CHAPTER I
Theory of Superconductivity

Inthis chapter , we review the status of both experimental
and theoretical works of superconductivity.

2.1 The Basic Phenomena

2.1.1 Zero Resistance and the Critical Temperature

The electromagnetic properties of the superconducting state
were the first to be observed experimentally. The most remarkable of
these is the sudden disappearance of the resistance of certain metals,
alloys and compounds below certain critical temperatures 7 e.g.,
Tc = 42 K, 22 K and 125 Kfor Hy 7 Nb3Ge and TI£CaeBa-
Cut010 respectively (See Fig. 2.1'. It is this absence of resistance,
or better 7 the existence of persistant electrical currents (infinite
conductivity' that gives the phenomenon 7 its name - superconducting
phase transition or simply superconductivity.
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Figure 2.1 Kamerlingh Onnes’s data on the
superconductivity of mercury (Hg.'



However , infinite conductivity imposes certain conditions on
the magnetic field which were not subsequently observed. The relation
between the electric current density J , and the applied electric
field "= , in a superconductor is given by ohm’s law .34»

J = (2.1)

where is the conductivity.  The electric field E is
related to the magnetic field B by Maxwell’s equation

VXE = -1098B (2.2'
.

If we substitute Eq. (2.1) into Eq (2.2) , we see that for infinite
conductivity and 3B/ 3t = 0 thus implies that the magnetic field
B remains constant for any medium with infinite conductivity
because E vanishes inside the material. In particular , consider a
superconductor that is cooled below Tc in zero magnetic field. The
above result shows that B remains zero even if a field is
subsequently applied (See Fig 2.2).

2.1.2 Perfect Diamagnetism , or the Meissner Effect.

The magnetic properties exhibited by superconductors are
as dramatic as their electrical properties. The magnetic properties
cannot be accounted for by the assumption that the superconducting
state is characterized properly by zero electrical resistance. It is
an experimental fact that a bulk superconductor in a weak magnetic
field will act as a perfect diamagnet, with zero magnetic induction in
the interior, when a specimen is cooled and becomes superconductiving,
experiments  first  performed by Meissner and Ochsenfeld



demonstrate that all magnetic flux is expelled from the interior (see
Fig. 2.2). This is called the Meissner effect.
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Figure 2.2 Meissner effect in superconductors  The magnetic flux
Is expelled from a superconductor that is , for T<T .

The consequence of the — Meissner  effect can be descibed
using magnetostatic theory (34). The magnetic field H, the magnetic
induction B , and the magnetization M are related by

B = H+ 4KM (2.3)

At temperatures above most superconducting materials are only
weakly magnetic so  that B = H in the material. At
temperatures below Tc , B = 0 in the material ( i. e., a
magnetization M = -H |/ 4« opposite to the applied field is
induced ). Therefore, the magnetic moment m of a superconductor is
given hy



= (H)V (2.4)
4
where 'V is the volume of the superconducting material.

The relationship between H and M in Eg (2.3) is a
unique property of a given material, This relationship is
characterized by the magnetic susceptibility X, defined as

M X . H (2.5)
Since B = 0 in the superconducting state , it follows that

M £//// L L} H (2.6)

from Eq. (2.5) and Eq. (2.6) then implies that X = - U4l < 0,
Such a condition in which the magnetization cancels external field
exactly , is referred to as perfect diamagnetism.
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Figure 2.3 Three possible positions of a superconductor in the
neighborhood of a permanent magnet. In each case, the induced moment
of the superconductor , indicated by arrows is in a direction
opposite to the field.
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To picturize what happens when a superconductor is brought
near a permanent magnet (a material with a permanent magnetic moment),
with a north and south pole,we refer to Fig. 2.3 , three possible
positions of a superconductor in relation to a permanent magnet,
along with the magnetic field lines of the magnet and the induced
magnetic moments of the superconductor are shown.

Notice that the magnetic moment of the superconductor are in the
direction opposite to the magnetic field at the position of the
superconductor. Therefore, the like poles of the permanent magnet and
the superconductor are closer than the opposite poles , so there is
always a repulsive force between then.

2.1.3 The Critical Magnetic Field

Shortly after Onnes first observed superconductivity , it
was found that superconductivity can be destroyed by the application
of amagnetic field. If a strong enough magnetic field H > HC(T),
called the critical field , is applied to a superconducting
specimen , it becomes normal and reconers its normal resistance even
at Dbelow critical teemperature , We consider a long cylinder of pure
superconductor in a parallel applied field H, where there are no
demagnetizing effects. If the sample is superconducting at
temperature T in zero field , there is a unige critical field HC(T>
above which the sample becomes normal.  This transition is
reversible , for superconductivity reappears as soon as H is
reduced below Hc ( T ). Experiments on pure superconductors shows
that the curve H ( T ) is roughly parabolic ( See Fig. 2.4 ) .
This critical field He(T) is a function of the temperature is
given approximately by Tuyn’s law ( 35 ) as
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Figure 2.4 Phase diagram in H- T plane , shoving superconducting
and normal regions , and the critical curve H (T ) or Tc (T ) them.

2.2 London - Pippard Phenomenological Theory

The London equations (6) provided the first theory
description of the Meissner effect. Although these equations are
a pair of phenomenological constitutive relations describing the
response of the supercurrent J to applied electric and magnetic
fields , they may also be derived from the folloving simple model.

2.2.1 Derivation of London Equations

If the superelectrons are consider as an incompressible
nonviscous charged fluid with velocity field v(x,t) then the
supercurrent is given by
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I(x,t) = Le ve(x,t) (2.8)

where 0 is the superelectron number density and e is the
charge on an electron. The equation of motion of a superelectron in
the presence of an electric field is

mdvs(x,t) = ¢ E(x,t) (2.9)
at

which , when combined withEq. ( 2.8 ) , yields

dJo(x,t) =, e E(x,t) (2.10)
dt m

In the steady state , the current in a superconductor is constant.
Therefore it follows from Eq. ( 2.10 ) that dJ4(x,;t) = 0 , or
dt

E(x,1) = 0 (2.11)
This important conclusion asserts that 5 in the steady state 5 the

electric field inside a superconductor vanishes. In other words ,the
voltage drop across a superconductor is zero.

Eq. ( 2.11 )leads immediately to another immediately important
result. When this relation is combined with the Maxwell equation |

VXE = -1 dB (2.12)
¢ dt



one finds that

@B = 0 (2.13)
dt

This affirms that in the steady state the magnetic field is constant.

To proceed with this modification , let US substitute for E
from Eg. ( 2.10 ) into ( 2.12 ) , which yields

dB = - qmeVXdls (2.14)
dt 0e2 dt

This equation is invalid, as has just been seen ,because it predicts

that d| = 0 . To rectify this , London postulated the relation
dt
B - me VX (2.15)
se2
or
] - =2 A (2.16)
e

which has the same from as ( 2.14 ), except that the time
differentiations have been eliminated. We shall see presently that
relation (2.16), know as the London equation , leads to results that
are in agreement with experiment.

Eqg. (2.15) is a relation Dbetween B and Js.  These
quantities are also related by the Maxwell equation
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v xB = 4t (2.17)
C

¥¢ eliminate Js between Eg. (215 ) and Eg (2.17 ) [ by
taking the curl of (2.17) substituting for 7 x from Eg. (2.15),
then using the identity of vxvxB = 7( vB )- v3B = - 73B,
and vB = 0], we find that

2B = 4L 1e° B (2.18)
mc2

Let us apply this field equation to a situation of. simple
geometry. The specimen is semi - infinite , with its surface lying in
the yz plane (see Fig. 2.5 ) , and the field is applied in the vy -
direction. Since quantities vary only in the x -direction, Eq (2.18 )
reduced to

a8 . oL 3B (2.19)

d x me3

Eg. ( 2.19 ) yields the  solution
By (x ) = Bt <0 ) et (2.20)

where = (mca/dInse3) (2.21)

IS known as the London penetration depth.

Eq.(2.20 ) shows that the field decreases exponentially as one
proceeds from the surface into the superconductor. Thus the field
vanishes inside the bulk of the medium, in accord with the Meissner
effect. As a matter of fact , this agreement was the primary
motivation for postulating the London equation in the first place.

01G4G7T
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Figure 2.5 Solution of the London equation. The magnetic field
decays exponentially within the superconductor.

Note , however , that Eq. ( 220 ) predicts that the
field penetrates the sample to some extent , the distanec of
penetration being roughly equal to AL Thus the flux is not expelled
entirely from the superconductor, as was once thought , but there is
a small region near the surface .in which there is an appreciable
field" , e.q. experimental work finds that AE 500 A , 1400
A (37) for pure and high - Tc superconductors respectively.

Experiments indicate that the penetration depth increases
with increasing temperature , and the function

\<T) = A(0) [L(T/Tc)a3 I/ (2.22)

provides a good fit to the data for all temperatures (38 ) since s
is the only variable quantity in Eq. ( 2.21 ), Ve infer

B(T) = (0) [ 1- (TITc)* (2.23)

Eq. ( 2.23 ) is known as the Gorter - Casimir ( 5 ) formula.
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2.2.2 Pippard’s Generalized Equation

The  London equation , which we have discussed in the
previous section , was used to describe the electrodynamics of
superconductors until about 1950. At that time , Pippard (7 )
started a series of measurements of the microwave surface impedance
of superconductors ; his most important conclusion , as we have
already mentioned , was that for pure superconductors the London
equation should be replaced by a non - local equation.

Pippard introduced the coherence length while proposing a
nonlocal generalization of the London equation ( 2.8 ).This was done
in analogy to chambers® nonlocal qeneralization ( 39 ) of ohm’s law
from J(x) = dE (X to

J(x) =3d  ritritE(x)] e~R/" d3x"
41f Ra

For this and other  reasons , Pippard  proprosed  a
nonlocalgeneralization of Eq. ( 216 ) in which ] ( X)is
determined as a spatial average of A throughout some neighboring
region of dimension £0~ 10-a cm For heavily doped alloys , $0is
comparable with the electronic mean free path X in the normal
metal ; for pure metals , however, £0is not infinite , but instead
tends to a characteristic length"known as Pippard coherence length.

The relation Pippard proposed to replace the London equation is
I (X = - naet . 3 RCRA (xjle nf£ (2.24)
me H 0 R4

where R = X-X and R =[rl . The coherence length is given by

s || .
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where IS a constant of the pure material ; in particular £ =£0
in the pure material, and £= i fort «< £0. The Pippard coherence
length ~ | estimation by an uncertainty - principle , only electrons
within ~ kBTc of the Fermi energy can play a major role in a
phenomenon where sets in at Tc , and these electron have a
momentum range P~ kO Tc / vr , where VF is the  Fermi
velocity. Thus VAX ¥ [ 4P-h VF [ kBTL ,leading to the
definition of a coherence length £.

e = QY (2.26)
kBTC

Using Eq. (2.22 ), he computed the penetration depth for various
values of 5,and >1 and compared the results with experimental data. He
found (40) that he could fit the data on both tin and aluminum by
the choice of a single parameter a = 0.15 in Eq. ( 2.26 ) For
comparison , the BCS theory ( 11 ) of pure samples leads to a very
similar nonlocal relation and identifies £0 as

£0 = 018hV = hVF (2.27)
KoTe TTo

where . 1S the energy gap at zero temperature.

The Pippard equation relates the induced supercurrent J to
the vector potential A. In the presence of an applied magnetic
field , however , A contains contributions from the external
currents as well as from J itself , thereby requiring a simultaneous
solution of Eq. (224 ) and Maxwell’s equation determining the
magnetic field. Nevertheless , it is possible to extract the
important  physical features by noting the existence of two
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characteristic lengths. The vector potential yaries with the self -
consistent temperature - dependent penetration length , which need
not be the same as the London penetration length  defined in Eq.
(2.21)] , while the integral kernel has a temperature - independent
range £5 which is approximately the smaller of £ and i. If £0«< A,
then the vector potential wvaries slowly and can be evaluated at
X = X In this way , we obtain

2
k() "N " w003 ) da x RKRji e~ayk
Clo K Ra
G0
AN /R ek
e i
or
J () = - osezlll) 7« A (2.28)
e (it t>

Any sample that satisfies this local condition ( £ «<-A) is known as
a London superconductor , because Eq. ( 2.24 ) reproduces the
form of London equation ( 216 ) but with the coefficient
reduced by a factor (L +£/X) 1. Comparison with Egs. ( 2.15 ) and
(2.18) immediately gives the corresponding penetration depth at zero
temperature

A(0) = -\(0) {E_+Jui W2 local limit *<<A(2.29)

For a pure London superconductor ( b «< X ), Eq. (2.29) reduces to
the previous London expression.
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Inpractice , most superconducting  elements at low
temperature violate the condition for a pure London superconductor,
which requires  £0 «< ~. Hence London superconductors are usually
heavily doped alloys, where the length £ is determined by L
instead of £0 and the following inequality holds 4 ~f <« " in
this caseEq. ( 2.29 ) explains the observed increase  in the
penetration depth for dirty alloys where J << A If a sample is a
London superconductor, Eq. (2.22 ) shows that it remains one for all
T < Tc Since the penetration depth of any superconducting
material increases rapidly as T  Tc 5 however , all
superconductors become London superconductor sufficiently close to Tc.

It is important to emphasize that eqs. ( 2.28 ) and ( 2.29 )
are only correct for £ <A, and typical nonlocal limit (£ > %)
when the material is konwn as a Pippard superconductor.  We can
calculate the penetration depth at zero temperature , and found that

AC)= 8 (0 )13 nonlocal limit =£>>/1(2.30)
9 H

This expression is independent of the mean free path &  because
the spatial integration in Eq. (2.24 ) is limited by the penetration
depth A and not by » . Eqs. (2.29 ) and ( 2.30 ) constitute a
central result of the Pippard Theory.

2.2.3 Flux Quantization in a Superconducting Ring

Flux quantization is an example of a long - range
quantum effect which the coherence of the superconducting state
extends over a ring or solenoid. Let US first consider the London
equations imply a striking conservation law. For simplicity , we
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study only the linearized equations ( 2.8 ), (29 ) and ( 2.10 )

- ¢ — % = -1 (2.31)
m dt SC dt

Consider a surface bounded by a fixed closed curve [ that lies
wholly in the superconducting material (See Fig 2.6 ). Independent of
whether also lies entirely in the superconductor ( See Fig 2.6a
or b ), we may integrate Maxwell’s equation ( 2.12 ) to obtain

J ds.dB = -¢/ds (vXE =-c¢<bdlE (232
dt |

where the right side has been transformed with Stokes’theorem.

X Hole in (yis
(a) superconductor (b}

Figure 2.6  Integration contour for evaluation of fluxoid (a)
simply connected ; (b) multiply connected.

Since [ lies in the superconductor , Eg. (2.31)
is applied at every point , giving



d {fdgg + mc 9gd-lbf1 (2.33

W see that the fluxoid c 40 ] defined as

-
"

a2 -
J dS.B + me jéd d (2.34)
ne C

remains constant for all time. It is clear that (p differs from the
magnetic flux by an additional contribution arising from the induced
supercurrent. With added assumptions , it is possible to derive more

specific results.

1. I f C is sufficiently far from the boundaries s then J is

exponentially small , and <) reduces to the magnetic flux.
2. If the interior of C is wholly superconducting (See Fig 2.6a),

then the other London equation ( 2.15 ) immediately implies that
vanishes.

3. As a corollary of the previous conclusion, is the same for any
path C#that can be deformed continuously into C , always remaining

in the superconductor.

London also observed that Eqgs. ( 2.15 ) and ( 2.8 ) can be

written in terms of the vector potential as follows

VvV X ( nmv eA ) (2.35)
where VvV X A (2.36)
The canonical noMentum is given by

el = nv - eA

e



and Eq. ( 2.35 ) thus beconmes

(2%

which nmay be consider a generalized condition of irrotational flow.

In addition , the fluxoid may be writhen as

N o= (VXA).dS'rm"dl.v_
e
-
= =.C é (v, - e”n . di (2.38)
g C
—_~ —
or <;b = e f P . dl (2.39)
©

—_
Normal ring in Cooled below Tc
magnetic field Superconducting ring in
magnetic field Bmagnetic
field then removed
Figure 2.7 Flux trapping in a superconducting ring. Typical
recent measurements are those of J. File and R.G. Hills , who find

lifetimes of order 10 years.
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This equation is reminiscent of the bohr - Sommerfeld quantization
relation s and , indeed , London suggested that the fluxoid is
quantized in units of he /e ( 41 ). As shown in Fig. 2.7 , this
prediction was subsequently confirmed ,but the observed quantum unit
is he / 2e (42,43 ) such persistent currents have been observed

over long periods ( 44 )

2.3 Thermodynamics of the Superconducting state

Like the electromagnetic properties , the thermal properties ,
Gibbs free energy , entropy and electronic specific heat of also
change sharply as the temperature is lowered through the
transition temperature for superconductivity. The Meissner effect

shows that the transition in presence of a magnetic field through the

normal and superconducting state boundary H =H @O [1 - (T/Tc)2]
is reversible , and therefore that the laws of theraodynamies are
applied to NS phase transition. In this section , we show the

discontinuity in these thermal properties and discuss the behavior
of the electronic specific heat above and below Tc , which shows
that entropy is carried by excitations in the superconducting state

separated from the normal state by an energy gap.

2.3.1 Gibbs free energy
When the magnetic quantities are changed by small amounts ,
the work done on the system is given by @TO 1/ d3 X H.dB, so that

the change in the Helmholtz free energy density becomes

dF = - ST + (41)_1 H.dB (2.40)
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with the corresponding differential relation

4173 F. ) (2.41)

ar > B.T

1l
I
~~
QO
|
N
-
=
Il

Here we assume the volume is held constant , and is the entropy
density.

The flux expulsion associate with the Meissner effect
indicates that a bulk superconductor in an external magnetic field H
is uniquely characterized by the condition 1 = O , independent of
the way the state is reached ( see Fig 2.2 ). W therefore infer
that the superconductor is in true thermodynamic equilibrium and

accordingly apply the techinques of macroscopic thermodynamics. For

most experiments , however , it is impossible to manipulate the flux
density B directly 4 instead , the external currents (in a
solenoid , for example ) control the magnetic field H, and we

prefer to make a Legendre transformation from the Helmholtz function

F ( T,B ) to the Gibbs free energy density

G(T, H) = F - (4U-1 BH (2.42)

with the corresponding differential relations

aG = - &T - (4K)_1 B.dH (2.43)
—(a_G) B = - 411(3_(_}) (2.44)
T
il oH
Consider along superconducting cylinder in a parallel
magnetic field. If the field H = Hz is increased at constant

temperature , Eq. ( 2.44 ) gives
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GJT , H) - GIT , 0) = -4 ] BMH)ddnhn' (2.45)
To a good approximation s the normal state of most
superconducting elementts is non magnetic ( B=H) , and we find

(T , B - (T ,0) = -1 2 (2.46)
In contrast , B vanishes in the superconductor , which yields

G (T . H 5 (T . 0) (2.47)
The two phases are in  thermodynamic equilibrium at the
thermodynamic critical field Hc. This condition nmay be expressed

by the equation

G (T, Ho) = QYT , Ho) (2.48)
and a combination ofEgs. (2.46 )-(2.48 ) immediatly gives
G (T, 0O a (T, 0 - (BK)-1 n“c (2.49)

Fs (T , O

Fn (T, 0) - (8H)'1 H3c (2.50)

These equations show that anegative condensation energy-H2C /8K
per unit volume accompanies the formation of the superconducting
state. W have , therefore , in an external magnetic field H a
difference in the Gibbs free energy density between the
superconducting and normal state. From Egs. ( 2.46 ) - ( 2.49 )

lead to the general result

&G (T, H-ar (T, B @B E)'1 (H2 - H2c) (2.51)
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2.3.2 Entropy and Specific heat

W& now proceed to use the expressions above for the Gibbs
free energy to compute the entropy, latent heat and the discontinuity
in the electronic specific heat at the normal and superconducting
state. The derivative of Eq. ( 2.51 ) with respect to temperature

yield the entropy difference between the two state

a(T,H - na,H = @10 1 HAAHMT') (2.52a)

dr
Figure 2.4 shonws that the right side is negative s so that
the superconducting phase has lower entropy than the normal phase.

This is in agreement with experiment (45 ) shown in figure 2.8.
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Figure 2.8 Entropy of alumimum in the normal and superconducting

state as a function of the temperature.
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Finally , from the thermodynamic identity , the specific heat

& - T(9_>

the difference in the electronic specific heats at constant field of

may be derived from Egs. ( 2.52 > as

the two phases 5c¢c - OH ,

cH - as T KdHj2 + Fc d*Hc] (2.53)

aH dr dTa

In particular, at the transition temperature Tc and H = 0 ,

so we have for the transition in the absence of an applied

magnetic field s so that the jump Iin the specific heat at Tc

becomes

(CO - Mn)Tc A Tc [ (d He),_ 12 (2.54)

a4 drT
( 46 ) shomwn in

Eq. (2.54) has been well verified experimentally

figure 2.9.
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XIo-2

¢ /J mol~' K-!

Temperature (K)

Figure 2.9 The heat capacity of Nb in the normal and superconducting

state showing the sharp discontinuity at the critical temperature..

For zero applied field, at the transition temperature there

is no latent heat ( Eq. 252 ) , and there is a jump in the specific
heat ; consequently the transition to the superconducting state is
second - order phase transition in the absence of a magnetic field.
In practice , not only does one observe a discontinuity at
Tc , one also obtains a deviation from the linear dependence of the
electronic specific heat on T ( Gn = T ) , to an exponential
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dependence on T below Tc , proportional to exp (-A/kBT) , O
being the energy gap. To derive the exponential dependent, it is
necessary to consider a system of elementary excitations or quasi -
particles in the superconducting state that require a finite energy
2 U to be excited above the ground state of the many - electron

system. The existence of such quasi - pasticles is accounted for by

the BCS theory ( 11 )

2.4 Ginzburg - Landau Theory

This section will serve as the briefest of introductions to a
theory whose ramifications reach extensitvely into the rest of this
thesis. The theory is based on the pioneering work of Landau on

second - order phase transition.

The phase transition at Tc singnal the appearance of an
ordered state in which the electrons are partially condensed into a

frictionless superfluid. Ginzburg and Landau ( 15 = describe the

condensate with a complex order parameter ~ (X). |SMX)|r was
to represent the local density of superconducting electrons , B
The observed second - order phase transition implies that i'(x)
vanishes for T 5 Tc , and that it increases in magnitude with
increasing Tc - T =0. Near Tc the quantity \~H\l s
small , and the macroscopic free energy denSity F= of the

superconducting state in zero field is assumed to have and expansion

of the from
F= = Fn0 + + 0 golll o+ (2.55)

where FNnO is the free energy density of the normal state in zero

magnetic field and where /.and p are real temperature dependent
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phenomenological constants. In equilibrium,
5FS = O, 9aF. > 0 |,
d il a
and in addition we must have that 2~'( = o for T Tc and
N'IM12 >0 for T < Tc. It follows that = 0, >0, and for
T<T1, X <O. Thus in equilibrium , for T < Tc ,
X 2
(¥ - I"f"oiz -d =,T - T) do( (2.56)
= =ty i
{TaT
P 'Bc at ' °
. c
and
F, = F -7 N (2.57)
28
where YW is the value in zero field (i.e., at an infinite distance
fromm any boundary ) , and we have assumed thatc™-(T) = (7 -T )y
(CiSA) a e - p(Te). Fom BEgq ( 2.57 ) one can get “m
dr 7 1©
4L 4 1t(T Y2 fd~) (2.58)
K

The from of this expression is well known to be completely confirmed

be experiment.

The second important step that Ginzburg and Landau look wes
to state that , if there was a spatial variation of Y% , as well as a
magnetic field H derived from a potential A , the energy density

in the superconducting phase FSH , was give'n by

F— = FO+H2+ 1 I (-lhv - enlt 1 (2.59)

aHd = (o]
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The equation for Y marly now be found fromm the requirement that the
total free energy of the body / FSH dv , Thus , varying with respect

to Y » ve find that

1 (- ihv - eA )*Y + 3FsO = () (2.60)
21Y) c
and moreover |, at the boundary of the superconductor , in view of
the arbitrariness of the variation Y* | the following condition
must hold
m-ihv - eA ) P (o] (2.61)
C.
Where is the unit vector to the boundary.
So far as the equation for A is concerned , and using
condition that V. A =0 and vary the free energy with respect to

A, we obtain the usual expression ;

VBA = -4TJ = 2ftehi (Y Ty - yVy*“) + 4Ke3 | A (2.62)
d e me3
in which the right - hand side constans the expression for the
supercurrent
J = -ieb (Y TT -yvY~*) - A A (2.63)
e ne

The application of the Ginzburg - Landau equations , Egs.

( 260 ) and ( 262 ) , to a planar boundary leads to the following
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results. Oe can define paramenter the penetration depth A (of the
dimension of length ) , and K the Ginzburg - Landau parameter

( dimensionless ) as follows

2
A = . _
= nmcgB nca = nca (2.64)
dlteaM AKeam 4Keans
Ka 1 (me)2 $ = (2ca) tc A2 (2.65)
2K eh he2
W can consider the dimensionless Ginzburg - Landau parameter

K ,to be the ratio of penetration depth A , to the coherence length 1

K = A% (2.66)
where . t — (2.67)
InK I

Experiments ( 42,43, 47 ) indicate that , mreplaced by an effective

mass nt , and e replaced by the charge of a pair of electrons e* ,

2n ) e 2e (2.68)
and replaced by an effective superelectron density
t\ 1 n= (2.69)
2

where is the number of single electrons in the condensate.
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With the identification - = 1T12 , this agrees

with the usual definition of the London penetration depth. In the

original ( 15 ) formulation of the theory , it was thought that e*
and m* would be the normal electronic value. However
experimental data has turned out to be fitted better if e* - 2e

The microscopic pairing theory of SuperconductiVity makes |t

unambiguous that e* = 2e exactly , the charge of a pair of
elections. In the free - electron approximation , it would then be
natural to neke nmt = 2m and *B = (1V/2) B , where B

is the number of single electrons in the condensate with these
conventions , eq. (2.64) A = m*c2 /4~ 2 * = me2 / 4Tle2ns

so the London penetration depth is unchanged by the pairing.

Egs. ( 256 ) and ( 264 ) lead to an explicit form for

temperature dependent of A

A~ (L-trl'3 1t = i1 (2.70)

we have seen earlier , Eaq. ( 222 ) , that the Gorter - Casimir
temperature dependence A - @ - t*)1/2 fits experimental data
at all temperature. Near Tc 5 Egs. ( 222 ) and ( 2.70 ) , the two
forms of temperature dependence are in agreement. In fact ,

@ - t*)1r2 = (1+t2)—~1/2 (1+t) 1/2 (I-t)_1/2 and for t near 1 the

first two terms are slowly varying5 so that the dependence on t

is dominated by singularity given by the last term , (@A - ©)"3/z ,
In similarity Eq. (27 ) , H=-({ - t2) reduces to Eq. (2.58) 5
H~@ - t), for t near 1 (@©r T near ).

A second important result that Ginzburg - Landau theory

obtained was that, for K << 1 , the interphase surface energy ~»
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between normal and superconducting phase is

tfnm = 189 A HC , K << 1 (2.71)

K 8H

thus explaning the very Ilarge positive energy ( )= H3C/ 8 T)
needed to explain the Meissner effect , and the structure in the
intermediate state , physically s the significance of this
result was that while the magnetic field decayed over a
characteristic distance X to a vanishingly small wvalue in a
the superconductor , decayed to zero toward the normal region

over a nuch longer distance

Ginzburg and Landau nede further observation , without
pursuing it , that for K > 1/J2 ) e becomes negative. This

was subsequently recogonized as defining the difference between

type | and type Il superconductors (detail show in chapter 3 }.
Solutions of the Ginzburg - Landau equations for special cases , we
w ill discuss in chapter 3 .

2.5 Microscopic Theory of Superconductivity

Although the most remarkable properties of superconductor
are those associated with electromagnetic fields , superconductors
also exhibit striking thermodynamic effects, which played a central
role in the development of the microscopic theory. The result ,
experimental by Maxwell (€)) and Reynolds , et al.(10) discovered,
what is now know as the isotope effect , that the transition
temperature Tc of different isotopes of the sane element varies

with the isotopic mass , M, and it obeys the empirical law

i 1.0305920
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Tc ~ M"W2 2.72)

This result indicates that the dynamic of isotopic core effects
superconducting state. The modern theory of superconductivity was
promulgated by Bardeen , Cooper , and Schrieffer (11) in their

classic paper in 1957. The BCS theory has now gained universal

acceptance because it has proved capable of explaining all observed
phenomena relating to superconductivity. Therefore in interest of
simplicity , let B instead give a brief qualitative , conceptual

exposition of the BCS theory.

2.5.1 BCS Theory

The BCS theory has evolved from idea of Cooper ( 12 ) wo
first introduced the concept of an elementary superconductor (Cooper
Pair). The basic idea that even a weak attraction can bind pairs of
electrons into bound state was presented one year before the BCS
theory, what he showed was that the Fermi seaof electrons is
unstable against the formation of at least one bound pair, regardless
of how weak the interaction is , so long as it is attractive. This
is very important, because , in a bound state , electrons are paired
their motion are correlated. The pairing can be broken only if an

amount of energy equal to the binding energy is applied to the system.

Our two electrons pair are called a Cooper pair. The binding
energy is strongest when the electrons forming the pair have equal
and opposite nmomenta and spin (center of mass noMeEtum is zero and
opposite spins ) , that is Kkt , - klI- . It follows , therefore |,
that if there is any attraction between them , then all the electrons
in the neighborhood of the Fermi surface condense into a system of

Cooper pairs.
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In technical literature, attractive interaction comes in only
when one takes the motion of the ion cores into account. The physical
idea is that the first electron polarizes the medium by attracting
positive ions ; as illustrated in figure 2.10 , these excess
positive ions in trun , attract the second electron , giving an

effective attractive interaction between the electrons.

2

W<V

Figure 2.10 The screening of electron 1 by the positive ions of the

lattice - solid circles represent the two electrons considered.

If this attraction is strong enough to overrid the repulsive
screened Coulomb interaction 5 it gives rise to a net attractive

interaction, and superconductivity results.

Since these lattice deformations are resisted by the sanme
stiffness that makes a solid elastic s it is clear that the
characteristic vibration , or phonon , frequencies will play a role,
this coupling to the lattice means that an electron can emit a phonon,

that is a set the ions into vibration , and it can also absorb a
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phonon. A possible intermediate process is one in which a phonon is
emitted by one of the electrons and absorbed by the other ,as
illustrated in figure 2.11 , inclusion of this intermediate process
means that the energy of the two electrons is altered , so the phonon
exchange has the sane effect as a derect interaction between the
electrons , reality the attraction between electrons is a second -

order process.

>}

Q)
L3
1

>t
x4

Figure 2.11 Phonon exchange between electrons. This is

the fundamental process of superconductivity.

The equivalent direct interaction for the exchange of one phonon
turns out to be where , following figure 2.13 , the noDmentum of the
incoming electron are h £ and h 1 , and the nomentum of the

exchanged phonon is "hg.

FHom the suggestive results of Cooper , this line of
reasoning led to a reduction of the problem of determining the ground

state of Cooper pairs to the model BCS Hamiltonian
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Has = éGé k ke v+ b Mab MR (2.73)

The first termm is this expression gives the unperturbed energy of

the electrons forming the pairs ; the second is the pairing
interaction in which a pair of electrons in ( kt , -kt ) scatters to
(k4 , -k1),and

b\ = ¢\ le*-1
are , respectively , creation and annihilation operators for a pair
of electrons in ( kt , - kt ). These operators obey the commutation

relations of the so - called imperfect Bose gas

lhk , \ 1 =<1-nka 3 her, tbk K,] = =0 (2.75)

The anticommutator of bk and bX , is

(bk 1 b,), - 2b, b, , <l 2.76>

from which if follows that (bk)2 = O , according to Schrieffer ( 48 ).

This point is essential to the theory and leads to the energy

gap being present not only for dissociating a pair but also for

making a pair nove with a total nomentunm different from the oconmon

nomerntum  of the rest of the pairs. It is this feature which enforce
long - range order in the superfluid over macroscopic distance.
The determination of the ground state of the model BCS

hamiltonian can now be accomplished by variational method. Since in
the superconducting ground state we are interested only in completely
paired states , Wwe nmay retain only the part of the first term in Eq.

( 2.73 ) that connects pairs with zero net nomentum ;
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«,08 = * k2k '\ ' b (2. )

k
For the ground state , We take Schrieffer’s wave function
m > = 1B+ vkbI o - (2.78)
K
where 10 > is the vacuum state and k , vk are variational

parameters that nmay be assumed to be real and , because of overall

normalization of 9

| uk + 1vkl = 1 (2.79)

The variational calculation , which is pretty standard ( 49 ) ,

yields the following results

v\ = (1/2)d - (Ek -A)/EK] (2.80)

where

Ek = J(Ek -M)~  + fi*k (2.81)

and JA ( a Lagrange multiplier in the variational calculation ) has
the physical significance of the chemical potential (Fermi energy ) ;

while Ak , called the energy gap , satisfies gap equation ,

= i I BRI CAV/ (2-82>

2" TT

From this expression , one obtains in the simple model for which

RV ~m | and l8-jti <tw. (2.83)

(o] Otherwise



41
the result that ak = a0 ( for ek M | w«) and zero otherwise where
a0 = 2w eXp o -UN(O)V ] (2.84)

where N(0) is the density of states in energy at the Ferai surface.
Further , the condensation energy at absolute zero , i.e. the energy
difference between the superconducting and the normal states, is
found to be

Ad = (-1/2) N(O) d (285)

This is the condensation energy at T = 0 ,  which must by
definition equal H2(0)/8 It , where HC(T) is the thermody -
namie critical field.

Since we have identified Ek as the excitation energy of a
fermion quasi - particle , the probability of its excitation in the
thermal equilibrium is the usual Fermi function

fEK = (eMK+ D)L (2.86)

It is fairly straightforward to generalize the gap equation
to finite temperatures , Eg. ( 2.83 ) becomes

If VKk, is approximated by ( 2,83 ) , then ax is again of form
ao (Independent of k ) and a0 ( M) ( p = I/kBT) satisfies
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This mMmMmay be solved numerically. The gap AOT) decreases as
tempesature increases , and vanishes entirely at T = T1 as shown
in Fig 2.12. Thus , as T Tc and the gap vanishes, all the

electron become normal.

Ao(T)A

A(0) ]
0

Figure 2.12 plot of the temperature dependence of the energy gap

paramenter Ao (T).

Note that Ao vanishes with infinite slope as T Tc
leading to the second - order phasetransition The transition

temperature is given by

)
1 = J dx tanh” X j (2.89)
N(0)v X -2
1 = In (htJ"c - / dxlnxd (tanh (X:l.

N(O)V dx 2
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kB Tc = 2iY h e UMC'V (2.90)

where r is an Euler’s constant 5 thus

KBTO = 1.14 hcu exp. C-I/N(o)V] (2.91)

where 11 is phonon energy for in the lattice , cutoff at the Debye

energy t o,

= hcJ = kB 0D (2.92)
with 90 is the Debye temperature 5 @ = hf£ / kB
Also at T = OK,
Ao (0) = hwD (2.93)

sinh CI/N(o)V]

which in the weak coupling limit , gives

AO(0) = 2 hwD exp [-I/N(0o)V] (2.94)

Comparing this with Eq. ( 2.91 ) , we see that

Ad(0) 2 = 176
KTc 1.14
or
2a0(0) 3.52 kB Tc (2.95)

so that the gap at T = 0 is indeed comparable in energy to kBTc.

The numerical factor 3.52 has been tested in many experiments and



44

found to be resonable. That is , experimental value of 2 UO(O)
for different materials and different direction in k space
generally fall in range 3.0 to 45 kB Tc , with most clustered near

the BCS value 3.50 kBTE .

Eq. ( 2.91 ) contains the isotope effect , dimensionally , }0
must be given as WD~ ( KM )iya , where K is a force constant
of the Ilattice , therefor OO0 Mwa , W already remarked that V

should be independent of M, so Eq. ( 2.91 ) does give Tc—~ M-1/2.

2.5.2 Strong - Coupling Theory

On the basics of the physical features of the BCS theory
above , a wide variety of phenomena in superconductors has been
worked out by numerous workers in the field. Deviations from the BCS
theory occur |, however , when , as point out in connection with a

McMillan formula (14) , Tc is given by

e = wnoexp [-1.04 (LvAy (1+0.62 A)]  (2.96)

1.45
where for the strong - coupling superconductors s A is
the electron - phonon interaction strength , which is proportional
to ™M WM 1 , yK* is the screened electron - electron Coulomb

interaction and & is the Debye temperature , and for weak - coupling

superconductors ( A<< 1)

1.04 (1+ A) ~ 1 = 1 (2.97)
/Ud+0.62 ) M N(O)V
hence , McMiillan formular reduces to Eq. ( 291 ) , original BZS

theory , the electron - phonon coupling slrength”is nuch greater
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than unity ; i,e., ™M) 1 Superconductors for which this condition
is true include Pb, , Hg, Nb, and certain alloys like Nb3 and
are called strong - coupling superconductors. These deviations can

occur in three ways ,

1. The quasi - particle picture can become impedance if ,for

example , the damping rate becomes comparable with the
quasi - particle excitation energy.

2. The assumption of an effective two - body instantaneous
interaction between quasi - particles may not provide

an adequate representation of the retarded nature of the
phonon - induced interaction
3. The pairing hypothesis nmay break down.
In most circumstance , only the first two possibilities are operative
while the pairing hypothesis appears to be generally sounds for both

weak and strong - coupling superconductors.

The theory of the strong - coupling superconductors wes
developed by Eliashberg ( 13 ) and others. It has the distinctive
feature , however , that it provides a natural framework for
correlating results from a number of different experiments that
allows the rmany - body problem to be tackled in smaller , more
tractable pieces. Most of these features arise from the fact that in

the strong -coulping theory the energy gap parameter A (x,t) becomes

a complex function of space and time , i.e., has real and imaginary
part. The search for a superconductor is centered on now to control
the parameters”, and H* in the fabrication of a superconducting

alloy , so that Tc will be as large as possible.



	CHAPTER II THEORY OF SUPERCONDUCTIVITY
	2.1 The Basic Phenomena
	2.2 London - Pippard Phenomenological Theory
	2.3 Themodynamics of the Superconducting State
	2.4 Ginzburg - Landau Theory
	2.5 Microscopic Theory of Superconductivity


