets with destination IP address 10.0.0.1
at the wireless network interface of Raspi 1 are forwarded to LOCAL port in order to be
responded by OVS 2. There is an also drop action at the lowest flow entries in OVS 2
in order to prevent the case of an infinite loop. The flow entry in table 2 is to forward a
modified packet submitted from flow table 0 to Raspi 2 and the flow entry in table 4 to
forward a modified packet submitted from flow table 0 to Gateway 1.

The flow rules for ARP packet and IP packet in each OVS of Gateway 1, Raspi 1
and Raspi 2 enable in-band communication by forwarding the control packets and data
packets over a single physical wireless interface. Control packets are TCP packets from
mesh nodes (Raspi 1 and Raspi 2 ) to a specified port number of Gateway 1 which RYU
controller uses. Here, port number 6633 of Gateway 1 is used by RYU controller to set up

the control channel. Data packets in the preliminary outdoor SDWMN testbed are TCP
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packets generated by iperf [21] to measure TCP throughput from mesh nodes to another
port number of Gateway 1 which is not used by RYU controller and ICMP packets generated

by ping program from mesh nodes to Gateway 1 in order to measure round-trip-time (RTT).

3.3 Measurement Result of Preliminary SDWMN Testbed’s

Performance

Iperf software has been used to measure the TCP throughput of the wireless route
with 1 and 2 hops. Table 3.1 reports the results of TCP iperf from 3 runs, each with the
measurement period of 100 seconds. In order to measure the average RTT, a ping program
is used. Here, 200 ICMP packets have been generated for each run and the average RTT
value from each run is shown in Table 3.2.

Tables 3.1 and 3.2 confirm that the OVS forwarding rules of in-band control can provide
effectively the necessary control plane for the implementation of data packet forwarding. In
addition, based on the expected target usage scenario of a road network traffic monitoring,
the reported round-trip time results confirm that the current network settings can be applied
beneficially in the future large-scale road traffic monitoring system. In practice, even for
an automatic control of traffic signal light based on the wireless sensor network, a latency
as high as a second should be acceptable. Future investigations are, however, needed to

thoroughly confirm the usability of this SDWMN for that practical application.

Table 3.1: Average TCP throughput in preliminary outdoor SDWMN testbed
(Mbit /sec).

Average Throughput | Average Throughput
for 1 hop for 2 hop
Test 1 10.9 7.1
Test 2 9.1 2.8
Test 3 10.7 2
Total Average
Throughput 10-2 39

In this section, we have designed and implemented the preliminary outdoor SDWMN
testbed for measuring the network throughput and round-trip time performance of an out-

door medium-range SDWMN testbed. In-band control approach has been implemented
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Average RTT for | Average RTT for
1 hop 2 hops
Test 1 13.318 45.84
Test 2 8.954 46.784
Test 3 7.017 38.077
Total Average 9.763 43.567
RTT

successfully to save the extra hardware cost. The network covers only up to 2 hops simpli-
fied routing with 1 gateway. Our ongoing work is to increase the number of mesh nodes in
between the two gateways, where OpenFlow-based routing adaptation needs to be verified.
To enable the final SDWMN testbed robustness, a 24-hour test span is in the plan, whereby
the effect of other environmental conditions (e.g. ambient temperature, time of day) can

be further studied.



Chapter 4

Proposed Fault-Tolerant Multi-hop Routed

SDWMN with Node Failure

In this chapter, the criteria for the implementation of the final proposed outdoor
medium-range SDWMN testbed along the road with multi-hop routing scenario is de-
scribed. Firstly, the design criteria of the proposed outdoor SDWMN testbed is the same
as what we have implemented in the preliminary outdoor SDWMN testbed in Chapter 3.
The main difference is that the number of wireless components will be increased and the
extended plan to resist the seasonal challenges be added in the final proposed outdoor SD-
WMN testbed. The number of wireless mesh nodes is increased to six wireless mesh nodes
of Raspberry Pi’s and two gateways which are the Intel @ NUCT7i7BNH computers.

The proposed topology of the outdoor medium-range SDWMN testbed for road traffic
monitoring over a bi-directional road of car lanes between two intersections is illustrated in

Figure 4.1.

Figure 4.1: Topology of proposed outdoor SDWMN testbed for road traffic
monitoring over bi-directional road of car lanes between two intersections.
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4.1 Installation Preparation on Phaya Thai Road

The final outdoor SDWMN testbed is set up with 2 gateways and 6 wireless mesh nodes
on Phaya Thai road segment between Rama 1 road and Rama 4 road in Bangkok. The total
distance between two gateways is around 1100 meters. Each gateway is placed at the traffic
police box. The topology of final outdoor SDWMN testbed in summarized in Figure 4.1.
Between two traffic police boxes, there are three crossover bridges which are high enough
to install the box for wireless mesh node and the average distance between each crossover
bridge is 250 meters. RYU controller is installed at Gateway1.

The function of the wireless mesh node and the gateway are also the same as what
we have discussed in the previous chapter. To recall their function, there are two main
jobs for a wireless mesh node. The first job is to relay packets (control packet and data
packet) which come from the other wireless mesh nodes to Gateway 1 or Gateway 2. The
second job is to send data packets from the sensor such as the images from the attached
camera of that wireless mesh node. The main job for a gateway is to receive the packets
continuously from the wireless mesh nodes. The software tools for implementation of the
proposed outdoor SDWMN testbed will be the same as that we have applied to implement
the preliminary outdoor SDWMN testbed. The names of the software tools and the function

of each software tool are recalled in Table 4.1.

Table 4.1: Software tools for implementing proposed outdoor SDWMN testbed.

Software Function
Open vSwitch Virtual OpenFlow Switch
RYU SDN Controller Application
Ubuntu Mate Linux Operating System
Ubuntu Linux Operating System
Iperf TCP/UDP Throughput Measurement Tool

We have described our experience in preparation from the software part for the final
outdoor proposed SDWMN testbed. Installation the application of RYU controller, Open-
Vswitch does not give any problems for us. However, the installation of the driver of EDUP
EP-AC1605 into Linux devices gives a problem for us because the original driver which
is supported by the company does not support for the Linux kernel version of 4.4. The

modified driver version of EDUP EP-AC1605 can be downloaded from GitHub and that
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modified driver version can be installed in Linux kernel version of 4.4. As Linux kernel ver-
sion of 4.4, modified driver version of EDUP EP-AC1605 can be installed. However, Linux
kernel version of Intel NUC device is 4.13 and we install a driver for EDUP EP-AC1605
antenna which can support Linux kernel version of 4.13. However, the problem we have
faced is that shutting downtime for Intel NUC take at least 25 minutes when an external
antenna is attached at Intel NUC. Therefore we downgrade the Linux kernel version from
4.13 to 4.4 at Intel NUC and that problem is solved. Based on our experience, Linux kernel
version plays an important role to install a driver of an external antenna for a Linux-based
operating system.

Another important thing in this work is the plan for the proposed outdoor SDWMN
testbed to overcome the seasonal challenges, especially for the rainy season. Each gateway
will be placed inside the traffic police box and therefore the gateways do not need to
be waterproofed. A waterproof enclosure with an IP67 standard which needs to be wide
enough to put a wireless mesh node and a power bank with 30000 mAh to feed the power

to a wireless mesh node must be installed.

4.2 Implementation of Multi-hop Routing

After discussing the design criteria for the proposed outdoor SDWMN testbed, the detail
procedures to implement the multi-hop routing scenario for the proposed outdoor SDWMN
testbed are described.

Firstly, the detailed architecture of the proposed outdoor SDWMN testbed over a bi-
directional road of car lanes between two intersections is summarized in Figure 4.2.

OVS 1,2,3,4,5,6 have been installed in the wireless mesh nodes and OVS 7,8 have been
installed in the two gateways. A wireless interface of the wireless mesh nodes and the
gateways is added to the OVS. The packet forwarding behavior of a wireless mesh node is
summarized as a flowchart in Figure 4.3.

The application for routing running at the northbound interface of RYU controller must
assign necessary OpenFlow forwarding rules to the wireless mesh nodes and the gateways
in order to enable the in-band multi-hop routing. The control plane has been implemented

in the same way that we have implemented at the preliminary outdoor SDWMN testbed
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Figure 4.2: Architecture of proposed outdoor medium-range SDWMN testbed.

Figure 4.3: Forwarding procedure of wireless mesh node.
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by installing pre-existing rules at each OVS of six wireless mesh nodes and two gateways.
Figure 4.4 illustrates the proposed outdoor SDWMN testbed with the primary routes

for the control plane.

Figure 4.4: Illustration of routing for control plane in proposed outdoor SD-
WMN testbed.

RYU controller is installed in Gateway 1. The routing information of the control plane

in the proposed outdoor medium-range SDWMN testbed is described in Table 4.2.

Table 4.2: Routing information for control plane of proposed outdoor SDWMN
testbed.

Routing path for control plane Primary Route
Between RYU and Raspi 1 Raspi 1 - Gateway 1
Between RYU and Raspi 2 Raspi 2 - Raspi 1 -
Gateway 1

Between RYU and Raspi 3 Raspi 3 - Raspi 2 - Raspi 1 -
Gateway 1

Between RYU and Raspi 4 Raspi 4 - Gateway 1

Between RYU and Raspi 5 Raspi 5 - Raspi 4 - Gateway 1

Between RYU and Raspi 6 Raspi 6 - Raspi 5 - Raspi 4 -
Gateway 1

Between RYU and Gateway 2 Gateway 2 - Raspi 3 - Raspi 2 - Raspi 1 -

Gateway 1

In the proposed outdoor SDWMN testbed, the wireless mesh nodes will send the data

packets such as a captured image from the attached camera in a Raspberry Pi continuously
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to Gateway 1 and Gateway 2. Therefore the destination IP address of the data packets
from each wireless mesh node is the IP address of Gateway 1 or IP address of Gateway 2.
There are two gateways and six Raspberry Pi’s in the proposed outdoor SDWMN testbed.
Sending the data packets from the Raspberry Pi to only one gateway can lead to the traffic
congestion at that gateway and therefore we separate nodes into two groups where each
group includes one gateway and three wireless mesh nodes. For instance, Raspi 1, Raspi
2, Raspi 4, Gateway 1 is in one group and Raspi 3, Raspi 5, Raspi 6, Gateway 2 is in
the other group. Each wireless mesh node sends the data to the nearest gateway. The
shortest path between each wireless mesh node and gateway is not needed to be calculated
by RYU controller as the distance between gateways and wireless mesh nodes have been
already known. The routing principle for the data plane for the proposed outdoor SDWMN
is summarized in Figure 4.5. The routing information of the primary route for data plane

is summarized in Table 4.3.

Figure 4.5: Illustration of routing for data plane in proposed outdoor SDWMN
testbed.

The proposed outdoor SDWMN along the road is a static network and the location of
the wireless mesh nodes and the gateways will be at the fixed location. Therefore, the case
of the wireless mesh node mobility and the mobility-influenced changes of the topology will

not be considered in this thesis.
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Table 4.3: Routing information for data plane of proposed outdoor SDWMN
testbed.

Switch ID | Primary route for data plane
Raspi 1 Raspi 1 - Gateway 1
Raspi 2 Raspi 2 - Raspi 1 - Gateway 1
Raspi 3 Raspi 3 - Gateway 2
Raspi 4 Raspi 4 - Gateway 1
Raspi 5 Raspi 5 - Raspi 6 -Gateway 2
Raspi 6 Raspi 6 - Gateway 2

4.3 Implementation of Restoration Mechanisms Upon Fail-

ure Scenario of Wireless Mesh Node

In this thesis, we also consider the simple necessary restoration mechanisms based on
the failure of the wireless mesh node. The process of OpenFlow based rerouting based on

the failure of a wireless mesh node from RYU controller contains:
1. The mechanism for RYU controller to detect the failure of the wireless mesh node.

2. The rerouting program which is implemented at the northbound interface of RYU
controller will assign the OpenFlow forwarding rules reactively to the functioning

wireless mesh nodes to establish alternative routes.

3. When the failed wireless mesh node is recovered back, RYU controller will assign back

the primary route.

The mechanism for RYU controller to detect the failure of the wireless mesh node based
on the messages of echo request and echo reply. Echo message is used to exchange the
information of latency, bandwidth, liveness and echo request/reply message can be sent
from either from an SDN controller or from an OpenFlow switch [17]. The exchange of echo
request /reply message between an SDN controller and an OpenFlow switch is summarized
in Figure 4.6.

In detecting the failure of a wireless mesh node, RYU controller sends the echo request
message to a wireless mesh node to detect the liveness between RYU controller and wireless
mesh nodes. The meaning of liveness between RY U controller and wireless mesh nodes is the

active connection status between RYU controller and wireless mesh nodes. If wireless mesh
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Figure 4.6: Echo message exchange between SDN controller and OpenFlow
switch [17].

nodes cannot reply to the echo request message from RYU controller, then RYU controller
will decide that the connection between RYU controller and the unreplying wireless mesh
node is failed.

The rerouting program for the SDWMN network is implemented at the application layer
of RYU controller to reroute the wireless mesh node when one of the wireless mesh nodes
inside the SDWMN is failed. For rerouting purpose, RYU controller uses a set configuration
request messages in order to install the necessary forwarding rules to build the alternative
route. An example of rerouting scenario based on three wireless mesh nodes and one gateway

is illustrated in Figure 4.7.

Figure 4.7: Example of node failure rerouting based on three wireless mesh
nodes and one gateway.
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Let Raspi 3, Raspi 2 and Raspi 1 represent the wireless mesh nodes and Gateway 1
represents a gateway. In this example, we consider the case of routing between Raspi 3 and
Gateway 1. There are two possible primary routes between Raspi 3 and Gateway 1 which
are Raspi 3 - Raspi 1 - Gateway 1 and Raspi 3 - Raspi 2 - Gateway 1.

In this example, the primary route is Raspi 3 - Raspi 1 - Gateway 1 for Raspi 3 and the
alternative route for Raspi 3 is Raspi 3 - Raspi 2 - Gateway 1 when Raspi 1 is failed. The key
idea behind the rerouting scenario is a configuration request message and hard_timeout. In
order to establish the primary route in this example, the default forwarding rules at Raspi
1 to relay the control packet from Raspi 3 to Gateway 1 and assign the default forwarding
rules at Raspi 2 to drop the control packet from Raspi 3 to Gateway 1. When all wireless
mesh nodes such as Raspi 3, Raspi 2 and Raspi 1 in this example are connected with the
RYU controller, RYU controller will keep silent without sending a configuration request
message to the connected wireless mesh node. When Raspi 1 is failed, RYU controller
sends a configuration request message to currently connected switch such as Raspi 2 in
this example and assign the backup forwarding rules at Raspi 2 to forward the control
packet from Raspi 3 to Gateway 1 with a specified amount of hard_timeout. Those backup
forwarding rules need to be a higher priority than that of default forwarding rules. Due to
the temporarily assigned forwarding rules at Raspi 2, Raspi 2 forwards the control packet
from Raspi 3 to Gateway 1 to build the alternative route. When Raspi 1 is back to the
operational stage, RYU controller will stop sending the configuration request message.

We have explained the example of rerouting scenario and the more detailed rerouting
scenario for the proposed outdoor SDWMN testbed is discussed here. The forwarding rules
for the primary route are installed at the bootstrapping stage of each wireless nodes and
therefore, the primary route is established whenever wireless nodes including all wireless
mesh nodes and two gateways are turned on.

The predefined primary routes let wireless nodes to send OFPT_HELLO messages and
RYU controller will respond that OFPT_HELLO message to wireless mesh node when
RYU controller receives that packet. After OFPT_HELLO message has been exchanged
successfully between wireless mesh node and RYU controller, RYU controller decides that

the connection between wireless mesh node and RYU controller has been established. The
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scenario of exchanging the OFPT_HELLO messages between wireless mesh node and RYU

controller is illustrated in Figure 4.8.

Figure 4.8: Illustration of exchanging OFPT_HELLO messages between wireless
mesh node and RYU controller.

Once a wireless node has been connected with RYU controller, RYU controller puts that
connected wireless nodes to the set of all nodes reachable by RYU controller. RYU controller
keeps monitoring the connectivity status with wireless nodes by using echo request and echo
reply message. In the current configuration, RYU controller sends an echo request message
to all connected wireless nodes every 3 seconds. If wireless mesh nodes cannot reply to
the echo request message from RYU controller for 4 retrial times, then RYU controller will
decide that the connection between RYU controller and the unreplied wireless mesh node
is failed or unreachable. The timeout for echo request interval is 5 seconds. Since echo
request message will be sent to a wireless mesh node for every 3 seconds and therefore the
fourth echo request message will be sent after 12 seconds of the first echo request message.
The fourth echo request message will be expired in 5 seconds, the total required time for
RYU controller to detect the failure is 17 seconds theoretically. If wireless mesh nodes are
disconnected from RYU controller, RYU controller would delete the disconnected wireless
nodes from the set of all nodes reachable by RYU controller. If all wireless mesh nodes are
still connected with RYU controller, then RYU controller will simply need to keep sending
only echo request message and listening to the echo reply message from each wireless node.
If one or many of the wireless mesh nodes are disconnected from RYU controller, then RYU

controller will send a configuration request message to every current connected switches
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with RYU controller and assigns the necessary predefined forwarding rules to establish
the alternative route with the purpose of rerouting. These new rules are treated here as
the temporarily remedial rules because all the nodes are not moving and it is believed
that the firstly predefined rules automatically assigned at the node’ s boosting time must
be nominally the best. Therefore, these new rules will be assigned the OpenFlow flow
entry priority values which are higher than those of the predefined rules preinstalled at the
boosting time. Consequently, with the presence of rerouting rules, the node will use these
rerouting rules instead of using the predefined rules. In addition, since these new rules
are treated merely as temporarily remedial of occasionally occurring node unreachability
instances, these rerouting rules are assigned a relatively small value of hard_timeout. So,
after the rule is installed for a longer time than that hard_timeout setting, the rule simply
expires. The job of RYU controller therefore in our algorithm is to keep sending out those
rerouting rules to all the switches periodically with the period that must be configured
smaller than the hard_timeout settings. We have chosen to implement our rerouting in this
way because we have to deal with the in-band control approach. So we must make sure that
at least as the last resort, when all nodes are rebooted, the flow entries initially assigned
must be a good starting plan to establish the control plane and the data plane at least in the
case that all nodes are reachable SDN controller. If all wireless mesh nodes get connected
back with RYU controller, RYU controller will stop sending a configuration request message
to all currently connected switches. The algorithm of rerouting is discussed below and the
assumption before starting rerouting algorithm is that all wireless mesh nodes get connected
to RYU controller initially.
Algorithm: Rerouting Input :  R.= sdn controller

G = number of gateway nodes connected to R,

N = number of wireless mesh nodes connected to R,

Mrequest = €Cho Tequest message

Myeply = echo reply message

m. = configuration request message

Te = echo request interval

T. = configuration request interval
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7, = hard_timeout duration
Ue_n, = unreplied echo request for each wireless mesh node
L, = active node queue or set of all nodes reachable by R,

Initialize : 7e=3s, Uen =0,7.=8s, 7, =108, L, =N, G =2, N =6

1. Begin

2. Forn=1,....... ,N Do

3. R, sends myequest to n every 7

4. if R. receives my.¢pyy from n then

5. mark n as connected active node i.e. put n into L, and
set ue, =0

6. else ue, + =1

7. if ue , = 4 then

8. delete n from L,

9. R, sends m, to remaining active nodes in L, every 7. and
install necessary forwarding rules to build the alternative route as
predefined in Tables 4.4 and 4.5 with 7

10. End For

11. End

Since the in-band control approach is applied in the implementation of the outdoor
medium-range SDWMN testbed, rerouting scenario from RYU controller needs to be con-
sidered not only for the control plane but also for the data plane. Consider the network
topology in Figure 4.1 for the target testbed to be implemented.

Table 4.4 shows the rerouting information of the alternative routes to recover the control
plane when primary routes for control plane are failed because of the failure of wireless
mesh node. Table 4.5 shows the rerouting information of the alternative routes to restore
the data plane when primary routes for the data plane are failed because of the failure
of wireless mesh node. According to the routing information of primary route for control
plane in Table 4.4, the failure of Raspi 6 does not affect it‘s neighbor wireless mesh node‘s
control plane. Therefore, the failure of Raspi 6 is not considered in rerouting process for

the control plane. The alternative routes for data plane in Table 4.5 are also the predefined
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alternative routes to a nearest gateway. Failed node in Tables 4.4 and 4.5 is defined as a
wireless mesh node which has no active connection with RYU controller. Affected node in
Tables 4.4 and 4.5 is defined as a wireless mesh node which connects between RYU controller
is disabled due to failed neighbor wireless mesh node. The alternative routes in Tables 4.4
and 4.5 are the predefined backup routes to recover the respective affected nodes due to the

failure of neighboring wireless mesh node.

Table 4.4: Rerouting information with failure of wireless mesh node for control
plane.

Failed node | Affected node Alternative route
Raspi 1 Raspi 2 Raspi 2 _(iiigai, —1Rasp1 4 -
Raspi 2 Raspi 3 Raspi 3 - Rasxé ft (;Wiz;szfi 5 - Raspi 4 -

Raspi 3 Raspi 3 - Ras;é 8L6t (;lee}mstl)i 5 - Raspi 4 -
Raspi 3 Gateway 2 Gateway 2 - Ra(s}p;tgv;al;alspi 5 - Raspi 4 -
Raspi 4 Raspi 5 Raspi 3 s 2 Rospi 1
Raspi 5 Raspi 6 Raspi 6 - Raspé jt (;szisll)i 2 - Raspi 1 -
Gateway 2 Gateway 2 - Rzés;)tieév -a yRiLspi 5 - Raspi 4

Table 4.5: Rerouting information with failure of wireless mesh node for data
plane.

Failed node | Affected node Alternative route
. : Raspi 2 - Raspi 5 - Raspi 4 -
Raspi 1 Raspi 2 Gateway 1
. : Raspi 5 - Raspi 2 - Raspi 3 -
Raspi 6 Raspi 5 Gateway 2

According to primary routes for data plane in Table 4.3, Raspi 4 and Raspi 3 do not
need to relay the data packets from Raspi 2 and Raspi 5. If Raspi 4 and Raspi 5 are failed,
then the data packets from Raspi 2 can still be sent through the route of Raspi 2 - Raspi
1 - Gateway 1 and the data packets from Raspi 5 can still be sent through the route of

Raspi 5 - Raspi 6 - Gateway 2. If Raspi 2 and Raspi 5 fail, then the data packets from
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Raspi 1, Raspi 4 can still be sent to Gateway 1 and the data packets from Raspi 3 and
Raspi 6 can still be sent to Gateway 2. Only Raspi 1 needs to relay the data packets from
Raspi 2 to Gateway 1 and Raspi 6 needs to relay the data packets from Raspi 5 to Gateway
2. If Raspi 1 is failed, then the data packets from Raspi 2 are rerouted to the alternative
route which is Raspi 2 - Raspi 5 - Gateway 2 and the data packets from Raspi 5 is rerouted
to the alternative route which is Raspi 5 - Raspi 3 - Gateway 1 if Raspi 6 is failed. The
predefined alternative routes in Tables 4.4 and 4.5 are based on the shortest path scenario.
In this work scope, the alternative routes to recover the control plane and data plane when

a wireless mesh node is failed are only simple predefined alternative routes.

4.4 Monitoring Program for CPU Temperature of Wireless

Mesh Node

The hardware specification of Raspberry Pi 3 is still limited and there is no CPU cooling
system in the hardware of a Raspberry Pi. CPU temperature of a Raspberry Pi is suspected
to be increased when applications are operated. The total temperature of a Raspberry Pi
results from the addition of the device temperature and the ambient temperature. The
maximum operable temperature of a Raspberry Pi is 85-degree Celsius and therefore the
expected maximum temperature for system operation must be less than 80-degree Celsius
with a safety margin of 5-degree Celsius. Since an ambient temperature is not controllable,
the variation of actual operating temperature needs to be analyzed after the network is set
up. Each Raspberry Pi will be placed inside a waterproof enclosure in the final testbed,
and the CPU temperature of a Raspberry Pi is expected to be increased due to ambient
temperature, especially in the summer season. The monitoring program for CPU tempera-
ture of wireless mesh node is implemented in each wireless mesh node in order to monitor
the CPU temperature of a wireless mesh node due to ambient temperature by running the
wireless mesh node for at least a continuous period of a whole day with 24 hours.

Temperature monitoring program which is summarized in 4.9 is implemented in each
wireless mesh node. In the implemented temperature monitoring program, the wireless

mesh node will be rebooted when the device temperature of the wireless mesh node is
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import os
import time
def reboot ():
os.system('sudo reboot')
def test():
os.popen {"vegencmd measure temp >> /home/raspib/Desktop/rrtresult/temp 26 11 2018.txt")
os.popen {"date >> /home/raspib/Desktop/rrtresult/temp 26 11 2018.txt")
temp=os.popen ("vegencmd measure temp|cut -c6-9").readline()
if temp<=str (80):
print (temp)
print ("Raspberry Pi's Temperature is ok")
else:
time.sleep(10)
os.popen ("echo Device has bee restart >>/home/ra.spiE/Desktop/rrtresult/temp_Q 6 11 2018.txt")
if __name == "_main ":
reboot ()
try:
while True:

if __name_ == " main ":
time.sleep(20)
test ()
except:

print ("Keyboard Error")

Figure 4.9: Temperature monitoring Python program installed in each wireless
mesh node.

beyond 80-degree Celsius.



Chapter 5

Experiment of Final Outdoor SDWMN Testbed

inside Campus

5.1 Setting of One-Hop Reachability Test inside Campus

The measurement of network reachability is taken along the road inside the campus
area of the Chulalongkorn University and the position of the testing for wireless network

reachability is summarized in Figure 5.1. The way of testing for the reachability of wireless

Figure 5.1: Testing scenario of wireless network reachability inside campus area
of Chulalongkorn University.

network is summarized in Figures 5.2, 5.3, 5.4 and 5.5.

Figure 5.2: 100-metre wireless network reachability testing.

In 100 meters, two wireless mesh nodes are placed at the same side of the road as shown



Figure 5.3: 200-metre wireless network reachability testing.

Figure 5.4: 300-metre wireless network reachability testing.

Figure 5.5: 400-metre wireless network reachability testing.

45
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in Figure 5.2 and there is an electric pole between two wireless mesh nodes which can block
signal between two wireless mesh nodes. In 200 meters, two wireless mesh nodes are placed
at the opposite side of the road and no trees between two wireless mesh nodes. In those
two scenarios, the two wireless mesh nodes are placed on the small bush which is on the
platform of the road as shown in Figure 5.2 and the height of the wireless mesh node inside
the box from the ground is the same at every location. During the testing for 300 meters,
one person has raised up the wireless mesh node instead of placing the wireless mesh node
on the small bush. We tried to test TCP throughput in 400 meters as the same way what
we have tested in 300 meters. Due to the large distance in 400 meters, TCP throughput
and UDP throughput are the lowest among all testing experiments. The investigation has
been conducted on Sunday 15th October inside the campus of Chulalongkorn University
and therefore, there have been only a few cars which can block the signal during testing
time. Two wireless mesh nodes have been configured at 5.66 GHz (132 channel) and the
values of TCP and UDP throughput are summarized in Figures 5.7 and 5.8. The reason
for choosing that channel is that 132 channel at that time has not been used by others

according to the information of WiFi network analyzer from a smartphone.

5.2 Measurement Result of One-Hop Reachability

From the measurement result, the possible reason of causing the uncontrollable trend
of throughput values are is a multipath fading within a campus. However, the aim for
measuring the one-hop network reachability test is to know what is the maximum distance
of one-hop link. The result from Figure 5.7 confirms that the obtained TCP throughput
value at 400 meters which is still enough to support the intended future traffic monitoring
application which requires 600 kbit/sec for sending captured image from Raspberry Pi‘s

camera to traffic police box.
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Figure 5.6: Comparison of 95-percent confidence interval for RTT in one-hop
reachability.
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Chapter 6

Experiment of Final Outdoor SDWMN Testbed on
Phaya Thai Road

6.1 Setting Up of Actual Testbed Component Installation

In this section, the steps of implementation for the real outdoor SDWMN testbed on
Phaya Thai road between Rama 1 road and Rama 4 road is mainly discussed and Figure 6.1
shows the topology of real outdoor SDWMN testbed.

Figure 6.1: Topology of real outdoor SDWMN testbed on Phaya Thai road for
road traffic monitoring network.

Figure 6.2 illustrates the way of attaching the waterproof box at the fence of the crossover

bridge on Phaya Thai road.

Figure 6.2: Installation of waterproof box at fence of crossover bridge on Phaya
Thai Road.
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Figure 6.3: Installation of wireless mesh node inside waterproof box over
crossover bridge on Phaya Thai Road.

Figure 6.3 shows the equipment of wireless mesh node inside the waterproof box. Inside
every waterproof box, there is a Raspberry Pi, a power bank with 30000 mAh, and external

omnidirectional antenna.

Figure 6.4: Crossover bridge on Phaya Thai Road.

Figure 6.4 is a picture of crossover bridge along the Phaya Thai road between Rama
1 road and Rama 4 road where wireless mesh nodes are installed. There are two wireless
mesh nodes installed on each crossover bridge and the position of attached waterproof box
at the crossover bridge is shown in Figure 6.5.

Two gateways in the outdoor SDWMN testbed are installed in two different traffic
police boxes. Gateway 1 is installed at the traffic police box which is close to SamYan and

Gateway 2 is installed at another traffic police box which is close to the MBK shopping
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Figure 6.5: Position of wireless mesh node over crossover bridge on Phaya Thai
Road.

center along the Phaya Thai road. Figure 6.6 shows the installation of Gateway 1 inside
the building of traffic police box and Figures 6.7 and 6.8 represent the building of traffic

box where Gateway 2 is located.

Figure 6.6: Traffic police box near SamYan MRT station on Rama 4 road where
Gateway 1 is installed.

6.2 Measurement Result of Network Performance for Data
Plane Traffic

In this section, the network performance of primary routes for the data plane in the
outdoor SDWMN testbed is reported in terms of TCP throughput, UDP throughput, RTT
and packet loss ratio. Measurement has been conducted during both daytime and nighttime
in order to investigate the likely impact of vehicle presence crowd such as buses and cars on

the road which is denser in daytime than nighttime. The period of a daytime experiment
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Figure 6.7: Traffic police box near Chulalongkorn Soi 12 where Gateway 2 is
installed.

Figure 6.8: Installation of Gateway 2 in traffic police box.
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is from 11 AM to 9 PM and the period of a nighttime experiment is from 10 PM to 8 AM.
The time frame for daytime and nighttime testings are based on the standard responsible
working hours of the shift of local traffic police.

The road traffic situation on Phaya Thai road segment between Rama 1 and Rama 4

road is exemplified in Figures 6.9 and 6.10.

Figure 6.9: Traffic image captured with smart phone at daytime on Phaya Thai
road at 4 PM.

The routing information for the data plane of the implemented testbed is recalled in this
section. The routing information for the data plane is divided into two groups which are
the group for Gateway 1 and the group for Gateway 2. In the group of Gateway 1, wireless
mesh nodes of Raspi 1, Raspi 2 and Raspi 4 send the data packets to Gateway 1 and Raspi
3, Raspi 5 and Raspi 6 send the data packets to Gateway 2. The reason for grouping into
two groups is for traffic load balancing.

The intended future traffic monitoring application is Kafka [10] and that application
is based on TCP protocol for sending data packets such as image or video. Therefore, we
mainly measure TCP throughput for each group of a gateway in order to make sure current
network setting can support Kafka or not. We also have measured UDP throughput for a
comparative reference.

Each measurement procedure is conducted by using the applications of iperf3 and ping.
Iperf3 server has been run as a daemon in two gateways and an Iperf3 client is executed in
each wireless mesh node. Each testing for TCP throughput, UDP Throughput and RTT

based on ICMP packet with 1456 bytes sent for 3 minutes in a sequence which means iperf3
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Figure 6.10: Traffic image captured with smart phone at nighttime on Phaya
Thai road at 4 AM.



25

is run for TCP throughput for 3 minutes, UDP throughput for 3 minutes and ping is run
for 3 minutes. We repeat the testing sequence 12 times.

Therefore, measuring the network performance at each wireless mesh node has taken
at least 1 hour and 48 minutes. If iperf3 is run at all wireless mesh nodes at the same
time, there will be some congestion being built up by the injected test traffics from all the
nodes and the actual available value of network performance cannot be obtained correctly.
Therefore, we measure the network performance at each wireless mesh node at a time.
For example, when we complete the testing scenario at Raspi 1, measurement for network
performance is started at Raspi 2. At least 10 hours are required to complete the testing
scenario for all mesh nodes. During this test operation, we have noticed that the network
interface of an attached external antenna has congested during the operation for measuring
UDP throughput. Since there is no congestion control in UDP communication, testing
the UDP throughput over medium-range wireless link has congested the external wireless
network interface. However, we will not use the UDP protocol in the future intended traffic
monitoring application.

Learning from the experiment of running the test for daytime operation, we change
the testing sequence for nighttime operation. Particularly, we run TCP iperf3 first for 12
times at each of wireless mesh nodes with one node at a time. After TCP throughput
measurement is finished, we run a ping program at each of wireless nodes for 12 times with
one node at a time. As the last experiment, UDP measurement is conducted.

Figures 6.11, 6.12, 6.13 and 6.14 report the compared values of TCP throughput,
UDP throughput and RTT during operation of daytime and nighttime as computed with

95-percent confidence interval.
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Figure 6.11: Comparison of 95-percent confidence interval for TCP throughput
from Raspi 1, Raspi 2 and Raspi 4 to Gateway 1 between daytime and nighttime.
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Figure 6.12: Comparison of 95-percent confidence interval for UDP throughput
from Raspi 1, Raspi 2 and Raspi 4 to Gateway 1 between daytime and nighttime.
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Figure 6.13: Comparison of 95-percent confidence interval for RTT from Raspi
1, Raspi 2 and Raspi 4 to Gateway 1 between daytime and nighttime.
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Figure 6.14: Comparison of packet loss ratio from Raspi 1, Raspi 2 and Raspi
4 to Gateway 1 between daytime and nighttime.

Figures 6.11 and 6.12 show that the implemented outdoor SDWMN provides better
network performance at nighttime than what it can provide at daytime. Figure 6.13 confirms
that more congested traffic situation at daytime can increase RTT of ICMP packet with
1456 bytes and packet loss ratio at daytime is higher than that of night time as seen from
Figure 6.14. As the wireless external antenna at Gateway 1 is placed inside the building
of traffic police box as shown in Figure 6.6, the signal between Gateway 1 and nearest
wireless mesh nodes can be blocked while big cars such as buses are about to passing the
intersection. From the real investigation result, the recommendation for future investigation
is in locating the wireless antenna as high as possible such as placing the antenna at the
roof of the traffic police box. In the group of Gateway 1, 2-hop communication from Raspi
2 to Gateway 1 provide lower than 600 kbit/sec which is an amount of bandwidth that
traffic monitoring application is required, there can be a delay sending the captured images
from the attached camera at Raspi 2 to Gateway 1. For other two nodes which are Raspi
1 and Raspi 2, the available TCP bandwidth can well support for Raspi 1 and Raspi 4 to
send captured images to Gateway 1.

Similar measuremet has been executed for the group of Gateway 2 and the results are
shown in Figures 6.15, 6.16, 6.17 and 6.18.

Before discuss the result of comparison for the group of Gateway 2, recall that the
physical location between Raspi 3 and Gateway 2 is shown in Figure 6.19.

Along the route between Gateway 2 and Raspi 3, there are many trees at the side of
the Phaya Thai road and the results of TCP throughput, UDP throughput between Raspi
3 and Gateway 2 in Figures 6.15 and 6.16 are the lowest in the nighttime. Likewise, RTT
value is also the largest between Raspi 3 and Gateway 2 in both daytime and nighttime

experiments. Due to many obstacles for the route between Raspi 3 and Gateway 2, obtained
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Figure 6.15: Comparison of 95-percent confidence interval for TCP throughput
from Raspi 3, Raspi 5 and Raspi 6 to Gateway 2 between daytime and nighttime.
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Figure 6.17: Comparison of 95-percent confidence interval for RTT from Raspi
3, Raspi 5 and Raspi 6 to Gateway 2 between daytime and nighttime.

Figure 6.18: Comparison of packet loss ratio from Raspi, Raspi 5 Raspi 6 to
Gateway 2 between daytime and nighttime.
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Figure 6.19: Physical location between Raspi 3 and Gateway 2.

TCP throughput result is not sufficient to support for future traffic monitoring application.

Figure 6.20: Physical location between Raspi 6 and Raspi 5.

The measurement value for TCP throughput from Raspi 5 and Raspi 6 is only 90 kbit /sec
which is very low to support necessary bandwidth for traffic monitoring application. The
possible problem is that there has been a lot of disconnection between the wireless link
between Raspi 5 and Raspi 6 as shown in Figure 6.20. The waterproof box in Figure 6.20
is Raspi 6 and Raspi 5 at the opposite side of the crossover bridge is at the same location.
Therefore, we shift the location of Raspi 5 from the side of the crossover bridge to the
middle of the crossover bridge for nighttime testing to avoid the obstacles. Since we moved
the location of Raspi 5 in order to avoid interference of trees between the route of wireless

link Raspi 5 and Raspi 6, we compare the obtained result as old location vs new location
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in Figures 6.21, 6.22, 6.23 and 6.24.
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Figure 6.21: Comparison of 95-percent confidence interval for TCP throughput
from Raspi 5 to Gateway 2 in old location and new location.

After we have moved the location of Raspi 5 from the side of the crossover bridge to
the middle of the crossover bridge, TCP, UDP throughput at the new location is better
than that of an old location. Adjusting the new location of Raspi 5 increases the network
performance. Apart from that part, the comparison has been made between nighttime and
daytime for the wireless link between Raspi 1 and Gateway 1, Raspi 2 and Gateway 1,
Raspi 3 and Gateway 2, Raspi 4 and Gateway 1, Raspi 5 and Gateway 2 and Raspi 6 and
Gateway 2.

From the experiment result, we have observed that the current measurement value of
TCP throughput from Raspi 4 - Gateway 1, from Raspi 1 to Gateway 1, from Raspi 6
to Gateway 2 is enough for the whole day to support future traffic monitoring application
which is required at 600 kbps. From Raspi 2 to Gateway 1, From Raspi 5 (new location)
to Gateway 2, TCP and UDP throughput are enough when there is a light traffic condition
but there can be a delay for traffic monitoring application in sending the captured images
to the traffic box. The comparison of daytime vs nighttime values shows that network
performance is better than at nighttime than daytime due to traffic density on the road
especially, there can be only a few big cars at nighttime. Therefore, the position an antenna
should be high enough to receive the better signal from wireless mesh node at each gateway
in future investigation. The impact of trees on the throughput value between Raspi 3 and
Gateway 2 is a good lesson for designing the routing for future work as trees can be an
unavoidable obstacle for road traffic monitoring network. In the physical location for the
group of Gateway 2 as per described in Figure 6.26, the distance between Raspi 3 and
Gateway 2 and the distance between Raspi 6 and Gateway 2 are mostly same but there is
a huge difference in obtained TCP, UDP throughput. For the group of Gateway 1, TCP
and UDP throughput between Raspi 4 and Gateway 1 are larger in twice than the value
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Figure 6.22: Comparison of 95-percent confidence interval for UDP throughput
from Raspi 5 to Gateway 2 in old location and new location.
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Figure 6.23: Comparison of 95-percent confidence interval for RTT from Raspi
5 to Gateway 2 in old location and new location.
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Packet Loss Ratio from Raspi 5 to Gateway 2
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Figure 6.24: Comparison of packet loss ratio from Raspi 5 to Gateway 2 in old
location and new location.

Figure 6.25: Physical location between Raspi 1, Raspi 4 and Gateway 1.
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Figure 6.26: Physical location between Raspi 3, Raspi 6 and Gateway 2.

of TCP and UDP throughput between Raspi 1 and Gateway 1. Therefore, we recommend
considering the routing pattern of zigzag instead of a straight line if wireless mesh node
needs to be installed at the side of the road instead of being installed at the crossover

bridges.

6.3 Practical Deployment Trial for Integrated SDWMN and
Traffic Monitoring Application on Phaya Thai Road

In our final demonstration test case, we have installed and tested SDWMN with the
intended road traffic monitoring application for 16 hours starting from 5 PM to 10:47 AM.
During the operation, Raspi 2, Raspi 4 send the captured images of road traffic situation
to Gateway 1 and Raspi 3, Raspi 5 send the captured images of road traffic situation
to Gateway 2. The captured images are taken by the attached camera at the board of
Raspberry Pi. The primary objective of this work is to provide the necessary network
layer for that application and the status of outdoor SDWMN network during the operation
of data plane is summarized in Figure 6.28. During this operation, wireless mesh nodes
are often disconnected from RYU controller and the number of unreachable times of each
wireless mesh node to RYU controller is summarized in Table 6.1 and the operation of traffic
monitoring application over implemented SDWMN testbed is illustrated in Figure 6.27.

Figure 6.1 reports that the number of unreachable times from Gateway 2 to RYU con-
troller is the highest. The control traffic from Gateway 2 needs to be relayed by Raspi 3,
Raspi 2 and Raspi 1 in order to reach to RYU controller on the primary route. Moreover,
the distance from Gateway 1 and Gateway 2 is 1100 meters which can cause an unstable
connection. However, the number of unreachable time from wireless mesh nodes to RYU
controller is not too much difference which means that up to 3-Hops connection for control
plane can be applied well while 4-Hops connection (Gateway 2 to RYU controller) is not
suitable to be applied in the implemented outdoor SDWMN testbed. The overall status

of the control plane from RYU controller during the 16 hours operation is summarized in
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Figure 6.27: Running traffic monitoring application over SDWMN testbed.

Table 6.1: Status of network during 16 hours of practical deployment operation.

Node Number of Hops to Number of
RYU Controller Unreachable Time

Raspi 1 1 15

Raspi 2 2 29

Raspi 3 3 34

Raspi 4 1 16

Raspi 5 2 29

Raspi 6 3 26
Gateway 1 0 0
Gateway 2 4 394
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Figure 6.28.

Figure 6.28: Practical operation status for 16 hours of outdoor SDWMN on
Phaya Thai road

The overhead of OpenFlow traffic is measured by capturing OpenFlow traffic with Wire-
shark tool from 12:30 AM to 5 AM and overhead of OpenFlow traffic is summarized in
Figure 6.31. The measurement of OpenFlow overhead traffic is calculated based on the
captured OpenFlow protocol packets.

According to the summarized value of overhead OpenFlow traffic in Figure 6.31, the
average overhead OpenFlow traffic is around 12 kbit/sec before 4:25:00 AM on 27th Novem-
ber 2018. After 4:25:00 AM, the average overhead OpenFlow traffic is jumped to around
20 kbit/sec and the increment is caused due to the failure of Raspi 6 at 4:27:00 AM. The
duration of Raspi 6’s unreachable to RYU controller was long. In the algorithm of rerouting
RYU application, RYU sends configuration request message when one of the wireless mesh
nodes is disconnected from RYU controller. Before 4:25:00 AM, all wireless mesh nodes are
connected with RYU controller and RYU controller keeps in silence without sending any
configuration request message to all alive wireless mesh node and therefore, the overhead
is around 12 kbit/sec. Another observation is that the status of the control plane is quite
stable before 6 AM. The density of the car could be very low at that time. However, Fig-
ure 6.28 shows that the connection between Raspi 1, Raspi 4 and RYU controller starts
being fluctuated after 6 AM. The potential reason is an obstacle such as public bus which
can block the signal between RYU controller and two neighbor nodes which are Raspi 1 and

Raspi 4. Since the height of the attached antenna at Gateway 1 is not high, an obstacle
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Figure 6.29: Overhead of OpenFlow traffic.

can easily interrupt the signal between RYU controller and two wireless mesh nodes (Raspi
1 and Raspi 4). In Section 6.2, RTT of ICMP packets between Raspi 1 and Gateway 1
and between Raspi 4 and Gateway 1 is higher in daytime than the values of RTT in the
nighttime. Figure 6.30 is a picture which is captured at the location of Gateway 1 while

the public bus in red color is passing through an intersection.

Figure 6.30: Captured image at location of Gateway 1 while public bus is
passing through intersection which potentially blocks the line-of-sight of signal
propagation in between the nearest wireless mesh nodes and Gateway 1.

6.4 Temperature Measurement of Wireless Mesh Node Dur-

ing Outdoor Network Operation

In this Section, the status of device temperature of wireless mesh node during outdoor

network operation with traffic monitoring application is mainly discussed. Recalling the
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value of maximum operable temperature for a raspberry pi is 85-degree Celsius. Therefore,
the temperature of the wireless mesh node needs to be under 85-degree Celsius. We collect
the temperature status of each wireless mesh node while the road traffic monitoring appli-
cation is running on the outdoor SDWMN network. Temperature value of each wireless
mesh node based on the day of 26th November in 2018 in Phaya Thai Road in Bangkok.

Figure 6.31: Status of temperature of wireless mesh node at outdoor network
operation.

A temperature of a wireless mesh node while intended traffic monitoring application
working with SDWMN is lower than the threshold level.

Figures 6.32 and 6.33 are screenshots of the information of the ambient tem-
perature of 26th November 2018 and 27th November 2018 in Bangkok from
https://www.timeanddate.com.

Ambient temperature during network operation is not hot and therefore wireless mesh
node can run properly in the winter season in Thailand. Based on the actual measurement
here, we have found that the selected Rasberry Pi hardware can tolerate the actual temper-
ature during the real deployment. Therefore, our prepared Python watchdog program to
reset the wireless mesh node when being overheated has not been triggered. As the result,
the practical node failure due to temperature concern has not yet been realized in practice.
And the disconnection of nodes from the RYU controller is mainly influenced instead by the
wireless link connectivity. However, all our tests so far have been carried out in November,
where the ambient temperature is considered the lowest annually. In the future work, it
is recommended that the test should also be carried out in the summer so we could eval-
uate properly how this SDWMN system would function in a warmer condition. Then, the

temperature-triggered software prepared in this research should be evaluated again.
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Figure 6.32: Weather information from www.timeanddate.com for 26th Novem-
ber 2018 in Bangkok.

Figure 6.33: Weather information from www.timeanddate.com for 27th Novem-
ber 2018 in Bangkok.
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6.5 Measurement Result of Rerouting Performance

Since rerouting application is based on the failure of wireless mesh node, the testing for
rerouting is conducted by rebooting each wireless mesh node manually for three times and
restoration time for the affected wireless mesh node is analyzed. Firstly, the information of

wireless mesh node is summarized in Table 6.2.

Table 6.2: MAC and IP addresses of wireless mesh nodes and gateways.

Wireless Mesh Node | MAC address | IP address
Raspi 1 e8:4e:06:5e:6b:09 10.0.0.1
Raspi 2 e8:4e:06:5f:47:59 10.0.0.2
Raspi 3 e8:4e:06:40:d3:7f 10.0.0.3
Raspi 4 e8:4e:06:40:d3:db 10.0.0.4
Raspi 5 e8:4e:06:40:dc:62 10.0.0.5
Raspi 6 e8:4e:06:40:94:20 10.0.0.6
Gateway 1 e8:4e:06:40:d3:4b 10.0.0.8
Gateway 2 e8:4e:06:5e:6a:bl 10.0.0.9

6.5.1 Case of Raspi 1’s Failure

When Raspi 1 is failed, Raspi 2, Raspi 3 and Gateway 2 will be unreachable to Gateway
1 according to the information of predefined primary routes for the control plane. Raspi
1 is a relay node not only for the control plane but also for the data plane because Raspi
2 sends both control packets and data packets to Gateway 1 through the route Raspi 2 -
Raspi 1 - Gateway 1. Likewise, Raspi 3 and Gateway 2 send the control packets through
the routes Raspi 3 - Raspi 2 - Gateway 1 and Gateway 2 - Raspi 3 - Raspi 2 - Raspi 1 and

Gateway 1, respectively.

Figure 6.34: Information of received control packet from Raspi 2 to Gateway 1
through primary route.
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Figure 6.35: Information of received control packet from Raspi 3 to Gateway 1
through primary route.

- 14:44:09.. 10.0.0.8  10.0.0.9  OpenFlow 74 Type: OFPT ECHO REQUEST
|| 14:44:09.. 10.0.6.9 16.0.0.8 OpenFlow 74 Type: OFPT ECHO REPLY |
14:44:09.. 10.0.0.4 10.0.@.8 OpenFlow 1.. Type: OFPT_PORT_STATUS
14:44:09.. 10.0.8.2 10.0.8.8 OpenFlow 1.. Type: OFPT_PORT_STATUS
14:44:10.. 10.0.0.5 10.0.8.8 OpenFlow 1.. Type: OFPT_PORT_STATUS
| 14:44:10. 10.0.0.2 10.0.0.8 OpenFlow 1. Type: OFPT_PORT_STATUS
| 14:44:10. 10.0.0.8 10.0.6.1 OpenFlow 74 Type: OFPT_ECHO REQUEST
14:44:10.. 10.0.0.8 10.0.8.2 OpenFlow 74 Type: OFPT_ECHO_REQUEST
14:44:10.. 10.0.0.1 10.0.8.8 OpenFlow 74 Type: OFPT_ECHO REPLY
14:44:10.. 10.0.9.2 10.0.8.8 OpenFlow 74 Type: OFPT_ECHO_REPLY
| 14:44:11. 10.6.0.8 10.0.0.4 OpenFlow 74 Type: OFPT_ECHO_REQUEST

Raspid's MAC address ~~~~ ~~n~ ~—a—e.m

Frame 811@: 74 bytes on wire (592 bj

ed (592 bits)

Ethernet II, Src: EdupInte_5e:6b:09] (e8:4e:06:5e:6b:09)|, Dst: EdupInte_40:d3:4b (e8:4e:06:40:d3:4b)
Internet Protocol Version 4, Src: 15.0.0.9, Dst: 10.90.0.8
Transmission Control Protocol, Src Port: 51418, Dst Port: 6633, Seq: 677, Ack: 529, Len: 8

Figure 6.36: Information of received control packet from Gateway 2 to Gateway
1 through primary route.
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Figures 6.34, 6.35 and 6.36 are the informations of packets which Gateway 1 receives
from Raspi 2, Raspi 3 and Gateway 2 when Raspi 1 is in normal situation and those three
figures show that Gateway 1 receives the packet from Raspi 2, Raspi 3 and Gateway 2
through MAC address of Raspi 1 on the predefined primary routes.

Table 6.3: Rerouting information of control plane for failure case of Raspi 1 in
round 1.

1P Down Up Restoration

Node address | Time Time Time

Remark

Raspi 1 10.0.0.1 | 14:44:34

17 (detection_time)

Raspi 2 10.0.0.2 | 14:44:34 | 14:44:39 | 23 seconds + 5 (rerouting_time)

17 (detection_time)

Raspi 3 10.0.0.3 | 14:44:32 | 14:44:47 | 32 seconds + 15 (rerouting.time)

17 (detection_time)

Gateway 2 | 10.0.0.9 | 14:44:30 | 14:44:40 | 27 seconds + 10 (rerouting time)

Table 6.4: Rerouting information of control plane for failure case of Raspi 1 in
round 2.

P Down Up Restoration
address | Time Time Time

Raspi 1 10.0.0.1 | 14:54:25

Node Remark

17 (detection_time)
+ 6 (rerouting_time)
17 (detection_time)
+ 4 (rerouting_time)
17 (detection_time)
+ 8 (rerouting_time)

Raspi 2 10.0.0.2 | 14:54:26 | 14:54:32 | 23 seconds

Raspi 3 10.0.0.3 | 14:54:27 | 14:54:31 21 seconds

Gateway 2 | 10.0.0.9 | 14:54:24 | 14:54:32 | 25 seconds

Referring to the restoration time values in Tables 6.3, 6.4 and 6.5, affected nodes (Raspi
2, Raspi 3 and Gateway 2) in the failure of Raspi 1 are restored within half a minute in
most of the cases.

Configuration request message plays at the key role in the restoration of affected wireless
mesh nodes. RYU controller assigns the necessary forwarding rules to establish the alterna-
tive routes with the purpose of rerouting by using the config request message and the way
of sending configuration request message between RYU controller and wireless mesh node
is described in Figure 6.37. In Figure 6.37, the wireless mesh node responds the configu-
ration request message from RYU controller only when one of the wireless mesh nodes is
disconnected from RYU controller.

The role of raspi 4 in this rerouting process is to relay the packets from Raspi 2, Raspi

3 and Gateway 2 to Gateway 1 and the relayed packets from Raspi 4 are captured with
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Table 6.5: Rerouting information of control plane for failure case of Raspi 1 in

round 3.
1P Down Up Restoration
Node address | Time Time Time Remark
Raspi 1 10.0.0.1 | 14:59:28
Raspi 2 | 10002 | 14:50:25 | 14:50:41 | 33 seconds | | (detection time)
+ 5 (rerouting_time)
Raspi 3 | 10.0.0.3 | 14:50:28 | 14:50:20 | 18 seconds | |7 (detectiontime)
+ 1 (rerouting_time)
Gateway 2 | 10.0.0.0 | 14:59:28 | 14:59:30 | 10 seconds | L (detection_time)
+ 2 (rerouting_time)

Switch ID 1152921504606846978) ,IP address is leaved
in Fri Nov 30 14:44:34 2018,0

Current Conneced Switches to RYU controller are [1152921504606846980L,
1152921504606846981L, 1152921504606846982L, 255421810004811L]

IP address ('10.0.0.8', 45432) sends OFPConfigReply mbssage in Fri Nov
30 14:44:38 2018

casel

IP address ('10.0.0.4',
30 14:44:38 2018

casel

IP address ('10.0.0.5'",
30 14:44:38 2018

casel

IP address ('10.0.0.6',
30 14:44:38 2018

casel

(Switch ID 1152921504606846978) ,IP address is connected
60872) in Fri Nov 30 14:44:39% 2018,1

('10.0.0.2', 60864)

37352) sends OFPConfigReply message in Fri Nowv

41386) sends OFPConfigReply message in Fri Nov

59900) sends OFPConfigReply message in Fri Nov

('110.0.0.2",

Figure 6.37: Configuration reply messages from wireless mesh nodes to RYU
controller.
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Wireshark tool at Gateway 1. In alternative route, Gateway 1 must receives the packets

from Raspi 2, Raspi 3 and Gateway 2 from Raspi 4.

Figure 6.38: Control packet received at Gateway 1 from Raspi 2 through alter-
native route.

Figure 6.39: Control packet received at Gateway 1 from Raspi 3 through alter-
native route.

For the data plane, Raspi 1 relays a data packet from Raspi 2 to Gateway 1. If Raspi
1 is failed, Raspi 4 is responsible to relay the data packet to Gateway 1. The status of a
received data packet at Gateway 1 from Raspi 2 when Raspi 1 is working and the time that
Raspi 1 is failed is summarized in Figures 6.41 and 6.42, respectively.

In Figure 6.42, when Raspi 1 ia failed, Gateway 1 cannot receive a data packet from
Raspi 2 at 16:44:17. After 29 seconds, data plane between Raspi 2 and Gateway 1 is rerouted
from the primary route Raspi 2 - Raspi 1 - Gateway 1 to the alternative route Raspi 2 -
Raspi 5 - Raspi 4 - Gateway 1. Then, Gateway 1 receives back a data packet from Raspi 2



SRR T — T — =,

14:44:39, 1

9.0.0.6  10.0.0.8 OpenFlow 74 Tvpe: OFPT ECHO REPLY
|l 14:44:40. 10.0.6.9 10.0.06.8 OpenFlow 74 Type: OFPT_HELLO
14:44:46.. 16.06.6.8  10.0.6.9  Openflow 74 Type: OFPT_HELLO
14:44:40.. 10.0.0.8 10.0.0.9 OpenFlow 74 Type: OFPT_FEATURES_REQUEST

Frame 8394: 74 bytes on wire (SQﬂJblts), 74 bytes captured (592 bits)
Ethernet II, 1de: :d3: Dst: EdupInte_40:d3:4b (e8:4e:06:40:d3:4b)
Internet Protocol Version 4, Src: 10.9.6.9, Dst: 10.9.0.8

Transmission Control Protocol, Src Port: 51424, Dst Port: 6633, Seq: 1, Ack: 1, Len: 8 v
e8 de 06 40 d3 4b e8 4e 06 40 d3 db 08 @0 45 @ N-@-K-N -@ E 2
00 3c 20 ed 40 0O 40 06 0©5 ©8 Oa 00 00 @9 ©a 00 < @@
00 08 c8 e@ 19 e9 ce f5 9e 4a d7 5e 80 67 80 18 J-~g .
O 7 openFlow 1.3: Protocol Packets: 207984 - Displayed: 102353 (49.2%) Profile: Default

Figure 6.40: Control packet received at Gateway 1 from Gateway 2 through
alternative route.

Figure 6.41: Control packet received at Gateway 1 from Raspi 2 through pri-
mary route.

Figure 6.42: Control packet received at Gateway 1 from Raspi 2 through alter-
native route in round 1.
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through Raspi 4. In round 1, total 29 seconds is required to reroute the data packets from

Raspi 2 to Gateway 1.

Figure 6.43: Control packet received at Gateway 1 from Raspi 2 through alter-
native route in round 2.

In round 2, Figure 6.43 shows that 30 seconds is required to reroute the data packets

from Raspi 2 to Gateway 1 when Raspi 1 is failed.

Figure 6.44: Control packet received at Gateway 1 from Raspi 2 through alter-
native route in round 3.

In round 3, Figure 6.44 shows that 25 seconds is required to reroute the data packets
from Raspi 2 to Gateway 1 when Raspi 1 is failed.
For the case of failure of Raspi 1, the maximum required time for rerouting in all 3

rounds is 33 seconds.
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Recalling the rerouting process of the failure of Raspi 2, the impacted wireless mesh

nodes are Raspi 3 and Gateway 2 as Raspi 2 needs to relay the control packets from Raspi

3 and Gateway 2 to Raspi 1 for establishing the primary route.

Table 6.6: Rerouting information of control plane for failure case of Raspi 2 in

round 1.
P Down Up Restoration
Node address | Time Time Time Remark
Raspi 2 10.0.0.2 | 16:50:45
. e e 17 (detection_time)
Raspi 3 10.0.0.3 | 16:50:44 | 16:50:58 | 31 seconds + 14 (rerouting time)
Gateway 2 | 10.0.0.9 | 16:50:43 | 16:50:50 | 24 seconds | ' (detection time)

+ 7 (rerouting_time)

Table 6.7: Rerouting information of control plane for failure case of Raspi 2 in

round 2.
1P Down Up Restoration
Node address | Time Time Time Remark
Raspi 2 | 10.0.0.2 | 16:54:14
Raspi 3 | 10.0.0.3 | 16:54:13 | 16:54:27 | 31 seconds | 1/ (detection time)
+ 14 (rerouting_time)
Gateway 2 | 10.0.0.9 | 16:54:10 | 16:54:16 | 23 seconds | 7 (detection-time)

+ 6 (rerouting_time)

Table 6.8: Rerouting information of control plane for failure case of Raspi 2 in

round 3.
P Down Up Restoration
Node address | Time Time Time Remark
Raspi 2 10.0.0.2 | 16:56:55
. . o 17 (detection_time)
Raspi 3 10.0.0.3 | 16:56:54 | 16:57:09 | 32 seconds + 15 (rerouting time)
Gateway 2 | 10.0.0.9 | 16:56:52 | 16:56:58 | 23 seconds | ' (detection time)

+ 6 (rerouting_time)

Tables 6.6, 6.7 and 6.8 confirm that all of the affected wireless mesh nodes are restored

within 32 seconds when Raspi 2 is failed. Since Raspi 2 does not relay any data packets,

rerouting is only considered for restoration of the control plane.
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6.5.3 Case of Raspi 3’s Failure

Raspi 3 relays the control packets from Gateway 2 to Gateway 1 to establish the Open-
Flow control plane between Gateway 1 and Gateway 2. When Raspi 3 is failed, the traffic
for control plane from Gateway 2 to Gateway 1 is rerouted from the primary route Gateway
2 - Raspi 3 - Raspi 2 - Raspi 1 - Gateway 1 to the alternative route Gateway 2 - Raspi 6
- Raspi 5 - Raspi 4 - Gateway 1. The information of rerouting for the failure of Raspi 3 is
summarized in Tables 6.9, 6.10 and 6.11.

Table 6.9: Rerouting information of control plane for failure case of Raspi 3 in
round 1.

1P Down Up Restoration

Node address | Time Time Time

Remark

Raspi 3 10.0.0.3 | 16:08:50

17 (detection_time)

Gateway 2 | 10.0.0.9 | 16:08:40 | 16:09:04 | 41 seconds + 24 (rerouting time)

Table 6.10: Rerouting information of control plane for failure case of Raspi 3
in round 2.

1P Down Up Restoration

Node address | Time Time Time

Remark

Raspi 3 10.0.0.3 | 16:11:35

17 (detection_time)

Gateway 2 | 10.0.0.9 | 16:11:33 | 16:12:02 | 46 seconds + 29 (rerouting time)

Table 6.11: Rerouting information of control plane for failure case of Raspi 3
in round 3.

1P Down Up Restoration

Node address | Time Time Time

Remark

Raspi 3 10.0.0.3 | 16:25:44

17 (detection_time)

Gateway 2 | 10.0.0.9 | 16:25:43 | 16:26:10 46 seconds + 29 (rerouting time)

The required time for rerouting the impacted wireless mesh node when Raspi 3 is failed
is increased to 46 seconds. In the cases of failure of Raspi 1, 2 and 3 , Raspi 4 needs to
relay the control packets from Raspi 2, 3 and Gateway 2 to Gateway 1 according to the
predefined alternative routes because Raspi 4 is only the wireless mesh node in order to
maintain the control plane between RYU controller and the remaining wireless nodes. The
captured packets with Wireshark tool [5] at Gateway 1 from Raspi 4 during the rerouting
process is the same which has been described in Figures 6.38, 6.39 and 6.40.



6.5.4 Case of Raspi 4’s Failure

The scenario of rerouting when there is a failure at Raspi 4, Raspi 5 and Raspi 6 are
similar to the scenario when there is a failure at Raspi 1, Raspi 2 and Raspi 3. When Raspi
4 is failed, Raspi 1 needs to relay the packets from Raspi 5 through the route Raspi 5 -
Raspi 2 - Raspi 1 - Gateway 1 and relays the packets from Raspi 6 through the route Raspi
6 - Raspi 2 - Raspi 1 - Gateway 1. In this subsection ,the failure of Raspi 4 is considered

for 3 times and the rerouting information is summarized in Tables 6.12, 6.13 and 6.14.

Table 6.12: Rerouting information of control plane for failure case of Raspi 4

in round 1.

1P Down Up Restoration
Node address | Time Time Time Remark
Raspi 4 | 10.0.0.4 | 15:13:28
. o o 17 (detection_time)
Raspi 5 | 10.0.0.5 | 15:13:19 | 15:13:47 | 45 seconds + 28 (rerouting_time)
Raspi 6 | 10.0.0.6 | 15:13:28 | 15:13:32 | 21 scconds | 1 (detection time)
+ 4 (rerouting_time)

Table 6.13: Rerouting information of control plane for failure case of Raspi 4

in round 2.

1P Down Up Restoration
Node address | Time Time Time Remark
Raspi 4 | 10.0.0.4 | 15:17:47
. . o 17 (detection_time)
Raspi 5 | 10.0.0.5 | 15:17:48 | 15:18:01 | 30 seconds + 13 (rerouting time)
. . . 17 (detection_time)
Raspi 6 | 10.0.0.6 | 15:17:45 | 15:17:59 | 31 seconds } 14 (rerouting time)

Table 6.14: Rerouting information of control plane for failure case of Raspi 4

in round 3.

1P Down Up Restoration
Node address | Time Time Time Remark
Raspi 4 | 10.0.0.4 | 15:20:48
. o, 1. 17 (detection_time)
Raspi 5 | 10.0.0.5 | 15:20:46 | 15:21:03 | 34 seconds } 17 (rerouting time)
. o, o1, 17 (detection_time)
Raspi 6 | 10.0.0.6 | 15:20:47 | 15:21:03 | 33 seconds + 16 (rerouting time)

In Rounds 1, 2 and 3, the required time for restoration for Raspi 5 and Raspi 6 when

Raspi 4 is failed in Round 2 and Round 3 is around 34 seconds. In Round 1, the required
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time for restoration take longer than other two rounds. The reason is that at Round 1, RYU
controller decided the unreachable of Raspi 5 with only 3 unreplied echo request message
and the connection stauts between Raspi 5 and Gateway 1 is captured with wireshark tool

which is summarized in Figure 6.45.

Figure 6.45: Control packet received at Gateway 1 from Raspi 5 through prim-
iary route.

Figures 6.46 and 6.47 show the information of the received packet from Raspi 5 and
Raspi 6 at Gateway 1. Source MAC address of those received packets from Raspi 5 and
Raspi 6 through the primary route is a MAC address of Raspi 4 which means that Raspi 4
successfully relays the packets from Raspi 5 and Raspi 6 to Gateway 1.

Figure 6.46: Control packet received at Gateway 1 from Raspi 5 through prim-
iary route.

When Raspi 4 is failed, the control packet from Raspi 5 is rerouted through the alterna-
tive rouute which is Raspi 5 - Raspi 2 - Raspi 1 - Gateway 1. Likewise, the control packet
from Raspi 6 is reoruted throught alternative route which is Raspi 6 - Raspi 3 - Raspi 2
- Raspi 1 - Gateway 1. Figures 6.48 and 6.49 shows that Gateway 1 receives the control
packet from Raspi 5 and Raspi 6 from Raspi 1 when Raspi 4 is failed.
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Figure 6.47: Control packet received at Gateway 1 from Raspi 6 through prim-
iary route.

Figure 6.48: Control packet received at Gateway 1 from Raspi 5 through alter-
native route.
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Figure 6.49: Control packet received at Gateway 1 from Raspi 6 through alter-
native route.

6.5.5 Case of Raspi 5’s failure

In the primary route, Raspi 5 relays the control packet form Raspi 6 to Gateway 1 and
therefore restoration for the control path between Raspi 6 and Raspi 5 is also required to be
considered if Raspi 5 is failure stage. The rerouting informations of Raspi 5 are summarized
in Tables 6.15, 6.16 and 6.17.

Table 6.15: Rerouting information of control plane for failure case of Raspi 5
in round 1.

1P Down Up Restoration
address | Time Time Time

Raspi 5 | 10.0.0.5 | 15:35:39

Node Remark

17 (detection_time)

Raspi 6 | 10.0.0.6 | 15:35:38 | 15:35:52 | 31 seconds + 4 (rerouting time)

6.5.6 Case of Raspi 6’s failure

There is no impact for the control plane when Raspi 6 is failed because Raspi 6 does
not need to relay any control packet to Gateway 1. However, Raspi 6 is used to relay the
data packets from Raspi 5 to Gateway 2. Figure 6.50 shows the status of receiving incoming
packets at Gateway 2 from Raspi 5 when Raspi 6 is in operational state ane Figure 6.51
shows the stutus of receiving incoming packets at Gateway from Raspi 5 with the situation
of Raspi 6 is in failure state. When Raspi 6 is falied, Gateway 2 receives the data packet
from Raspi 5 with the help from Raspi 3.

In Figures 6.50 and 6.51, Gateway 2 does not receive the data packets from Raspi 5
at 16:38:20 when Raspi 6 is failed and data packet from Raspi 5 is rerouted through the
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Table 6.16: Rerouting information of control plane for failure case of Raspi 5
in round 2.

1P Down Up Restoration
address | Time Time Time

Raspi 5 | 10.0.0.5 | 15:40:40

Node Remark

17 (detection_time)

Raspi 6 | 10.0.0.6 | 15:40:38 | 15:40:54 33 seconds + 16 (rerouting.time)

Table 6.17: Rerouting information of control plane for failure case of Raspi 5
in round 3.

1P Down Up Restoration

Node address | Time Time Time

Remark

Raspi 5 | 10.0.0.5 | 16:02:01

17 (detection_time)

Raspi 6 | 10.0.0.6 | 16:02:02 | 16:02:14 | 29 seconds + 12 (rerouting time)

Figure 6.50: Status of received data packet from Raspi 5 at Gateway 2 while
Raspi 6 is working.

16:38:19.083 10.0.0.5 10.0.0.9 TCP 1..51100 > 9092 [ACK] Seq=10225=
16:38:19.084 10.0.0.5 10.0.0.9 TCP 1..51100 > 9092 [ACK] Seq=10226—
16:38:19.094 10.0.0.5 10.0.0.9 TCP 1..51100 > 9092 [ACK] Seq=10228—
16:38:19.095 10.0.0.5 10.0.0.9 TCP 1..51100 - 9092 [PSH, ACK] Seq=—=
16:38:20.014 10.0.0.5 10.0.0.9 TCP 6651100 - 9092 [ACK] Seq=1@231§
16:38:20.014 10.0.0.5 10.0.0.9 SSH 1..Server: Encrypted packet (leg
16:38:43.238 10.0.0.5 10.0.0.9 TCP 1..511600 - 9092 I[ACK] Seq=1@231%v

< Raspi 3's MAC address = 2
Frame 11148: 1514 bytes on wire M 1514 bytes captured (12112 bits)’

| Ethernet II, Src: EdupInte 40:d3:7f (e8:4e:06:40:d3:7f),|Dst: EdupInte_5e:6a:b
Tt mnrmunnanadt Nuat Al ViAaunrmes A A Cnmoa 1N N N C N4+ . 1N N N N b
0000 [l S5e 6a bl e8 4e 06 40 d3 7f 08 00 45 00 mAj N -@ E 5

05 dc 2b Oc 40 00 40 066 f6 02 Qa 00 00 B5 Qa @O +:@-@

Figure 6.51: Status of received data packet from Raspi 5 at Gateway 2 when
Raspi 6 is failed.
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alternative route Raspi 5 - Raspi 2 - Raspi 3 - Gateway 2 and Gateway 2 receives back
the data packets from Raspi 5 at 16:38:43 with the source MAC address is Raspi 3’s MAC

address. In round 1, total 23 seconds are required for rerouting.

Figure 6.52: Status of received data packet from Raspi 5 at Gateway 2 when
Raspi 6 is failed in round 2.

Figure 6.53: Status of received data packet from Raspi 5 at Gateway 2 when
Raspi 6 is failed in round 3.

In round 2 and round 3, the total required time for rerouting the data packets from
Raspi 2 are 25 seconds and 15 seconds respectively. Therefore, the maximum required time

rerouting during experiment time is 25 seconds.

6.5.7 Summary of Rerouting Performance

In this work, rerouting is only based on the failure of the wireless mesh nodes. Another

assumption for rerouting is that the wireless link between two wireless mesh nodes on
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the same crossover bridge works properly before the process of rerouting is started. The
maximum required time to reroute for control plane in all cases is 46 seconds. The maximum
time for rerouting has occurred at the case of Raspi 3’s Failure. In addition, the maximum
required time to reroute for data plane is 30 seconds. The results of restoration time
confirm that the predefined forwarding rules for the alternative routes work as intended.
However, based on the physical location, the performance of rerouting can vary if rerouting
is based on the predefined alternative routes. In our work, each wireless mesh node is placed
high enough which has less possibility to be blocked line-of-sight by a car. However, the
wireless link between wireless mesh nodes and Gateway 1 can be blocked by a big bus or
the wireless link between wireless mesh nodes can also be blocked by cars if a wireless mesh
node is not placed at the high place. Therefore, we recommend that the predefined rules for
rerouting should be changed accordingly based on the physical location of outdoor SDWMN
network or in the future an adaptive routing should be aimed at instead for a more robust

deployment.



Chapter 7

Conclusion

In this thesis, we have designed the prototype of outdoor SDWMN testbed for road
traffic monitoring network on Phaya Thai road between Rama 1 road and Rama 4 road by
using Raspberry Pi. The main purpose is to apply the programmability of SDN to build
the wireless network, where routing function can be programmed at the application layer of
RYU controller. By using the strategy of mesh networking, captured images from Raspberry
Pi’s camera can be sent in near real-time through the wireless ad-hoc routes which can save
the operational cost for sending data. In this prototype network, the routing functionalities
are implemented as predefined forwarding rules for the primary route and alternative route
which are based on the minimum-hop-path. The primary route is installed by predefined
forwarding rules at the bootstrapping stage in all wireless nodes. The implemented rerouting
application will assign the predefined backup rules to the respective wireless mesh nodes to
build the alternative routes for rerouting by using standard OpenFlow configuration request
messages. In-band control scenario is applied in SDWMN and therefore, the primary route
and the alternative route are required to be considered for both the control plane and data
plane over a single wireless network interface.

Firstly, we have designed and developed all components in preparation for the actual
installation SDWMN testbed on Phaya Thai road. In the preparation, both software and
hardware parts have been carried out. The software parts include the installation of Open-
Vswitch, RYU, a driver for an external WiFi adapter in all wireless nodes and routing for
outdoor SDWMN. Linux kernel version 4.4 has been used with the driver for an applied
antenna in this thesis. A waterproof box is designed for installation on the crossover bridges
on Phaya Thai road.

After preparation has been done, we set up the small-scale SDWMN testbed on Phaya
Thai road between Rama 1 road and Rama 4 road. The total distance between two gateways
is 1100 meters. On Phaya Thai road, the average distance between adjacent crossover
bridges is 250-350 meters. Two gateways are installed at the traffic police boxes and two
wireless mesh nodes are installed at each crossover bridge on Phaya Thai road.

The testing for network performance has been performed in order to investigate for
the characteristic of SDN based outdoor wireless network. Firstly, we have measured TCP
throughput, UDP throughput, ICMP packet with packet size 1456 bytes in 100 meters,
200 meters, 300 meters, and 400 meters. We make the measurement in different distances
and the result confirms that one-hop distance at the outdoor SDWMN can be sufficiently
increased up to 400 meters for road traffic monitoring application.

Secondly, the outdoor wireless characteristic has been investigated from the implemented
outdoor SDWMN on Phaya Thai road. From an investigation result of performing the
network performance for data plane traffic, we have learned about the impacts of obstacles

such as buses, trees, and trucks which block the wireless signal. The results of daytime and
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nighttime comparison show that we need to carefully design the pattern of routing based
on the physical location of outdoor and placing the wireless nodes in order to avoid the
obstacles to get the better network performance.

Thirdly, we have integrated the intended traffic monitoring application and SDWMN
network and run the traffic monitoring application on SDWMN network for 16 hours on
26th November 2018. The status of the control plane while traffic monitoring application is
being operated is quite stable but the control plane starts being fluctuated after 6 AM when
the trend of the density of vehicle lead to be increased. Due to the low ambient temperature
in the winter season of Thailand, device temperature of wireless mesh node can be operated
for the whole day. The more investigation is required for the temperature of the wireless
mesh node, especially in the summer season.

Finally, the investigation for rerouting experiment is tested by rebooting the wireless
mesh nodes for three times. From the real measurement, the maximum time for rerouting
the control plane is 46 seconds and maximum time for rerouting the data plane is 30 seconds.
The predefined forwarding rules for the primary routes and the alternative routes are still
effective for this such a kind of small-scale testbed. However, the forwarding rules should
be changed to dynamic forwarding rules with the consideration of wireless link status to
be more robust deployment when small-scale of existing SDWMN testbed is increase to a
large-scale network. This work confirms that predefined routing can be operated well in
a small-scale testbed. However, dynamic routing should be changed when the scale of the
network is increased. In a large-scale network, the control plane status cannot be operated
well if the number of hops is increased from RYU controller. Therefore, instead of placing
RYU controller in only one gateway, RYU controller should be placed at the cloud or the

scenario of using multiple RYU controller should be considered in a future work.
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#Network Configuration in Raspi 1 to set wireless

sudo nano /etc/network/interfaces

auto lo

iface lo inet loopback

#Configure Wireless Ad-Hoc in Linux
auto wlanO

iface wlanO inet static

address 10.0.0.1

netmask 255.0.0.0

wireless-channel 132

wireless -mode ad-hoc

wireless-essid 222

interface as ad-hoc mode

#Network Configuration in Raspi 2 to set wireless

sudo nano /etc/mnetwork/interfaces

auto 1lo

iface lo inet loopback

#Configure Wireless Ad-Hoc in Linux
auto wlanO

iface wlanO inet static

address 10.0.0.2

netmask 255.0.0.0

wireless-channel 132

wireless-mode ad-hoc

wireless-essid 222

interface as ad-hoc mode

#Network Configuration in Raspi 3 to set wireless

sudo nano /etc/network/interfaces

auto 1lo

iface lo inet loopback

#Configure Wireless Ad-Hoc in Linux
auto wlanO

iface wlan0O inet static

address 10.0.0.3

netmask 255.0.0.0

wireless-channel 132

wireless -mode ad-hoc

wireless-essid 222

interface as ad-hoc mode

#Network Configuration in Raspi 4 to set wireless
sudo nano /etc/network/interfaces

auto 1lo
iface lo inet loopback

#Configure Wireless Ad-Hoc in Linux

interface as ad-hoc mode
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auto wlanO

iface wlan0O inet static
address 10.0.0.4
netmask 255.0.0.0
wireless-channel 132
wireless-mode ad-hoc
wireless-essid 222

#Network Configuration in Raspi 5 to set wireless interface as ad-hoc mode

sudo nano /etc/network/interfaces

auto 1lo

iface lo inet loopback

#Configure Wireless Ad-Hoc in Linux
auto wlanO

iface wlan0O inet static

address 10.0.0.5

netmask 255.0.0.0

wireless-channel 132

wireless-mode ad-hoc

wireless-essid 222

#Network Configuration in Raspi 6 to set wireless interface as ad-hoc mode

sudo nano /etc/network/interfaces

auto 1lo

iface lo inet loopback

#Configure Wireless Ad-Hoc in Linux
auto wlanO

iface wlan0O inet static

address 10.0.0.6

netmask 255.0.0.0

wireless-channel 132

wireless-mode ad-hoc

wireless-essid 222

#Network Configuration in Gateway 1 to set wireless interface as ad-hoc mode

sudo nano /etc/network/interfaces

auto 1lo

iface lo inet loopback

#Configure Wireless Ad-Hoc in Linux
auto wlanO

iface wlan0O inet static

address 10.0.0.8

netmask 255.0.0.0

wireless-channel 132

wireless-mode ad-hoc

wireless-essid 222

#Network Configuration in Gateway 2 to set wireless interface as ad-hoc mode

sudo nano /etc/network/interfaces

auto lo

iface lo inet loopback

#Configure Wireless Ad-Hoc in Linux
auto wlanO

iface wlan0O inet static
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13

address 10.0.0.9
netmask 255.0.0.0
wireless-channel 132
wireless-mode ad-hoc

wireless-essid 222
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Appendix B

Installing Necessary Package
To Develop SDWMN

#Gatewayl (RYU controller)

#Installing RYU application in Ubuntu 16.04 (Kernel Version 4.4)
sudo apt-get install python-pip

sudo pip install ryu

#Update the installed packages

sudo apt-get update

#

\begin{lstlisting}

#In all wireless nodes

#Installing openvswitch in all wireless nodes
sudo apt-get install openvswitch-switch
#Update the installed packages

sudo apt-get update

#In all wireless mesh nodes

#Installation for EDUP EP-AC1605 in Raspberry Pi 3 (for Ubuntu Mate with Kermnel
Version 4.4.38-v7+)

Reference from https://github.com/jurobystricky/Netgear-A6210

sudo apt-get install git raspberrypi-kernel-headers

git clone https://github.com/jurobystricky/Netgear-A6210.git

cd Netgear-A6210

make

sudo make install

#Update the installed packages

sudo apt-get update

#For testing for TCP/UDP Iperf

sudo apt-get install iperf3

#In gatewayl and gateway 2

#Installation for EDUP EP-AC1605 in two gateways (for Ubuntu with Kernel Version 4.4)
Reference from https://github.com/jurobystricky/Netgear-A6210
git clone https://github.com/jurobystricky/Netgear-A6210.git
cd Netgear-A6210

make

sudo make install

#Update the installed packages

sudo apt-get update

#For testing for TCP/UDP Iperf

sudo apt-get install iperf3
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Python Program for Monitoring Temperature of

Wireless Mesh Node

#This program is written by Soe Ye Htet from Chulalongkorn University

#This program is to monitor the device temperature of wireless mesh node

import os #os package is to execute the linux command line in python program

import time

def reboot () :#To reboot Raspberry Pi

os.system(’sudo reboot’)

def test():#T0 monitor the temperature

os.popen("vcgencmd measure_temp >>
/home/admin3/Desktop/rrtresult/temp26_11_2018.txt")
os.popen("date >> /home/admin3/Desktop/rrtresult/temp26_11_2018.txt")
temp=os.popen("vcgencmd measure_temp|cut -c6-9").readline ()
if temp<=str (80):

print ("Raspberry Pi’s Temperature is ok")
else:

time.sleep (10)

os.popen("echo Device has bee restart >>

/home/admin3/Desktop/rrtresult/temp26_11_2018.txt")

if __name__ == "__main__
reboot ()
try:
while True:#To execute forever
if __name__ == "__main__":
time.sleep (20)
test ()

except:
print ("Keyboard Error")

Listing C.1: Temperature monitoring program at wireless mesh node

#To execute the temperature program at bootstrapping stage

sudo crontab -e

@reboot sudo python /home/admin3/Desktop/pythonprogram/final/temperature.py &
#admin3 is the username of raspberry pi
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Appendix D

Developing Predefined Forwarding Rules For
Primary Route in OpenVswitch of Wireless Nodes

#To install the Primary OpenFlow Rules in Raspi 1

sudo nano /etc/rc.local

#rc.local file is to execute the linux command line in bootstrapping stage

sleep 3 #sleep is required to make sure the command line inside the rc.local file
execute at the bootstrapping stage

sudo ovs-vsctl --if-exists del-br broO

#bridge is added to OpenVswitch

sudo ovs-vsctl add-br brO

sudo ovs-vsctl set bridge br0O other-config:datapath-id=1000000000000001

#Configure OpenVswitch in Userspace of Linux

sudo ovs-vsctl set bridge brO datapath_type=netdev #Set OpenVswitch in userspace

#added wireless interface under bridge in OpenVswitch

sudo ovs-vsctl add-port br0 wlan0O -- set Interface wlanO ofport_request=1

sudo ifconfig br0 10.0.0.1 netmask 255.0.0.0 up

sudo ifconfig wlanO O

sudo iptables -A INPUT -i wlanO -j DROP #For only OpenVswitch in userspace

sudo iptables -A FORWARD -i wlanO -j DROP #For only OpenVswitch in userspace

#Connect to RYU controller

sudo ovs-vsctl set-controller brO tcp:10.0.0.8:6633

sudo ovs-vsctl set controller br0O connection-mode=out-of-band

sudo ovs-vsctl set-fail-mode br0O secure

#Receive the incoming traffic to Raspi 1 (10.0.0.1) from Raspi 2, Raspi 4 and
Gateway 1

sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=1,dl_src=e8:4e:06:40:d3:4b,arp_tpa=10.0.0.1,actions=L0OCAL

sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=1,dl_src=e8:4e:06:5f:47:59,arp_tpa=10.0.0.1,actions=L0OCAL

sudo ovs-ofctl add-flow br0O arp,priority=100,in_port=1,arp_spa=10.0.0.4,actions=L0OCAL

sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,dl_src=e8:4e:06:40:d3:4b,nw_dst=10.0.0.1,actions=LOCAL

sudo ovs-ofctl add-flow broO
ip,priority=100,in_port=1,dl_src=e8:4e:06:5f:47:59,nw_dst=10.0.0.1,actions=L0OCAL

sudo ovs-ofctl add-flow br0O ip,priority=100,in_port=1,nw_src=10.0.0.4,actions=LO0OCAL

#Send the packet from Raspi 1 to other wireless mnode

sudo ovs-ofctl add-flow brO
arp,priority=100, in_port=LOCAL ,arp_tpa=10.0.0.8,actions=output:1

sudo ovs-ofctl add-flow broO
arp,priority=100, in_port=LOCAL ,arp_tpa=10.0.0.4,actions=output:1

sudo ovs-ofctl add-flow brO
arp,priority=90,in_port=L0OCAL,arp_spa=10.0.0.1,actions="resubmit (,4)"

sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=L0OCAL ,nw_dst=10.0.0.8,actions=output:1

sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=LOCAL ,nw_dst=10.0.0.4,actions=output:1

sudo ovs-ofctl add-flow brO
ip,priority=90, in_port=LOCAL ,nw_src=10.0.0.1,actions="resubmit (,4)"

#Relay the incoming traffic to other wireless nodes not to Raspi 1

sudo ovs-ofctl add-flow brO
arp,priority=90,in_port=1,dl_src=e8:4e:06:5f:47:59,actions="resubmit (,3)"

sudo ovs-ofctl add-flow broO
arp,priority=90,in_port=1,dl_src=e8:4e:06:40:d3:4b,actions="resubmit (,4)"
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sudo ovs-ofctl add-flow brO
ip,priority=90, in_port=1,dl_src=e8:4e:06:40:d3:4b,actions="resubmit (,4)"

sudo ovs-ofctl add-flow brO
ip,priority=90, in_port=1,dl_src=e8:4e:06:5f:47:59,actions="resubmit (,3)"

#Table 3 is to rewrite the destinatio MAC address into Gateway 1’s MAC address

sudo ovs-ofctl add-flow brO
table=3,actions=mod_dl_dst:e8:4e:06:40:d3:4b,"load:0->0XM_OF_IN_PORT[],resubmit (,5)"

#Table 4 is to rewrite the destinatio MAC address into Raspi 2’s MAC address

sudo ovs-ofctl add-flow brO
table=4,actions=mod_dl_dst:e8:4e:06:5f:47:59,"load:0->0XM_OF_IN_PORT[],resubmit (,5)"

#Table 5 is to forward to wireless interface

sudo ovs-ofctl add-flow br0O table=5,actions=output:1

#To prevent the infinite loop

sudo ovs-ofctl add-flow brO priority=1,in_port=1,actions=drop

sudo ovs-vsctl set bridge brO protocol=0penFlowl0,0OpenFlowll ,OpenFlowl2,0penFlowl3

sudo sysctl -p

exit O

#To install the Primary OpenFlow Rules in Raspi 2

sudo nano /etc/rc.local

#rc.local file is to execute the linux command line in bootstrapping stage

sleep 3

sudo ovs-vsctl --if-exist del-br broO

#bridge is added to OpenVswitch

sudo ovs-vsctl add-br brO

sudo ovs-vsctl set bridge br0O other-config:datapath-id=1000000000000002

#Configure OpenVswitch in Userspace of Linux

sudo ovs-vsctl set bridge brO datapath_type=netdev

#added wireless interface under bridge in OpenVswitch

sudo ovs-vsctl add-port br0 wlan0O -- set Interface wlanO ofport_request=1

sudo ifconfig wlanO O

sudo ifconfig br0O 10.0.0.2 netmask 255.0.0.0 up

sudo iptables -A INPUT -i wlanO -j DROP #For only OpenVswitch in userspace

sudo iptables -A FORWARD -i wlanO -j DROP#For only OpenVswitch in userspace

#Connect to RYU controller

sudo ovs-vsctl set-controller brO tcp:10.0.0.8:6633

sudo ovs-vsctl set controller br0O connection-mode=out-of-band

sudo ovs-vsctl set-fail-mode brO secure

sudo ovs-vsctl set bridge br0O stp_enable=true

#Receive the incoming traffic to Raspi 2 (10.0.0.2) from Raspi 1, Raspi 5 and Raspi 3

sudo ovs-ofctl add-flow br0
arp,priority=100,in_port=1,dl_src=e8:4e:06:40:dc:62,arp_tpa=10.0.0.2,actions=L0OCAL

sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=1,dl_src=e8:4e:06:5e:6b:09,arp_tpa=10.0.0.2,actions=L0OCAL

sudo ovs-ofctl add-flow broO
arp,priority=100,in_port=1,dl_src=e8:4e:06:40:d3:7f,arp_tpa=10.0.0.2,actions=L0OCAL

sudo ovs-ofctl add-flow br0
arp,priority=100,in_port=1,arp_spa=10.0.0.10,arp_tpa=10.0.0.2,actions=L0OCAL

sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,dl_src=e8:4e:06:40:dc:62,nw_dst=10.0.0.2,actions=LOCAL

sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,dl_src=e8:4e:06:5e:6b:09,nw_dst=10.0.0.2,actions=LOCAL

sudo ovs-ofctl add-flow br0
ip,priority=100,in_port=1,dl_src=e8:4e:06:40:d3:7f,nw_dst=10.0.0.2,actions=L0OCAL

sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,nw_src=10.0.0.10,nw_dst=10.0.0.2,actions=L0OCAL

#Send the packet from Raspi 2 to other wireless mnode

sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=L0OCAL,arp_spa=10.0.0.2,actions="resubmit (,1)"
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sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=LOCAL ,nw_dst=10.0.0.1,actions=output:1

sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=LOCAL ,nw_dst=10.0.0.3,actions=output:1

sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=LOCAL ,nw_dst=10.0.0.5,actions=output:1

sudo ovs-ofctl add-flow brO
ip,priority=90, in_port=L0OCAL ,nw_src=10.0.0.2,actions="resubmit (,1)"

#Relay the incoming traffic to other wireless nodes not to Raspi 2

sudo ovs-ofctl add-flow brO
arp,priority=90,in_port=1,dl_src=e8:4e:06:40:d3:7f,actions="resubmit (,3)"

sudo ovs-ofctl add-flow brO
arp,priority=90,in_port=1,dl_src=e8:4e:06:5e:6b:09,actions="resubmit (,4)"

sudo ovs-ofctl add-flow brO
ip,priority=90,in_port=1,dl_src=e8:4e:06:40:d3:7f,actions="resubmit (,3)"

sudo ovs-ofctl add-flow brO
ip,priority=90,in_port=1,dl_src=e8:4e:06:5e:6b:09,actions="resubmit (,4)"

sudo ovs-ofctl add-flow broO
ip,priority=100,in_port=1,dl_src=e8:4e:06:40:d3:7f,nw_dst=10.0.0.8,actions="resubmit (,3)"

sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,dl_src=e8:4e:06:5e:6b:09,nw_dst=10.0.0.3,actions="resubmit (,4)"

sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,dl_src=e8:4e:06:5e:6b:09,nw_dst=10.0.0.9,actions="resubmit (,4)"

#Table 1 is to rewrite the destinatio MAC address into broadcast MAC address

sudo ovs-ofctl add-flow brO
table=1,actions=mod_dl_dst:ff:ff:ff:ff:ff:ff,"resubmit(,5)"

#Table 2 is to rewrite the destinatio MAC address into Raspi 5’s MAC address

sudo ovs-ofctl add-flow brO
table=2,actions=mod_dl_dst:e8:4e:06:40:dc:62,"load:0->0XM_OF_IN_PORT[],resubmit(,5)"

#Table 3 is to rewrite the destinatio MAC address into Raspi 1’s MAC address

sudo ovs-ofctl add-flow brO
table=3,actions=mod_dl_dst:e8:4e:06:5e:6b:09,"load:0->0XM_OF_IN_PORTI[],resubmit(,5)"

#Table 4 is to rewrite the destinatio MAC address into Raspi 3’s MAC address

sudo ovs-ofctl add-flow brO
table=4,actions=mod_dl_dst:e8:4e:06:40:d3:7f,"load:0->0XM_OF_IN_PORT[],resubmit(,5)"

#Table 5 is to forward to wireless interface

sudo ovs-ofctl add-flow br0O table=5,actions=output:1

#To prevent the infinite loop

sudo ovs-ofctl add-flow brO priority=1,in_port=1,actions=drop

sudo sysctl -p

exit O

#To install the Primary OpenFlow Rules in Raspi 3

sudo nano /etc/rc.local

sleep 3

sudo ovs-vsctl --if-exists del-br broO

#bridge is added to OpenVswitch

sudo ovs-vsctl add-br bro0

sudo ovs-vsctl set bridge brO other-config:datapath-id=1000000000000003
#Configure OpenVswitch in Userspace of Linux

sudo ovs-vsctl set bridge br0O datapath_type=netdev

#added wireless interface under bridge in OpenVswitch

sudo ovs-vsctl add-port br0 wlan0 -- set Interface wlan0 ofport_request=1
sudo ifconfig wlanO O

sudo ifconfig br0 10.0.0.3 netmask 255.0.0.0 up

sudo iptables -A INPUT -i wlanO -j DROP #For only OpenVswitch in userspace
sudo iptables -A FORWARD -i wlanO -j DROP #For only OpenVswitch in userspace
#Connect to RYU controller

sudo ovs-vsctl set-controller br0 tcp:10.0.0.8:6633
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sudo ovs-vsctl set controller brO connection-mode=out-of-band
sudo ovs-vsctl set-fail-mode brO secure
sudo ovs-vsctl set bridge br0O protocol=0penFlowl0,0OpenFlowll ,OpenFlowl2,0penFlowl3
#Receive the incoming traffic to Raspi 3 (10.0.0.3) from Raspi 2, Raspi 6 and
Gateway 2
sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=1,dl_src=e8:4e:06:5f:47:59,arp_tpa=10.0.0.3,actions=L0OCAL
sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=1,dl_src=e8:4e:06:40:94:20,arp_tpa=10.0.0.3,actions=L0OCAL
sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=1,dl_src=e8:4e:06:5e:6a:bl,arp_tpa=10.0.0.3,actions=L0OCAL
sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,dl_src=e8:4e:06:5f:47:59,nw_dst=10.0.0.3,actions=L0OCAL
sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,dl_src=e8:4e:06:40:94:20,nw_dst=10.0.0.3,actions=LOCAL
sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,dl_src=e8:4e:06:5e:6a:bl,nw_dst=10.0.0.3,actions=LOCAL
#Send the packet from Raspi 3 to other wireless node
sudo ovs-ofctl add-flow brO
arp,priority=100, in_port=LOCAL,arp_spa=10.0.0.3,actions="resubmit(,1)"
sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=LOCAL ,nw_dst=10.0.0.9,actions=output:1
sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=L0OCAL ,nw_dst=10.0.0.2,actions=output:1
sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=LOCAL ,nw_dst=10.0.0.6,actions=output:1
sudo ovs-ofctl add-flow brO
ip,priority=90,in_port=LOCAL ,nw_src=10.0.0.3,actions="resubmit (,1)"
#Relay the incoming traffic to other wireless nodes not to Raspi 3
sudo ovs-ofctl add-flow brO

arp,priority=90,in_port=1,dl_src=e8:4e:06:5f:47:59,arp_tpa=10.0.0.9,actions="resubmit (,4)"

sudo ovs-ofctl add-flow brO
arp,priority=90,dl_src=e8:4e:06:5e:6a:bl,in_port=1,actions="resubmit(,3)"
sudo ovs-ofctl add-flow brO

ip,priority=90,in_port=1,dl_src=e8:4e:06:5f:47:59,nw_dst=10.0.0.9,actions="resubmit (,4)"

sudo ovs-ofctl add-flow brO
ip,priority=90,dl_src=e8:4e:06:5e:6a:bl,in_port=1,actions="resubmit(,3)"

#Table 1 is to rewrite the destinatio MAC address into broadcast MAC address

sudo ovs-ofctl add-flow brO
table=1,actions=mod_dl_dst:ff:ff:ff:ff:ff:ff,"resubmit(,5)"

#Table 2 is to rewrite the destinatio MAC address into Raspi 6’s MAC address

sudo ovs-ofctl add-flow brO
table=2,actions=mod_dl_dst:e8:4e:06:40:94:20,"1load:0->0XM_OF_IN_PORTI[],resubmit(,5)"

#Table 3 is to rewrite the destinatio MAC address into Raspi 2’s MAC address

sudo ovs-ofctl add-flow brO
table=3,actions=mod_dl_dst:e8:4e:06:5f:47:59,"1load:0->0XM_OF_IN_PORTI[],resubmit(,5)"

#Table 4 is to rewrite the destinatio MAC address into Gateway 2’s MAC address

sudo ovs-ofctl add-flow brO
table=4,actions=mod_dl_dst:e8:4e:06:5e:6a:b1,"load:0->0XM_OF_IN_PORTI[],resubmit(,5)"

#Table 5 is to forward to wireless interface

sudo ovs-ofctl add-flow br0O table=5,actions=output:1

#To prevent the infinite loop

sudo ovs-ofctl add-flow br0O priority=1,in_port=1,actions=drop

sudo sysctl -p

exit O

#To install the Primary OpenFlow Rules in Raspi 4
sudo nano /etc/rc.local

sleep 3
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sudo ovs-vsctl --if-exists del-br broO

#Bridge is added to OpenVswitch

sudo ovs-vsctl add-br brO

sudo ovs-vsctl set bridge br0O other-config:datapath-id=1000000000000004

#Configure OpenVswitch in Userspace of Linux

sudo ovs-vsctl set bridge br0O datapath_type=netdev

#Added wireless interface under bridge in OpenVswitch

sudo ovs-vsctl add-port br0O wlan0 -- set Interface wlanO ofport_request=1

sudo ifconfig wlanO O

sudo ifconfig br0O 10.0.0.4 netmask 255.0.0.0 up

sudo iptables -A INPUT -i wlanO -j DROP#For only OpenVswitch in userspace

sudo iptables -A FORWARD -i wlanO -j DROP#For only OpenVswitch in userspace

#Connect to RYU controller

sudo ovs-vsctl set-controller brO tcp:10.0.0.8:6633

sudo ovs-vsctl set controller br0O connection-mode=out-of-band

sudo ovs-vsctl set-fail-mode br0O secure

sudo ovs-vsctl set bridge brO stp_enable=true

sudo ovs-vsctl set bridge brO protocol=0penFlowl0,0OpenFlowll ,OpenFlowl2,0penFlowl3

#Receive the incoming traffic to Raspi 4 (10.0.0.4) from Raspi 1, Raspi 5 and
Gateway 1

sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,dl_src=e8:4e:06:40:d3:4b,nw_dst=10.0.0.4,actions=L0OCAL

sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,dl_src=e8:4e:06:40:dc:62,nw_dst=10.0.0.4,actions=LOCAL

sudo ovs-ofctl add-flow br0O ip,priority=100,in_port=1,nw_src=10.0.0.1,actions=L0OCAL

sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=1,dl_src=e8:4e:06:40:d3:4b,arp_tpa=10.0.0.4,actions=L0OCAL

sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=1,dl_src=e8:4e:06:40:dc:62,arp_tpa=10.0.0.4,actions=L0OCAL

sudo ovs-ofctl add-flow br0 arp,priority=100,in_port=1,arp_spa=10.0.0.1,actions=LOCAL

#Send the packet from Raspi 4 to other wireless node

sudo ovs-ofctl add-flow brO
arp,priority=95,in_port=LOCAL,arp_spa=10.0.0.4,actions="resubmit (,2)"

sudo ovs-ofctl add-flow brO
ip,priority=95,in_port=LOCAL ,nw_dst=10.0.0.8,actions=output:1

sudo ovs-ofctl add-flow brO
ip,priority=95,in_port=LOCAL ,nw_dst=10.0.0.1,actions=output:1

sudo ovs-ofctl add-flow brO
ip,priority=90, in_port=L0OCAL ,nw_src=10.0.0.4,actions="resubmit (,4)"

#Relay the incoming traffic to other wireless nodes not to Raspi 4

sudo ovs-ofctl add-flow brO
arp,priority=90,in_port=1,dl_src=e8:4e:06:40:dc:62,actions="resubmit (,3)"

sudo ovs-ofctl add-flow brO
ip,priority=90, in_port=1,dl_src=e8:4e:06:40:dc:62,actions="resubmit(,3)"

sudo ovs-ofctl add-flow brO
arp,priority=90,in_port=1,dl_src=e8:4e:06:40:d3:4b,actions="resubmit (,4)"

sudo ovs-ofctl add-flow brO
ip,priority=90,in_port=1,dl_src=e8:4e:06:40:d3:4b,actions="resubmit (,4)"

#Table 2 is to rewrite the destinatio MAC address into broadcast MAC address

sudo ovs-ofctl add-flow brO
table=2,actions=mod_dl_dst:ff:ff:ff:ff:ff:ff,"load:0->0XM_OF_IN_PORT[],resubmit(,5)"

#Table 3 is to rewrite the destinatio MAC address into Gateway 1’s MAC address

sudo ovs-ofctl add-flow brO
table=3,actions=mod_dl_dst:e8:4e:06:40:d3:4b,"1l0ad:0->0XM_OF_IN_PORT[],resubmit (,5)"

#Table 4 is to rewrite the destinatio MAC address into Raspi 5’s MAC address

sudo ovs-ofctl add-flow brO
table=4,actions=mod_dl_dst:e8:4e:06:40:dc:62,"load:0->0XM_OF_IN_PORTI[],resubmit(,5)"

#Table 5 is to forward to wireless interface

sudo ovs-ofctl add-flow br0O table=5,actions=output:1
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sudo ovs-ofctl add-flow br0O priority=1,in_port=1,actions=drop

sudo sysctl -p
exit 0

#To install the Primary OpenFlow Rules in Raspi 5

sudo nano /etc/rc.local

sleep 3

sudo ovs-vsctl --if-exists del-br broO

#Bridge is added to OpenVswitch

sudo ovs-vsctl add-br bro0
sudo ovs-vsctl set bridge
#Configure OpenVswitch in
sudo ovs-vsctl set bridge
#Added wireless interface

br0 other-config:datapath-id=1000000000000005
Userspace of Linux

br0 datapath_type=netdev

under bridge in OpenVswitch

sudo ovs-vsctl add-port br0O wlan0 -- set Interface wlanO ofport_request=1

sudo ifconfig wlanO O

sudo ifconfig br0O 10.0.0.5 netmask 255.0.0.0 up

sudo iptables -A INPUT -i
sudo iptables -A FORWARD

#Connect to RYU controller

wlanO -j DROP#For only OpenVswitch in userspace

-i wlanO -j DROP#For only OpenVswitch in userspace

sudo ovs-vsctl set-controller brO tcp:10.0.0.8:6633

sudo ovs-vsctl set controller br0O connection-mode=out-of-band

sudo ovs-vsctl set-fail-mode brO secure

sudo ovs-vsctl set bridge

br0 stp_enable=true

#Receive the incoming traffic to Raspi 5 (10.0.0.5) from Raspi 2, Raspi 4 and Raspi 6
sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=1,dl_src=e8:4e:06:5f:47:59,arp_tpa=10.0.0.5,actions=L0OCAL
sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=1,dl_src=e8:4e:06:40:d3:db,arp_tpa=10.0.0.5,actions=L0OCAL
sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=1,dl_src=e8:4e:06:40:94:20,arp_tpa=10.0.0.5,actions=L0OCAL
sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,dl_src=e8:4e:06:5f:47:59 ,nw_dst=10.0.0.5,actions=L0OCAL
sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,dl_src=e8:4e:06:40:d3:db,nw_dst=10.0.0.5,actions=L0OCAL
sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,dl_src=e8:4e:06:40:94:20,nw_dst=10.0.0.5,actions=LOCAL
#Send the packet from Raspi 5 to other wireless node
sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=LOCAL ,nw_dst=10.0.0.2,actions=output:1
sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=LOCAL ,nw_dst=10.0.0.4,actions=output:1
sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=LOCAL ,nw_dst=10.0.0.6,actions=output:1
sudo ovs-ofctl add-flow brO
ip,priority=95, in_port=L0OCAL ,nw_src=10.0.0.5,actions="resubmit (,1)"
sudo ovs-ofctl add-flow brO
arp,priority=100, in_port=L0OCAL ,arp_spa=10.0.0.5,actions="resubmit (,1)"

#Relay the incoming traffic to other wireless nodes not to Raspi 5
sudo ovs-ofctl add-flow brO
arp,priority=90,in_port=1,dl_src=e8:4e:06:40:94:20,actions="resubmit (,3)"
sudo ovs-ofctl add-flow brO
arp,priority=90,in_port=1,dl_src=e8:4e:06:40:d3:db,actions="resubmit (,4)"
sudo ovs-ofctl add-flow brO
ip,priority=90,in_port=1,dl_src=e8:4e:06:40:94:20,actions="resubmit (,3)"
sudo ovs-ofctl add-flow broO
ip,priority=90, in_port=1,dl_src=e8:4e:06:40:d3:db,actions="resubmit (,4)"

#Table 1 is to rewrite the destinatio MAC address into broadcast MAC address
sudo ovs-ofctl add-flow broO
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#Table 2 is to rewrite the destinatio MAC address into Raspi 2’s MAC address

sudo ovs-ofctl add-flow brO

table=2,actions=mod_dl_dst:e8:4e:06:5f:47:59,"1load:0->0XM_OF_IN_PORT[],resubmit (,5)"

#Table 3 is to rewrite the destinatio MAC address into Raspi 4’s MAC address

sudo ovs-ofctl add-flow brO

table=3,actions=mod_dl_dst:e8:4e:06:40:d3:db,"load:0->0XM_OF_IN_PORT[],resubmit (,5)"

#Table 4 is to rewrite the destinatio MAC address into Raspi 6’s MAC address

sudo ovs-ofctl add-flow brO

table=4,actions=mod_dl_dst:e8:4e:06:40:94:20,"1load:0->0XM_OF_IN_PORT[],resubmit(,5)"

#Table 5 is to forward to wireless interface
sudo ovs-ofctl add-flow br0O table=5,actions=output:1
#To prevent the infinite loop

sudo ovs-ofctl add-flow brO priority=1,in_port=1,actions=drop

sudo ovs-vsctl set bridge br0 protocol=0penFlowl0,0OpenFlowll ,OpenFlowl2,0penFlowl3

sudo sysctl -p
exit O

#To install the Primary OpenFlow Rules in Raspi 6
sudo nano /etc/rc.local

sleep 3

sudo ovs-vsctl --if-exists del-br brO

#Bridge is added to OpenVswitch

sudo ovs-vsctl add-br broO

sudo ovs-vsctl set bridge br0O other-config:datapath-id=1000000000000006

#Configure OpenVswitch in Userspace of Linux
sudo ovs-vsctl set bridge brO datapath_type=netdev

#Added wireless interface under bridge in OpenVswitch

sudo ovs-vsctl add-port br0O wlan0O -- set Interface wlanO ofport_request=1

sudo ifconfig wlanO O

sudo iptables -A INPUT -i wlanO -j DROP#For only OpenVswitch in userspace

sudo iptables -A FORWARD -i wlanO -j DROP#For only OpenVswitch in userspace

sudo ifconfig br0 10.0.0.6 netmask 255.0.0.0 up

#Connect to RYU controller

sudo ovs-vsctl set-controller brO tcp:10.0.0.8:6633

sudo ovs-vsctl set controller br0O connection-mode=out-of-band

sudo ovs-vsctl set-fail-mode br0O secure

sudo ovs-vsctl set bridge br0O protocol=0penFlowl0,0OpenFlowll,OpenFlowl2,0penFlowl3

#Receive the incoming traffic to Raspi 6 (10.0.0.6) from Raspi 3, Raspi 5 and

Gateway 2
sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=1,dl_src=e8:4e:06:40:d3:7f,arp_tpa=10.
sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=1,dl_src=e8:4e:06:40:dc:62,arp_tpa=10.
sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=1,dl_src=e8:4e:06:5e:6a:bl,arp_tpa=10.
sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,dl_src=e8:4e:06:40:d3:7f,nw_dst=10.0.
sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,dl_src=e8:4e:06:40:dc:62,nw_dst=10.0.
sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,dl_src=e8:4e:06:5e:6a:bl,nw_dst=10.0.
#Send the packet from Raspi 6 to other wireless node
sudo ovs-ofctl add-flow brO
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.0.6,actions=L0OCAL

.0.6,actions=L0OCAL

.0.6,actions=L0OCAL

.6,actions=L0OCAL

.6 ,actions=L0OCAL

.6,actions=L0OCAL

arp,priority=100,in_port=LOCAL,arp_spa=10.0.0.6,actions="resubmit(,1)"

sudo ovs-ofctl add-flow br0

ip,priority=100,in_port=LOCAL ,nw_dst=10.0.0.9,actions=output:1
sudo ovs-ofctl add-flow brO

ip,priority=100,in_port=L0OCAL ,nw_dst=10.0.0.5,actions=output:1
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sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=LOCAL ,nw_dst=10.0.0.3,actions=output:1

sudo ovs-ofctl add-flow brO
ip,priority=95,in_port=LOCAL ,nw_src=10.0.0.6,actions="resubmit (,1)"

#To prevent duplicate message from Gateway 2 to Gateway 1

sudo ovs-ofctl add-flow brO
arp,priority=95,in_port=1,dl_src=e8:4e:06:5e:6a:bl,arp_tpa=10.0.0.8,actions=drop

sudo ovs-ofctl add-flow brO
ip,priority=95,in_port=1,dl_src=e8:4e:06:5e:6a:bl,nw_dst=10.0.0.8,actions=drop

#Relay the incoming traffic to other wireless nodes not to Raspi 6

sudo ovs-ofctl add-flow brO
arp,priority=90,in_port=1,dl_src=e8:4e:06:5e:6a:bl,actions="resubmit (,3)"

sudo ovs-ofctl add-flow brO
arp,priority=90,in_port=1,dl_src=e8:4e:06:40:dc:62,actions="resubmit (,4)"

sudo ovs-ofctl add-flow brO
ip,priority=90, in_port=1,dl_src=e8:4e:06:5e:6a:bl,actions="resubmit(,3)"

sudo ovs-ofctl add-flow brO
ip,priority=90,in_port=1,dl_src=e8:4e:06:40:dc:62,actions="resubmit (,4)"

#Table 1 is to rewrite the destinatio MAC address into broadcast MAC address

sudo ovs-ofctl add-flow brO
table=1,actions=mod_dl_dst:ff:ff:ff:ff:ff:ff,"load:0->0XM_OF_IN_PORTI[],resubmit(,5)"

#Table 2 is to rewrite the destinatio MAC address into Raspi 3’s MAC address

sudo ovs-ofctl add-flow brO
table=2,actions=mod_dl_dst:e8:4e:06:40:d3:7f,"load:0->0XM_OF_IN_PORTI[],resubmit(,5)"

#Table 3 is to rewrite the destinatio MAC address into Raspi 5’s MAC address

sudo ovs-ofctl add-flow brO
table=3,actions=mod_dl_dst:e8:4e:06:40:dc:62,"load:0->0XM_OF_IN_PORTI[],resubmit(,5)"

#Table 4 is to rewrite the destinatio MAC address into Gateway 2’s MAC address

sudo ovs-ofctl add-flow brO
table=4,actions=mod_dl_dst:e8:4e:06:5e:6a:b1,"load:0->0XM_OF_IN_PORTI[],resubmit(,5)"

#Table 5 is to forward to wireless interface

sudo ovs-ofctl add-flow br0O table=5,actions=output:1

#To prevent the infinite loop

sudo ovs-ofctl add-flow brO priority=1,in_port=1,actions=drop

sudo sysctl -p

exit O

#To install the Primary OpenFlow Rules in Gateway 1

sudo nano /etc/rc.local

sleep 3

sudo ovs-vsctl --if-exist del-br broO

#Bridge is added to OpenVswitch

sudo ovs-vsctl add-br bro0

#Configure OpenVswitch in Userspace of Linux

sudo ovs-vsctl set bridge br0O datapath_type=netdev

sudo ovs-vsctl set bridge brO other-config:datapath_id=1000000000000008
#Added wireless interface under bridge in OpenVswitch

sudo ovs-vsctl add-port br0 wlan0O -- set Interface wlanO ofport_request=1
sudo ifconfig wlanO O

sudo ifconfig br0O 10.0.0.8 netmask 255.0.0.0 up

sudo iptables -A INPUT -i wlanO -j DROP#For only OpenVswitch in userspace
sudo iptables -A FORWARD -i wlanO -j DROP#For only OpenVswitch in userspace
#Connect to RYU controller

sudo ovs-vsctl set-controller br0O tcp:10.0.0.8:6633

sudo ovs-vsctl set controller br0O connection-mode=out-of-band

sudo ovs-vsctl set-fail-mode br0O secure

sudo ovs-vsctl set bridge br0O protocol=0penFlowl0,0OpenFlowll,6OpenFlowl2,0penFlowl3
sudo ovs-vsctl set bridge brO stp_enable=true

#Receive the incoming traffic to Raspi 3 (10.0.0.3) coming from Raspi 1 and Raspi 4
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sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=1,dl_src=e8:4e:06:5e:6b:09,arp_tpa=10.0.0.8,actions=L0OCAL

sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,dl_src=e8:4e:06:5e:6b:09,nw_dst=10.0.0.8,actions=L0OCAL

sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,dl_src=e8:4e:06:40:d3:db,nw_dst=10.0.0.8,actions=LOCAL

sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=1,dl_src=e8:4e:06:40:d3:db,arp_tpa=10.0.0.8,actions=L0OCAL

#Send the packet from Gatewayl to other wireless node

sudo ovs-ofctl add-flow brO
arp,priority=100, in_port=LOCAL,arp_tpa=10.0.0.4,actions="resubmit (,3)"

sudo ovs-ofctl add-flow brO
arp,priority=100, in_port=L0OCAL ,arp_tpa=10.0.0.5,actions="resubmit (,3)"

sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=L0OCAL,arp_tpa=10.0.0.6,actions="resubmit (,3)"

sudo ovs-ofctl add-flow brO
arp,priority=90,in_port=L0OCAL,arp_spa=10.0.0.8,actions="resubmit (,2)"

sudo ovs-ofctl add-flow broO
ip,priority=100,in_port=L0OCAL ,nw_dst=10.0.0.4,actions="resubmit (,3)"

sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=LOCAL ,nw_dst=10.0.0.5,actions="resubmit (,3)"

sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=L0OCAL ,nw_dst=10.0.0.6,actions="resubmit (,3)"

sudo ovs-ofctl add-flow broO
ip,priority=90,in_port=LOCAL ,nw_src=10.0.0.8,actions="resubmit (,2)"

#Table 2 is to rewrite the destinatio MAC address into Raspi 1’s MAC address

sudo ovs-ofctl add-flow broO
table=2,actions=mod_dl_dst:e8:4e:06:5e:6b:09,"resubmit (,4)"

#Table 3 is to rewrite the destinatio MAC address into Raspi 4’s MAC address

sudo ovs-ofctl add-flow broO
table=3,actions=mod_dl_dst:e8:4e:06:40:d3:db,"resubmit (,4)"

#Table 4 is to forward to wireless interface

sudo ovs-ofctl add-flow brO table=4,actions=output:1

#To prevent the infinite loop

sudo ovs-ofctl add-flow br0O priority=1,in_port=1,actions=drop

sudo sysctl -p

exit O

#To install the Primary OpenFlow Rules in Gateway 2

sudo nano /etc/rc.local

sleep 3

sudo ovs-vsctl --if-exist del-br broO

#Bridge is added to OpenVswitch

sudo ovs-vsctl add-br brO

sudo ovs-vsctl set bridge br0O other-config:datapath-id=1000000000000009
#Configure OpenVswitch in Userspace of Linux

sudo ovs-vsctl set bridge br0O datapath_type=netdev

#Added wireless interface under bridge in OpenVswitch

sudo ovs-vsctl add-port br0 wlan0O -- set Interface wlanO ofport_request=1
sudo iptables -A INPUT -i wlanO -j DROP

sudo iptables -A FORWARD -i wlanO -j DROP

sudo ifconfig wlanO O

sudo ifconfig br0O 10.0.0.9 netmask 255.0.0.0 up

#Connect to RYU controller

sudo ovs-vsctl set-controller brO tcp:10.0.0.8:6633

sudo ovs-vsctl set controller br0O connection-mode=out-of-band
sudo ovs-vsctl set-fail-mode br0O secure

#Receive the incoming traffic to Gateway 2 (10.0.0.9)

sudo ovs-ofctl add-flow brO
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ip,priority=100,in_port=1,dl_src=e8:4e:06:40:94:20,nw_dst=10.0.0.9,actions=L0OCAL

sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=1,dl_src=e8:4e:06:40:d3:7f,nw_dst=10.0.0.9,actions=L0OCAL

sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=1,arp_spa=10.0.0.10,actions=LOCAL

sudo ovs-ofctl add-flow br0O ip,priority=100,in_port=1,nw_src=10.0.0.10,actions=L0OCAL

sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=1,dl_src=e8:4e:06:40:d3:7f,arp_tpa=10.0.0.9,actions=L0OCAL

sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=1,dl_src=e8:4e:06:40:94:20,arp_tpa=10.0.0.9,actions=L0OCAL

#Send the packet from Gateway 2 to other wireless node

sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=LOCAL ,nw_dst=10.0.0.3,actions=output:1

sudo ovs-ofctl add-flow brO
ip,priority=100, in_port=LOCAL ,nw_dst=10.0.0.6,actions=output:1

sudo ovs-ofctl add-flow brO
ip,priority=100,in_port=LOCAL ,nw_dst=10.0.0.10, actions=output:1

sudo ovs-ofctl add-flow brO
ip,priority=95,in_port=LOCAL ,nw_src=10.0.0.9,actions="resubmit (,2)"

sudo ovs-ofctl add-flow brO
arp,priority=100,in_port=L0OCAL,arp_spa=10.0.0.9,actions="resubmit (,2)"

#Table 2 is to rewrite the destinatio MAC address into broadcast MAC address

sudo ovs-ofctl add-flow brO
table=2,actions=mod_dl_dst:ff:ff:ff:ff:ff:ff,"resubmit(,4)"

#Table 5 is to forward to wireless interface

sudo ovs-ofctl add-flow br0O table=4,actions=output:1

#To prevent the infinite loop

sudo ovs-ofctl add-flow br0O priority=1,in_port=1,actions=drop

sudo sysctl -p

exit O
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Appendix E

Developing Rerouting RYU Program

1 #This program is written by Soe Ye Htet from Chulalongkorn University

2 #This program is for rerouting in outdoor SDWMN testbed in RYU controller

3 #

4 from ryu.base import app_manager

5 from ryu.controller import ofp_event

6 from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER,
DEAD_DISPATCHER

7 from ryu.controller.handler import set_ev_cls

g from ryu.ofproto import ofproto_vi_3

9 from ryu.lib import hub

10 import time

11 import os

12 #Datapath ID of each wireless node

13 raspil=1152921504606846977

14 raspi2=1152921504606846978

15 raspi3=1152921504606846979

16 raspid=1152921504606846980

17 raspib=1152921504606846981

18 raspi6=1152921504606846982

19 gatewayl1=255421810004811

20 gateway2=1152921504606846985

21

22 #MAC addresses of each wireless nodes

23 r1="e8:4e:06:5e:6b:09"

24 r2="e8:4e:06:5f:47:59"

25 r3="e8:4e¢:06:40:d3:7£f"

26 4 ="e8:4e:06:40:d3:db"

27 rb="e8:4e:06:40:dc:62"

28 r6="e8:4e¢:06:40:94:20"

29 gw2="e8:4e:06:5e:6a:bl1"

30 gwl="e8:4e:06:40:d3:4b"

31

32 #IP addresses of each wireless node

33 gwlip="10.0.0.8"

34 r1ip="10.0.0.1"
35 r2ip="10.0.0.2"
36 r3ip="10.0.0.3"
37 r4ip="10.0.0.4"
38 rbip="10.0.0.5"
39 r6ip="10.0.0.6"

40 gw2ip="10.0.0.9"
41
42

43 class node_failure (app_manager.Ryulpp):

a4 OFP_VERSIONS = [ofproto_v1_3.0FP_VERSION]

45

46 def __init__(self ,*args,*xkwargs):

a7 super (node_failure,self).__init__ (xargs ,**xkwargs)
48 self.switch_table = {}

49 self .datapaths = {}

50 self .monitor_thread = hub.spawn(self._monitor)

51 #require to send configuration request message in every 8 seconds

52
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53 #Define the funtion to add flow rules

54 def add_flow(self ,datapath,table,priority,match,actions,hard):

55 ofproto = datapath.ofproto

56 parser = datapath.ofproto_parser

57 inst = [parser.OFPInstructionActions (ofproto.OFPIT_APPLY_ACTIONS,actions)]
58 mod =

parser .0FPFlowMod (datapath=datapath,table_id=table, command=ofproto.0FPFC_ADD,
59

priority=priority,match=match,instructions=inst,hard_timeout=hard)
60 datapath.send_msg(mod)
61

62 #Define the function to add flow rule with the action of gototable

63 def add_gototable(self,datapath,table,n,priority,match,hard): #n is a number of
table

64 parser = datapath.ofproto_parser

65 ofproto = datapath.ofproto

66 inst = [parser.OFPInstructionGotoTable(n)]

67 mod =

parser.0FPFlowMod (datapath=datapath,table_id=table,command=ofproto.0FPFC_ADD,
68

priority=priority ,match=match,hard_timeout=hard,instructions=inst)

69 datapath.send_msg(mod)

70

71 @set_ev_cls(ofp_event.EventDFPSwitchFeatures, CONFIG_DISPATCHER)
72 def switch_features_handler (self, ev):

73 dp = ev.msg.datapath

74 datapath = ev.msg.datapath

75 ofproto = datapath.ofproto

76 parser = datapath.ofproto_parser

77 self .logger.info("Switch_ID %s (IP address %s) is

connected ,1",dp.id,dp.address)
78
79 #Define the function to detect when wireless nodes connect to RYU controller or

leave from RYU controller

80 @set_ev_cls(ofp_event.EventOFPStateChange , [MAIN_DISPATCHER, DEAD_DISPATCHER])

81 def _state_change_handler (self, ev):

82 current_time = time.asctime(time.localtime(time.time()))

83 datapath = ev.datapath

84 if ev.state == MAIN_DISPATCHER:

85 if datapath.id not in self.datapaths:

86 self.logger.debug(’register datapath: %016x’, datapath.id)

87 self .logger.info (" (Switch ID %s),IP address is connected %s in
%s,1",datapath.id,datapath.address ,current_time)

88 self.datapaths[datapath.id] = datapath

89 self .logger.info("Current Conneced Switches to RYU controller are
%s",self.datapaths.keys())

90 elif ev.state == DEAD_DISPATCHER:

91 if datapath.id in self.datapaths:

92 self.logger.debug(’unregister datapath: %016x’, datapath.id)

93 self .logger.info (" (Switch ID %s),IP address is leaved %s in %s,0",
datapath.id, datapath.address,current_time)

94 del self.datapaths[datapath.id]

95 self.logger.info("Current Conneced Switches to RYU controller are

%s", self.datapaths.keys())
96
97 #Define the function to send configuraion request message in every second
98 def _monitor(self):

99 while True:
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#To send configuration request message only when one of the wireless

mesh nodes leave from RYU controller

if (raspil not in self.datapaths or raspi2 not in self.datapaths or

raspi3 not in self.datapaths or

raspi4 not in self.datapaths or raspib not in self.datapaths or

raspi6 not in self.datapaths):

#Define
def

#Define

for datapath in self.datapaths.values():
self.send_get_config_request (datapath)
hub.sleep (8)

the function for configuration request message
send_get_config_request (self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.0FPGetConfigRequest (datapath)
datapath.send_msg(req)

the function to add flow rules with configuration request message

@set_ev_cls(ofp_event.EventOFPGetConfigReply , MAIN_DISPATCHER)

def

get_config_reply_handler (self ,ev):

current_time = time.asctime(time.localtime(time.time()))

datapath = ev.msg.datapath

parser = datapath.ofproto_parser

self.logger.info (’IP address %s sends OFPConfigReply message in %s’,

datapath.address, current_time)

if ((raspil not in self.datapaths and raspi2 in self.datapaths and raspi3

self .datapaths and raspi4 in self.datapaths and raspib5 in self.datapaths and

raspi6 in self.datapaths)

or (raspil not in self.datapaths and raspi2 not in self.datapaths and

raspi3 in self.datapaths and raspi4 in self.datapaths and raspib in

self .datapaths and raspi6 in self.datapaths)

or (raspil not in self.datapaths and raspi2 not in self.datapaths and

raspi3 not in self.datapaths and raspi4 in self.datapaths and raspib in

self .datapaths and raspi6 in self.datapaths)):

self.logger.info("casel")
local = datapath.ofproto.0OFPP_LOCAL
if datapath.id == raspib:
match = parser.0OFPMatch(in_port=1, eth_type=0x0806, eth_src=r2,

arp_tpa = gwlip)

self.add_gototable (datapath, 0, 3, 160, match, 10)#Table 3 is to

relay to Raspi 4

match = parser.0FPMatch(in_port=1, eth_type=0x0800, eth_src=r2,

ipv4d_dst = gwlip)

self.add_gototable (datapath, 0, 3, 160, match, 10)#Table 3 is to

relay to Raspi 4

#These two rules make the route Raspi 2 to Raspi 4 from Raspi 5

Raspi 2 - Raspi 5 - Raspi 4 - GW1

match = parser.O0FPMatch(in_port=1, eth_type=0x0806, eth_src=r4,

arp_tpa = r2ip)

self.add_gototable (datapath, 0, 2, 160, match, 10)#Table 4 is to

relay to Raspi 2

match = parser.O0FPMatch(in_port=1, eth_type=0x0800, eth_src=r4,

ipv4d_dst = r2ip)

self.add_gototable (datapath, 0, 2, 160, match, 10)#Table 4 is to

relay to Raspi 2
#These two rules make the route GW1 to Raspi 2 through the route GW1

- Raspi 4 - Raspi 5 - Raspi 2
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if datapath.id == raspi6:

match = parser.0FPMatch(in_port=

arp_tpa = gwlip)
self.add_gototable (datapath, O,
relay to Raspi 5

match = parser.0FPMatch(in_port=

ipv4d_dst = gwlip)
self.add_gototable (datapath, O,
relay to Raspi 5

match = parser.0FPMatch(in_ports=

arp_tpa=gwlip)
self.add_gototable (datapath, O,
relay to Raspi 5

match = parser.0FPMatch(in_ports=

ipv4_dst=gwlip)
self.add_gototable (datapath, O,
relay to Raspi 5

match = parser.0FPMatch(in_port=

arp_tpa = r3ip)
self.add_gototable (datapath, O,
relay Raspi 3

match = parser.0FPMatch(in_ports=

ipv4d_dst = r3ip)
self.add_gototable (datapath, O,
relay Raspi 3

match = parser.0FPMatch(in_port=

arp_tpa = gw2ip)
self.add_gototable (datapath, O,
relay Gateway 2

match = parser.0FPMatch(in_ports=

ipv4_dst = gw2ip)
self.add_gototable (datapath, O,
relay Gateway 2

111

1, eth_type=0x0806, eth_src=r3,

3, 160, match, 10)#Table 3 is to

1, eth_type=0x0800, eth_src=r3,

3, 160, match, 10)#Table 3 is to

1, eth_type=0x0806, eth_src=gw2,

3, 160, match, 10)#Table 3 is to

1, eth_type=0x0800, eth_src=gw2,

3, 160, match, 10)#Table 3 is to

1, eth_type=0x0806, eth_src=r5,

2, 160, match, 10)#Table 2 is to

1, eth_type=0x0800, eth_src=r5,

2, 160, match, 10)#Table 2 is to

1, eth_type=0x0806, eth_src=rb,

4, 160, match, 10)#Table 4 is to

1, eth_type=0x0800, eth_src=r5,

4, 160, match, 10)#Table 4 is to

elif datapath.id == gatewayl: #Gatewayl

match = parser.0FPMatch(in_port=

self.add_gototable (datapath, O,
relay Raspi 4

match = parser.0FPMatch(in_port=

self.add_gototable (datapath, O,
relay Raspi 4

match = parser.0FPMatch(in_ports=

self.add_gototable (datapath, O,
relay Raspi 4

match = parser.0FPMatch(in_port=

self.add_gototable (datapath, O,
relay Raspi 4

local,eth_type=0x0806,arp_tpa=r2ip)
3, 160, match, 10) #Table 3 is to

local, eth_type=0x0800,ipv4_dst=r2ip)
3, 160, match, 10) #Table 3 is to

local,eth_type=0x0806,arp_tpa=r3ip)
3, 160, match, 10) #Table 3 is to

local, eth_type=0x0800,ipv4_dst=r3ip)
3, 160, match, 10) #Table 3 is to
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194

195

196

197

198

199

200

201

202

203

204

205

206
207

208

209

210

211

212

match =
self.add_gototable (datapath, O,
relay Raspi 4

match =
ipv4_dst=r2ip)

self.add_gototable (datapath, O,
relay Raspi 4

match =
arp_tpa=gw2ip)

self.add_gototable (datapath, O,
relay Raspi 4

match =
ipv4_dst=gw2ip)

self.add_gototable (datapath, O,
relay Raspi 4

parser.0FPMatch (in_port=local,

3,

parser.0FPMatch (in_port=local,

3,

parser.0FPMatch (in_port=local,

3,

parser.0FPMatch(in_port=local,

3)

eth_type=0x0806,

160, match, 10) # Table 3 is

eth_type=0x0800,

160, match, 10) # Table 3 is

eth_type=0x0806,

160, match, 10) # Table 3 is

eth_type=0x0800,

160, match, 10) # Table 3 is
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arp_tpa=r2ip)

to

to

to

to

elif ((raspi2 not in self.datapaths and raspi3 in self.datapaths and raspil

in self.datapaths and raspi4 in self.datapaths and raspib5 in self.datapaths and

raspi6 in self.datapaths)

or (raspi2 not in self.datapaths and raspi3 not in self.datapaths and

raspil in self.datapaths and raspi4 in self.datapaths and raspib5 in

self.datapaths and raspi6 in self.datapaths)):

self .logger.info("Case 2")

local = datapath.ofproto.OFPP_LOCAL

if datapath.id == raspi6:
match =

arp_tpa=gwlip)
self.add_gototable (datapath, O,

relay to Raspi 5

match =
ipv4_dst=gwlip)

self.add_gototable (datapath, O,
relay to Raspi 5

match =
arp_tpa=gwlip)

self.add_gototable (datapath, O,
relay to Raspi 5

match =
ipv4_dst=gwlip)

self.add_gototable (datapath, O,
relay to Raspi 5

match =
arp_tpa=r3ip)

self.add_gototable (datapath, O,
relay Raspi 3

match =
ipv4_dst=r3ip)

self.add_gototable (datapath, O,
relay Raspi 3

parser .0FPMatch(in_port=

parser.0FPMatch (in_port=

parser .0FPMatch(in_port=

parser .0FPMatch (in_port=

parser.0FPMatch (in_port=

parser .0FPMatch(in_port=

1,

3,

1,

3,

1,

3,

1,

3,

1,

2’

1,

2,

eth_type=0x0806, eth_src=r3,

160, match, 10)#Table 3 is to

eth_type=0x0800, eth_src=r3,

160, match, 10)#Table 3 is to

eth_type=0x0806, eth_src=gw2,

160, match, 10)#Table 3 is to

eth_type=0x0800, eth_src=gw2,

160, match, 10)#Table 3 is to

eth_type=0x0806, eth_src=rb,

160, match, 10) # Table 2 is

eth_type=0x0800, eth_src=rb,

160, match, 10) # Table 2 is

to
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228
229

230

231

232

233

234

235

236

237

238
239

240
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244
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246

247

248

249

250

251

match = parser.0FPMatch(in_ports=

arp_tpa=gw2ip)
self.add_gototable (datapath, O,
relay Gateway 2

match = parser.0FPMatch(in_port=

ipv4_dst=gw2ip)
self.add_gototable (datapath, O,
relay Gateway 2

if ev.msg.datapath.id == gatewayl:

match = parser.0FPMatch(in_port=

self.add_gototable (datapath, O,
relay Raspi 4

match = parser.0FPMatch(in_port=

self.add_gototable (datapath, O,
relay Raspi 4

match = parser.0FPMatch(in_port=

self.add_gototable (datapath, O,
relay Raspi 4

match = parser.0FPMatch(in_ports=

eth_type=0x0800,ipv4_dst=gw2ip)
self.add_gototable (datapath, O,
relay Raspi 4
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1, eth_type=0x0806, eth_src=r5,

4, 160, match, 10) #Table 4 is to

1, eth_type=0x0800, eth_src=r5,

4, 160, match, 10) #Table 4 is to

#Gatewayl

local,eth_type=0x0806 ,arp_tpa=r3ip)
3, 160, match, 10) #Table 3 is to

local, eth_type=0x0800,ipv4_dst=r3ip)
3, 160, match, 10) #Table 3 is to

local,eth_type=0x0806 ,arp_tpa=gw2ip)

3, 160, match, 10) #Table 3 is to

local,

3, 160, match, 10) #Table 3 is to

elif (raspi3 not in self.datapaths and raspil in self.datapaths and raspi2

in self.datapaths and raspi4 in self.datapaths and raspib5 in self.datapaths and

raspi6 in self.datapaths):
self.logger.info("Case 3")
local = datapath.ofproto.OFPP_LOCAL
if datapath.id == raspié6:

match = parser.0FPMatch(in_port=

arp_tpa=gwlip)
self.add_gototable (datapath, O,
relay to Raspi 5

match = parser.0FPMatch(in_port=

ipv4_dst=gwlip)
self.add_gototable (datapath, O,
relay to Raspi 5

match = parser.0FPMatch(in_port=

arp_tpa=gw2ip)
self.add_gototable (datapath, O,
relay Gateway 2

match = parser.0FPMatch(in_ports=

ipv4_dst=gw2ip)
self.add_gototable (datapath, O,
relay Gateway 2

if datapath.id == gatewayl:

match = parser.0FPMatch(in_port=

self.add_gototable (datapath, O,
relay Raspi 4

1, eth_type=0x0806, eth_src=gw2,

3, 160, match, 10)#Table 3 is to

1, eth_type=0x0800, eth_src=gw2,

3, 160, match, 10)#Table 3 is to

1, eth_type=0x0806, eth_src=rb,

4, 160, match, 10)#Table 4 is to

1, eth_type=0x0800, eth_src=r5,
4, 160, match, 10)#Table 4 is to

local,eth_type=0x0806 ,arp_tpa=gw2ip)
3, 160, match, 10) #Table 3 is to
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match = parser.OFPMatch(in_port=local,

eth_type=0x0800,ipv4_dst=gw2ip)
self.add_gototable (datapath, O,
relay Raspi 4

3,

160, match, 10) #Table 3 is to

elif ((raspi4 not in self.datapaths and raspib in self.datapaths and raspi6

in self.datapaths and raspil in self.datapaths and raspi2 in self.datapaths and

raspi3 in self.datapaths)

or (raspi4 not in self.datapaths and raspib not
raspi6 in self.datapaths and raspil in self.datapaths and
self .datapaths and raspi3 in self.datapaths)

or (raspi4 not in self.datapaths and raspib not
raspi6 not in self.datapaths and raspil in self.datapaths

self .datapaths and raspi3 in self.datapaths)):

self.logger.info("Case 4")
local = datapath.ofproto.0OFPP_LOCAL

if datapath.id == raspi2:

match = parser.0FPMatch(in_ports=

arp_tpa = gwlip)
self.add_gototable (datapath, O,

relay Raspi 1

match = parser.0FPMatch(in_port=

ipv4d_dst = gwlip)
self.add_gototable (datapath, O,

relay Raspi 1

match = parser.0FPMatch(in_ports=

arp_tpa = rbip)
self.add_gototable (datapath, O,

relay Raspi 5

match = parser.0FPMatch(in_ports=

ipvd_dst = rbip)
self.add_gototable (datapath, O,

relay Raspi 5

match = parser.0FPMatch(in_ports=

arp_tpa=rb5ip)

self.add_flow(datapath, 0, 160,

match = parser.0FPMatch(in_port=

ipv4_dst=rbip)
self.add_flow(datapath, 0, 160,

if datapath.id == raspi3:

match = parser.0FPMatch(in_ports=

arp_tpa = gwlip)
self.add_gototable (datapath, O,

relay Raspi 2

match = parser.0FPMatch(in_ports=

ipvd_dst = gwlip)
self.add_gototable (datapath, O,

relay Raspi 2

match = parser.0FPMatch(in_ports=

arp_tpa = r6ip)

1,

3,

1,

3,

1,

2,

1,

2,

1,

in self.datapaths and

raspi2 in

in self.datapaths and

and raspi2 in

eth_type=0x0806, eth_src=rb,

160, match, 10)#Table 3 is to

eth_type=0x0800, eth_src=rb,

160, match, 10)#Table 3 is to

eth_type=0x0806, eth_src=ri,

160, match, 10)#Table 2 is to

eth_type=0x0800, eth_src=ril,

160, match, 10)#Table 2 is to

eth_type=0x0806, arp_spa=gw2ip,

match, []1, 10)

1,

eth_type=0x0800, ipv4_src=gw2ip,

match, [], 10)

1,

3,

1,

3)

1,

eth_type=0x0806, eth_src=r6,

160, match, 10)#Table 3 is to

eth_type=0x0800, eth_src=r6,

160, match, 10)#Table 3 is to

eth_type=0x0806, eth_src=r2,
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320

322
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self.add_gototable (datapath, O,
relay Raspi 6

match = parser.0FPMatch(in_ports=

ipv4_dst = r6ip)
self.add_gototable (datapath, O,
relay Raspi 6

if datapath.id == gatewayl:

match = parser.0FPMatch(in_port=

self.add_gototable (datapath, O,
relay Raspi 1

match = parser.0FPMatch(in_port=

self.add_gototable (datapath, O,
relay Raspi 1

match = parser.0FPMatch(in_ports=

self.add_gototable (datapath, O,
relay Raspi 1

match = parser.0FPMatch(in_port=

self.add_gototable (datapath, O,
relay Raspi 1
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2, 160, match, 10)#Table 2 is to

1, eth_type=0x0800, eth_src=r2,
2, 160, match, 10)#Table 2 is to

local,eth_type=0x0806,arp_tpa=r6ip)
2, 160, match, 10) #Table 2 is to

local,
2, 160, match,

eth_type=0x0800,ipv4_dst=r6ip)
10) #Table 2 is to

local,eth_type=0x0806,arp_tpa=rbip)
2, 160, match, 10) #Table 2 is to

local, eth_type=0x0800,ipv4_dst=r5ip)
2, 160, match, 10) #Table 2 is to

elif (raspi4 not in self.datapaths and raspib in self.datapaths and raspi6

not in self.datapaths and raspil in self.datapaths and raspi2 in self.datapaths

and raspi3 in self.datapaths):
local = datapath.ofproto.0OFPP_LOCAL
if datapath.id == raspi2:

match = parser.0FPMatch(in_ports=

arp_tpa = gwlip)
self.add_gototable (datapath, O,
relay Raspi 1

match = parser.0FPMatch(in_port=

ipv4d_dst = gwlip)
self.add_gototable (datapath, O,
relay Raspi 1

match = parser.0FPMatch(in_port=

arp_tpa = rbip)
self.add_gototable (datapath, O,
relay Raspi 5

match = parser.0FPMatch(in_port=

ipv4d_dst = rbip)
self.add_gototable (datapath, O,
relay Raspi 5

match = parser.0FPMatch(in_ports=

arp_tpa = gw2ip)
self.add_gototable (datapath, O,
relay Raspi 3

match = parser.0FPMatch(in_port=

ipv4d_dst = gw2ip)
self.add_gototable (datapath, O,
relay Raspi 3

1, eth_type=0x0806, eth_src=r5,

3, 160, match, 10)#Table 3 is to

1, eth_type=0x0800, eth_src=rb,

3, 160, match, 10)#Table 3 is to

1, eth_type=0x0806, eth_src=ril,

2, 160, match, 10)#Table 2 is to

1, eth_type=0x0800, eth_src=ril,

2, 160, match, 10)#Table 2 is to

1, eth_type=0x0806, eth_src=r5,

4, 160, match, 10)#Table 4 is to

1, eth_type=0x0800, eth_src=r5,

4, 160, match, 10)#Table 4 is to
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match = parser.0FPMatch(in_port=

arp_tpa = r5ip)
self.add_gototable (datapath, O,
relay Raspi 5

match = parser.0FPMatch(in_ports=

ipv4_dst = rbip)
self.add_gototable (datapath, O,
relay Raspi 5

if datapath.id == raspi3:

match = parser.0FPMatch(in_ports=

arp_tpa = gwlip)
self.add_gototable (datapath, O,
relay Raspi 2

match = parser.0FPMatch(in_ports=

ipv4d_dst = gwlip)
self.add_gototable (datapath, O,
relay Raspi 2

match = parser.0FPMatch(in_port=

arp_tpa = r6ip)
self.add_gototable (datapath, O,
relay Raspi 6

match = parser.0FPMatch(in_ports=

ipv4d_dst = r6ip)
self.add_gototable (datapath, O,
relay Raspi 6

if datapath.id == gatewayl:

match = parser.0FPMatch(in_port=

self.add_gototable (datapath, O,
relay Raspi 1

match = parser.0FPMatch(in_port=

self.add_gototable (datapath, O,
relay Raspi 1

match = parser.0FPMatch(in_port=

self.add_gototable (datapath, O,
relay Raspi 1

match = parser.0FPMatch(in_ports=

self.add_gototable (datapath, O,
rleay Raspi 1
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1, eth_type=0x0806, eth_src=r3,

2, 160, match, 10)#Table 2 is to

1, eth_type=0x0800, eth_src=r3,
2, 160, match, 10)#Table 2 is to
1, eth_type=0x0806, eth_src=r6,

3, 160, match, 10)#Table 3 is to

1, eth_type=0x0800, eth_src=r6,

3, 160, match, 10)#Table 3 is to

1, eth_type=0x0806, eth_src=r2,

2, 160, match, 10)#Table 2 is to

1, eth_type=0x0800, eth_src=r2,
2, 160, match, 10)#Table 2 is to

local,eth_type=0x0806 ,arp_tpa=r6ip)
2, 160, match, 10) #Table 2 is to

local, eth_type=0x0800,ipv4_dst=r6ip)
2, 160, match, 10) #Table 2 is to

local,eth_type=0x0806,arp_tpa=rbip)
2, 160, match, 10) #Table 2 is to

local, eth_type=0x0800,ipv4_dst=r5ip)
2, 160, match, 10) #Table 2 is to

elif ((raspib not in self.datapaths and raspil in self.datapaths and raspi2

in self.datapaths and raspi3 in self.datapaths and raspi4 in self.datapaths and

raspi6 in self.datapaths)

or (raspib not in self.datapaths and raspi6 not in self.datapaths and

raspil in self.datapaths and raspi2 in self.

datapaths and raspi3 in

self.datapaths and raspi4 in self.datapaths)):

self .logger.info("Case 5")

local = datapath.ofproto.OFPP_LOCAL

if datapath.id == raspid:
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match =
arp_tpa = gwlip)
self.add_gototable (datapath, O,

relay Raspi 2

match =
ipv4d_dst = gwlip)
self.add_gototable (datapath, O,

relay Raspi 2

match =
arp_tpa = r6ip)
self.add_gototable (datapath, O,

relay Raspi 6

match =
ipvd_dst = r6ip)
self.add_gototable (datapath, O,
relay Raspi 6
if datapath.id == gatewayl:
match =
self.add_gototable (datapath, O,
relay Raspi 1

match =
self.add_gototable (datapath, O,
relay Raspi 1

parser .0FPMatch (in_port=

parser .0FPMatch (in_port=

parser .0FPMatch(in_port=

parser.0FPMatch (in_port=

1,

3,

1,

3,

1,

2,

1,

2,

2’

parser .0FPMatch(in_port=1local,

2,

eth_type=0x0806, eth_src=r6,

160, match, 10)#Table 3 is to

eth_type=0x0800, eth_src=r6,

160, match, 10)#Table 3 is to

eth_type=0x0806, eth_src=r2,

160, match, 10)#Table 2 is to

eth_type=0x0800, eth_src=r2,

160, match, 10)#Table 2 is to

160, match, 10)#Table 2 is to

160, match, 10)#Table 2 is to
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parser .0FPMatch(in_port=local ,eth_type=0x0806,arp_tpa=r6ip)

eth_type=0x0800,ipv4_dst=r6ip)

elif (raspi6 not in self.datapaths and raspil in self.datapaths and raspi2

in self.datapaths and raspi3 in self.datapaths and raspi4 in self.datapaths and

raspib in self.datapaths):
if datapath.id == raspi2:
match =
arp_tpa = gw2ip)
self.add_gototable (datapath, O,
relay Raspi 3

match =
ipv4d_dst = gw2ip)
self.add_gototable (datapath, O,

relay Raspi 3

match =
arp_tpa = rbip)
self.add_gototable (datapath, O,

relay Raspi 5

match =
ipv4d_dst = rbip)
self.add_gototable (datapath, O,

relay Raspi 5

parser.0FPMatch (in_port=

parser .0FPMatch(in_port=

parser .0FPMatch (in_port=

parser.0FPMatch(in_port=

1,

4,

1,

4,

1,

2,

1,

2’

eth_type=0x0806, eth_src=rb,

160, match, 10)#Table 4 is to

eth_type=0x0800, eth_src=rb,

160, match, 10)#Table 4 is to

eth_type=0x0806, eth_src=r3,

160, match, 10)#Table 2 is to

eth_type=0x0800, eth_src=r3,

160, match, 10)#Table 2 is to

elif ((raspil not in self.datapaths and raspi6 not in self.datapaths and

raspi2 in self.datapaths and raspi3 in self.datapaths and raspi4 in

self .datapaths and raspib in self.datapaths)

or (raspil

not in self.datapaths and raspi2 not in self.datapaths and

raspi3 not in self.datapaths and raspi6 not in self.datapaths and raspi4 in

self .datapaths and raspib5 in self.datapaths)
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or (raspil not in self.datapaths and raspi3 not in self.datapaths and
raspi6 not in self.datapaths and raspi2 in self.datapaths and raspi4 in
self.datapaths and raspib in self.datapaths)):
local = datapath.ofproto.0OFPP_LOCAL
self.logger.info("Case 6")
if ev.msg.datapath.id == raspi2: # Raspi2 To assign the flow rules at
Raspi2 to reroute the control packet from raspi3 and gateway2 to gatewayl
match = parser.O0FPMatch(in_port=1, eth_type=0x0806, eth_src=r3,
arp_tpa=gwlip)
self.add_gototable (datapath, 0, 2, 160, match, 10)#Table 2 is to
relay Raspi 5

match = parser.0FPMatch(in_port=1, eth_type=0x0800, eth_src=r3,
ipv4_dst=gwlip)

self.add_gototable (datapath, 0, 2, 160, match, 10)#Table 2 is to
relay Raspi 5

match = parser.0FPMatch(in_port=1, eth_type=0x0806, eth_src=r5,
arp_tpa=r3ip)

self.add_gototable (datapath, 0, 4, 160, match, 10)#Table 4 is to
relay Raspi 3

match = parser.O0FPMatch(in_port=1, eth_type=0x0800, eth_src=r5,
ipv4_dst=r3ip)

self.add_gototable (datapath, 0, 4, 160, match, 10)#Table 4 is to
relay Raspi 3

match = parser.0FPMatch(in_port=1, eth_type=0x0806, eth_src=r5,
arp_tpa=gw2ip)

self.add_gototable (datapath, O, 4, 160, match, 10)#Table 4 is to
relay Raspi 3

match = parser.0FPMatch(in_port=1, eth_type=0x0800, eth_src=r5,
ipv4_dst=gw2ip)

self.add_gototable (datapath, 0, 4, 160, match, 10)#Table 4 is to
relay Raspi 3

match = parser.0FPMatch(in_port=1, eth_type=0x0806, eth_src=r3,
arp_tpa = rbip)

self.add_gototable (datapath, 0, 2, 160, match, 10)#Table 2 is to
relay Raspi 5

match = parser.0FPMatch(in_port=1, eth_type=0x0800, eth_src=r3,
ipv4_dst = rbip)

self.add_gototable (datapath, 0, 2, 160, match, 10)#Table 2 is to
relay Raspi 5

elif ev.msg.datapath.id == raspib:
match = parser.0FPMatch(in_port=1, eth_type=0x0806, eth_src=r2,
arp_tpa=gwlip)
self.add_gototable (datapath, 0, 3, 160, match, 10)#Table 3 is to
relay Raspi 4

match = parser.0FPMatch(in_port=1, eth_type=0x0800, eth_src=r2,
ipv4d_dst=gwlip)

self .add_gototable (datapath, 0, 3, 160, match, 10)#Table 3 is to
relay Raspi 4
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match = parser.0FPMatch(in_ports=

arp_tpa=r2ip)
self.add_gototable (datapath, O,
relay Raspi 2

match = parser.0FPMatch(in_port=

ipv4_dst=r2ip)
self.add_gototable (datapath, O,
relay Raspi 2

match = parser.0FPMatch(in_port=

arp_tpa=r3ip)
self.add_gototable (datapath, O,
relay Raspi 2

match = parser.0FPMatch(in_port=

ipv4_dst=r3ip)
self.add_gototable (datapath, O,
relay Raspi 2

match = parser.0FPMatch(in_ports=

arp_tpa=gw2ip)
self.add_gototable (datapath, O,
relay Raspi 2

match = parser.0FPMatch(in_ports=

ipv4_dst=gw2ip)
self.add_gototable (datapath, O,
relay Raspi 2

elif ev.msg.datapath.id == gatewayl:

match = parser.0FPMatch(in_port=

self.add_gototable (datapath, O,
relay Raspi 1

match = parser.0FPMatch(in_port=

self.add_gototable (datapath, O,
relay Raspi 1

match = parser.0FPMatch(in_port=

self.add_gototable (datapath, O,
relay Raspi 4

match = parser.0FPMatch(in_port=

self.add_gototable (datapath, O,
relay Raspi

elif ((raspi3 not in self.datapaths and
raspil in self.
self .datapaths

datapaths and raspi2 in self.
and raspi6 in self.datapaths)

119

1, eth_type=0x0806, eth_src=r4,

2, 160, match, 10)#Table 2 is to

1, eth_type=0x0800, eth_src=r4,

2, 160, match, 10)#Table 2 is to

1, eth_type=0x0806, eth_src=r4,

2, 160, match, 10)#Table 2 is to

1, eth_type=0x0800, eth_src=r4,

2, 160, match, 10)#Table 2 is to

1, eth_type=0x0806, eth_src=r4,

2, 160, match, 10)#Table 2 is to

1, eth_type=0x0800, eth_src=r4,

2, 160, match, 10)#Table 2 is to

# Gatewayl
local,eth_type=0x0806,arp_tpa=rilip)

2, 160, match, 10) #Table 2 is to
local, eth_type=0x0800,ipv4_dst=rlip)
2, 160, match, 10) #Table 2 is to

local ,eth_type=0x0806)

3, 160, match, 10)#Table 3 is to
local, eth_type=0x0800)
3, 160, match, 10)#Table 3 is to

raspi4 not in self.datapaths and

datapaths and raspib in

or (raspi3 not in self.datapaths and raspi4 not in self.datapaths

and raspib not
self .datapaths

in self.datapaths and raspi6
and raspi2 in self.datapaths)

not in self.datapaths and raspil in

or (raspi3 not in self.datapaths and raspi4 not in self.datapaths

and raspi6 not
self .datapaths
self.logger.info("Case 7")
local = datapath.ofproto.0OFPP_LOCAL

in self.datapaths and raspil
and raspib in self.datapaths)

in self.datapaths and raspi2 in

)
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if ev.msg.datapath.id ==raspib: #Raspib5 Assign the flow rules at Raspib
to relay the packet from raspi6 to gatewayl
match =
parser .0FPMatch(in_port=1,eth_type=0x0806,eth_src=r6,arp_tpa=gwlip) #Table 2 is
to relay Raspi 2
self.add_gototable (datapath,0,2,160,match,10)

match =
parser.0FPMatch(in_port=1,eth_type=0x0800,eth_src=r6,ipv4_dst=gwlip) #Table 2 is
to relay Raspi 2

self.add_gototable (datapath,0,2,160,match,10)

match =
parser.0FPMatch (in_port=1,eth_type=0x0806,eth_src=r2,arp_tpa=r6ip) #Table 4 is
to relay Raspi 6

self.add_gototable (datapath,0,4,160,match,10)

match =
parser.0FPMatch (in_port=1,eth_type=0x0800,eth_src=r2,ipv4_dst=r6ip) #Table 4 is
to relay Raspi 6

self.add_gototable (datapath,0,4,160,match,10)

match =
parser.0FPMatch(in_port=1,eth_type=0x0806 ,eth_src=r2,arp_tpa=gw2ip) #Table 4 is
to relay Raspi 6

self.add_gototable (datapath,0,4,160,match,10)

match =
parser .0FPMatch(in_port=1,eth_type=0x0800,eth_src=r2,ipv4_dst=gw2ip)#Table 4 is
to relay Raspi 6

self.add_gototable (datapath,0,4,160,match,10)

elif ev.msg.datapath.id == raspi2:
#Raspi2 To assign the flowrules at raspi2 to relay the control
packet from raspib,raspi6 to gatewayl
match =
parser .0FPMatch(in_port=1,eth_type=0x0806,eth_src=r5,arp_tpa=gwlip) #Table 3 is
to relay Raspi 1
self.add_gototable (datapath,0,3,160,match,10)

match =
parser.0FPMatch (in_port=1,eth_type=0x0800,eth_src=r5,ipv4_dst=gwlip)#Table 3 is
to relay Raspi 1

self.add_gototable (datapath,0,3,160,match,10)

match =
parser.0FPMatch (in_port=1,eth_type=0x0806,eth_src=rl,arp_tpa=rbip) #Table 2 is
to relay Raspi 5

self.add_gototable (datapath,0,2,160,match,10)

match =
parser.0FPMatch(in_port=1,eth_type=0x0800,eth_src=rl,ipv4_dst=rbip) #Table 2 is
to relay Raspi 5

self.add_gototable (datapath,0,2,160,match,10)

match =
parser .0FPMatch(in_port=1,eth_type=0x0806,eth_src=rl,arp_tpa=r6ip) #Table 2 is
to relay Raspi 5

self.add_gototable (datapath,0,2,160,match,10)
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match =
parser.0FPMatch(in_port=1,eth_type=0x0800,eth_src=rl,ipv4_dst=r6ip)#Table 2 is
to relay Raspi 5

self.add_gototable (datapath,0,2,160,match,10)

match =
parser.0FPMatch (in_port=1,eth_type=0x0806,eth_src=rl,arp_tpa=gw2ip)#Table 2 is
to relay Raspi 5

self .add_gototable (datapath,0,2,160,match,10)

match =
parser.0FPMatch (in_port=1,eth_type=0x0800,eth_src=rl,ipv4_dst=gw2ip)#Table 2 is
to relay Raspi 5

self.add_gototable (datapath,0,2,160,match,10)

elif ev.msg.datapath.id == raspi6: #Raspi 6
match =
parser.0FPMatch (in_port=1,eth_type=0x0806,eth_src=gw2,arp_tpa=gwlip)
self.add_gototable (datapath, 0, 3, 160, match, 10)#Table 3 is to
relay Raspi 5

match =

parser.0FPMatch(in_port=1,eth_type=0x0800,eth_src=gw2,ipv4_dst=gwlip)

self .add_gototable (datapath, 0, 3, 160, match, 10)#Table 3 is to
relay Raspi 5

match = parser.O0FPMatch(in_port=1,eth_type=0x0806,eth_#Table 3 is to
relay Raspi 5src=rb,arp_tpa=gw2ip)
self.add_gototable (datapath, 0, 3, 160, match, 10)

match =
parser.0FPMatch (in_port=1,eth_type=0x0800,eth_src=r5,ipv4_dst=gw2ip)
self.add_gototable (datapath, 0, 3, 160, match, 10)#Table 3 is to
relay Raspi 5

elif ev.msg.datapath.id == gatewayl: #Gatewayl
match = parser.0FPMatch(in_port=local,eth_type=0x0806,arp_tpa=rbip)
self.add_gototable (datapath, 0, 2, 160, match, 10)#Table 2 is to
relay Raspi 1

match = parser.0OFPMatch(in_port=local,eth_type=0x0806,arp_tpa=r6ip)
self.add_gototable (datapath, 0, 2, 160, match, 10)#Table 2 is to
relay Raspi 1

match = parser.OFPMatch(in_port=local,eth_type=0x0806,arp_tpa=gw2ip)
self.add_gototable (datapath, 0, 2, 160, match, 10)#Table 2 is to
relay Raspi 1

match = parser.0FPMatch(in_port=local, eth_type=0x0800,
ipv4_dst=rb5ip)

self.add_gototable (datapath, 0, 2, 160, match, 10)#Table 2 is to
relay Raspi 1

match = parser.0FPMatch(in_port=local, eth_type=0x0800,
ipv4_dst=r6ip)

self.add_gototable (datapath, 0, 2, 160, match, 10)#Table 2 is to
relay Raspi 1



2

5

match = parser.0FPMatch(in_port=local, eth_type=0x0800,
ipv4d_dst=gw2ip)

self.add_gototable (datapath, 0, 2, 160, match, 10)#Table 2 is to
relay Raspi 1
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Listing E.1: Run RYU Controller for Rerouting

#In

order to detect the failure of wireless mesh node, echo request/reply message
need to be enabled

#Need to enable the paramter in controller.py in the soucecode of RYU controller

#Source code of RYU controller can be installed by

git

clone git://github.com/osrg/ryu.git

#Inside controller.py from source code and modify the parameters of echo request

D

interval and maximum-unreplied-echo-request as per following

CONF .register_opts ([

D

cfg.FloatOpt (’socket-timeout’,
default=5.0,

help=’Time, in seconds, to await completion of socket operations.

cfg.FloatOpt (’echo-request-interval’,
default=3,
help=’Time, in seconds, between sending echo requests to a
datapath.’),
cfg.IntOpt (’maximum-unreplied-echo-requests’,
default=4,#
min=0,
help=’Maximum number of unreplied echo requests before datapath is
disconnected.’)

#After modifying the source code run for ryu program

sudo ryu-manager sdwmn_rerouting.py

),




Appendix F
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Setting Network Parameters In All Wireless Nodes

#In all wireless nodes

sudo nano /etc/sysctl.conf

net.
net.
net.
net.
net.
net.

net .

net

core

core.
core.
core.
ipvéd.
ipvé.
ipvéd.
.ipvéd.

.rmem_default=8388608

wmem_default=500000

rmem_max = 16777216

wmem_max = 16777216

tcp_rmem = 4096 87380 4194304
tcp_wmem = 4096 87380 4194304
tcp_mem = 8388608 8388608 8388608
tcp_window_scaling=1
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