
CHAPTER II

Theory of S uperconduc t iv i ty

In t h i s  c ha p te r  , we review the  s t a t u s  of both  experimenta l  
and t h e o r e t i c a l  works of s u p e r co n d u c t iv i ty .

2.1 The Basic Phenomena

2 .1 .1  Zero R es i s t a n ce  and the C r i t i c a l  Temperature
The e lec t ro m a g n e t i c  p r o p e r t i e s  of the  superconduc t ing  s t a t e  

were the  f i r s t  to  be observed exp e r im en ta l ly .  The most remarkable  of 
t h e s e  i s  the  sudden d isappea rance  of the  r e s i s t a n c e  of c e r t a i n  meta l s ,  
a l l o y s  and compounds below c e r t a i n  c r i t i c a l  t em pera tu res  7 e . g . ,  
Tc = 4.2 K , 23 K and 125 K fo r  Hg 7 Nb3Ge and T l £CaeBa-
Cu£0 10 r e s p e c t i v e l y  (See Fig .  2 . 1 ' .  I t  i s  t h i s  absence of r e s i s t a n c e ,  
or  b e t t e r  7 the  e x i s t e n c e  of p e r s i s t a n t  e l e c t r i c a l  c u r r e n t s  ( i n f i n i t e  
c o n d u c t i v i t y '  t h a t  g ives  the  phenomenon 7 i t s  name -  superconducting  
phase t r a n s i t i o n  or simply s u p e r c o n d u c t iv i ty .
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F igure  2.1 Kamerlingh Onnes’ s d a t a  on the  
su p e r c o n d u c t i v i t y  of mercury (Hg.'.
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However , i n f i n i t e  c o n d u c t iv i ty  imposes c e r t a i n  c o n d i t i o n s  on 
th e  magnetic f i e l d  which were not  subsequen t ly  observed .  The r e l a t i o n  
between t h e  e l e c t r i c  c u r r e n t  d e n s i t y  J  , and the  app l ied  e l e c t r i c  
f i e l d  "e , in a superconducto r  i s  given by ohm’ s law 1. 3 4 » ,

J  = ๔ E (2 .1)

where ๙ i s  t he  c o n d u c t iv i ty .  The e l e c t r i c  f i e l d  E i s  
r e l a t e d  to  the  magnetic f i e l d  B by Maxwell’ s equation

v x E  = -  1 9 B ( 2 .2 '
c จ t

I f  we s u b s t i t u t e  Eq. (2 .1)  i n to  Eq (2 .2)  , we see t h a t  fo r  i n f i n i t e  
c o n d u c t i v i t y  and 3B/ 3 t  = 0 thus impl ies  t h a t  t he  magnetic f i e l d
B remains c on s tan t  fo r  any medium with  i n f i n i t e  c o n d u c t iv i ty  
because  E van ishes  i n s i d e  the  m a t e r i a l .  In p a r t i c u l a r  , c o n s id e r  a 
supe rconduc to r  t h a t  i s  cooled below Tc in zero magnetic f i e l d .  The 
above r e s u l t  shows t h a t  B remains zero  even i f  a f i e l d  i s  
su b sequen t ly  a p p l i e d  (See Fig 2 .2 ) .

2 .1 .2  P e r f e c t  Diamagnetism , or  t he  Meissner E f f e c t .
The magnetic p r o p e r t i e s  e x h i b i t e d  by superconduc to rs  a re  

as d ram at ic  as t h e i r  e l e c t r i c a l  p r o p e r t i e s .  The magnetic p r o p e r t i e s  
cannot  be accounted f o r  by the  assumption t h a t  t he  superconducting  
s t a t e  i s  c h a r a c t e r i z e d  p rope r ly  by zero  e l e c t r i c a l  r e s i s t a n c e .  I t  i s  
an expe r im enta l  f a c t  t h a t  a bulk  superconducto r  in a weak magnetic 
f i e l d  w i l l  a c t  as a p e r f e c t  diamagnet ,  with  zero magnetic i n d u c t io n  in 
t h e  i n t e r i o r ,  when a specimen i s  coo led  and becomes supe rco n du c t iv in g ,  
experiments f i r s t  performed by Meissner and Ochsenfeld
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dem onst ra te  t h a t  a l l  magnetic f l u x  i s  exp e l l e d  from th e  i n t e r i o r  (see 
F ig .  2 .2 ) .  This i s  c a l l e d  the  Meissner e f f e c t .

F ig u re  2.2 Meissner e f f e c t  in superconducto rs  ะ The magnetic f l u x  
i s  e x p e l l e d  from a superconduc to r  t h a t  i s  , f o r  T < T .

The consequence of the  Meissner e f f e c t  can be desc ibed  
us ing  m ag ne to s ta t i c  th e o ry  (34).  The magnetic f i e l d  H , t h e  magnetic 
i n d u c t ion  B , and t h e  m agne t iza t ion  M are  r e l a t e d  by

B = H + 4 K M (2.3)

At tem pera tu res  above most superconducting  m a t e r i a l s  a re  only
weakly magnetic so t h a t — 1 B = H in the  m a t e r i a l .  At
tem pera tu re s  below Tc , B = 0 in th e  m a t e r i a l  ( i .  e . ,  a
m agne t iza t ion  M = - H / 4  K oppos i t e  to  t he  a p p l i e d  f i e l d  i s
induced ) .  T h e re fo re ,  t he  magnetic moment m of a superconduc to r  i s  
g iven by
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ที = ( H ) V (2 .4)
4 แ

where V i s  the  volume of the  superconducting  m a t e r i a l .

The r e l a t i o n s h i p  between H and 
unique p ro pe r ty  of a given m a te r i a l ,  
c h a r a c t e r i z e d  by the  magnetic s u s c e p t i b i l i t y

M in Eq. (2 .3)  i s  a 
This r e l a t i o n s h i p  i s  
X , de f ined  as

M (2.5)

Since B = 0 in t he  superconducting  s t a t e  , i t  fo l lows t h a t

M = - ( 1 ) H
411

(2.6)

from Eq. (2 .5)  and Eq. (2 .6)  then impl ies  t h a t  X = - 1/411 < 0 , 
Such a con d i t io n  in which the  m agne t iza t ion  cance ls  e x t e r n a l  f i e l d  
e x a c t l y  , i s  r e f e r r e d  to  as p e r f e c t  diamagnetism.

magnet

superconduc to r

F ig u re  2.3  Three p o s s ib l e  p o s i t i o n s  of a superconducto r  in  the  
neighborhood of a permanent magnet. In each ca se ,  t he  induced moment 
of t h e  superconduc to r  , i n d i c a t e d  by arrows i s  in a d i r e c t i o n  
o p p o s i t e  to  the  f i e l d .
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To p i c t u r i z e  what happens when a superconducto r  i s  brought 
nea r  a permanent magnet (a m a t e r i a l  with a permanent magnetic moment), 
w ith  a n o r th  and sou th  pole,we r e f e r  to  F ig .  2.3 , t h r e e  p o s s ib l e  
p o s i t i o n s  of a superconducto r  in r e l a t i o n  to  a permanent magnet, 
a long with  the  magnetic f i e l d  l i n e s  of the  magnet and the  induced 
magnetic moments of t he  superconducto r  a re  shown.

Notice t h a t  the  magnetic moment of the  superconducto r a re  in the  
d i r e c t i o n  oppos i te  t o  t he  magnetic f i e l d  a t  the  p o s i t i o n  of the  
supe rconduc to r .  T h e re fo re ,  the  l i k e  poles  of the  permanent magnet and 
th e  superconduc to r  a re  c l o s e r  than  the  oppos i te  po les  , so t h e r e  i s  
always a r e p u l s i v e  fo rc e  between then .

2 .1 .3  The C r i t i c a l  Magnetic F ie ld
S ho r t ly  a f t e r  Onnes f i r s t  observed su p e r c o n d u c t iv i ty  , i t  

was found t h a t  su p e r c o n d u c t iv i ty  can be des t royed  by t h e  a p p l i c a t i o n  
of amagnetic f i e l d .  I f  a s t ro ng  enough magnetic f i e l d  H > HC(T), 
c a l l e d  t h e  c r i t i c a l  f i e l d  , i s  app l ied  t o  a superconducting  
specimen , i t  becomes normal and reconers  i t s  normal r e s i s t a n c e  even 
a t  below c r i t i c a l  t eem pera tu re  , We cons ide r  a long c y l i n d e r  of pure 
superconduc to r  in a p a r a l l e l  a pp l ied  f i e l d  H , where t h e r e  a re  no 
demagnet iz ing  e f f e c t s .  I f  the  sample i s  superconduc t ing  a t  
t em pe ra tu re  T in zero  f i e l d  , t h e r e  i s  a uniqe c r i t i c a l  f i e l d  HC(T> 
above which the  sample becomes normal.  This t r a n s i t i o n  i s
r e v e r s i b l e  , f o r  su p e r c o n d u c t iv i ty  reappears  as soon as H i s  
reduced below Hc ( T ) .  Experiments on pure supe rconduc to rs  shows 
t h a t  t h e  curve Hc ( T ) i s  roughly p a r a b o l i c  ( See F ig .  2.4 ) . 
This  c r i t i c a l  f i e l d  H=(T) i s  a fu n c t ion  of t he  t em pe ra tu re  i s  
g iven  approximate ly  by Tuyn’ s law ( 35 ) as



Hc ( T ) = He ( 0 ) [ 1 ( T/Tc }a ]
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(2.7)

F ig u re  2 .4  Phase diagram in H -  T plane  , shoving superconducting  
and normal reg ions  , and t h e  c r i t i c a l  curve Hc ( T ) or Tc (T ) them.

2.2 London - P ippard  Phenomenological Theory

The London equ a t io ns  (6) provided t h e  f i r s t  theo ry  
d e s c r i p t i o n  of t h e  Meissner e f f e c t .  Although t h e s e  equ a t io ns  a re  
a p a i r  of phenomenological  c o n s t i t u t i v e  r e l a t i o n s  d e s c r i b i n g  the  
re sponse  of t h e  s u p e r c u r r e n t  J t o  a pp l i e d  e l e c t r i c  and magnetic 
f i e l d s  , they  may a l s o  be d e r iv e d  from the  f o l l o v in g  simple  model.

2 .2 .1  D er iv a t io n  of London Equations
I f  the  s u p e r e l e c t r o n s  a re  con s ide r  as an incom press ib le  

nonviscous  charged f l u i d  with  v e l o c i t y  f i e l d  v ( x , t )  then  the  
s u p e r c u r r e n t  i s  g iven by
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1( x , t )  = ท11 e V B ( x , t )  (2 .8)

where ท0 i s  the  s u p e r e l e c t r o n  number d e n s i ty  and e i s  the  
charge  on an e l e c t r o n .  The equa t ion  of motion of a s u p e r e l e c t r o n  in 
t h e  p resence  of an e l e c t r i c  f i e l d  i s

m dvs ( x , t )  = e E ( x , t )  (2 .9)
dt

which , when combined with Eq. ( 2.8 ) , y i e l d s

d J o ( x , t )  = ท, e° E ( x , t )  (2.10)
d t  m

In t h e  s teady  s t a t e  , the  c u r r e n t  in  a superconducto r i s  c o n s t a n t .  
T h ere fo re  i t  fo l lows from Eq. ( 2.10 ) t h a t  d J =1( x , t )  = 0 , or

d t

E ( x , t )  = 0 (2.11)

This impor tan t  conc lus ion  a s s e r t s  t h a t  5 in t he  s teady  s t a t e  5 the  
e l e c t r i c  f i e l d  i n s i d e  a superconduc to r  v an i she s .  In o th e r  words , t h e  
v o l t a g e  drop ac ross  a superconduc to r  i s  ze ro .

Eq. ( 2.11 ) l eads  immediately t o  ano ther  immediately impor tan t  
r e s u l t .  When t h i s  r e l a t i o n  i s  combined with  the  Maxwell equa t ion  ,

V X E = -  1 dB (2 .12)
c dt
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one f i n d s  t h a t

dB = 0 (2.13)
dt

This a f f i rm s  t h a t  in t he  s teady  s t a t e  the  magnetic f i e l d  i s  c o n s t a n t .

To proceed with  t h i s  m o d i f ic a t io n  , l e t  US s u b s t i t u t e  f o r  E 
from Eq. ( 2.10 ) i n to  ( 2.12 ) , which y i e l d s

dB = - me V X d J s (2.14)
dt  ท0e 2 dt

This equa t ion  i s  i n v a l i d ,  as has j u s t  been seen , because i t  p r e d i c t s  
t h a t  d |  = 0 . To r e c t i f y  t h i s  , London p o s t u l a t e d  the  r e l a t i o n

d t

B

or
J ร

-  me V xJ 
ทs e2

- ท=e 2 A
me

(2.15)

(2.16)

which has the  same from as ( 2.14 ) , except  t h a t  t he  t ime 
d i f f e r e n t i a t i o n s  have been e l im in a te d .  We s h a l l  see  p r e s e n t l y  t h a t  
r e l a t i o n  (2 .16 ) ,  know as the  London equa t ion  , l eads  t o  r e s u l t s  t h a t  
a re  in  agreement with  experiment .

Eq. (2.15) i s  a r e l a t i o n  between B and J s . These 
q u a n t i t i e s  a re  a l s o  r e l a t e d  by the  Maxwell equa t ion
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v X B = 4lt J_
c

(2.17)

¥e e l i m i n a t e  J s between Eq. ( 2.15 ) and Eq. (2.17  ) [ by
tak ing  the  c u r l  of (2.17) s u b s t i t u t i n g  fo r  7 X from Eq. ( 2 .1 5 ) ,  
then  us ing  the  i d e n t i t y  of v X v X B = 7 (  v.B )-  v3B = -  73B ,
and v.B = 0 ] , we f i n d  t h a t

72B = 4TL ท 1e° B (2.18)
m c 2

Let us apply t h i s  f i e l d  equa t ion  to  a s i t u a t i o n  of. s imple 
geometry.  The specimen i s  semi - i n f i n i t e  , with i t s  s u r f a c e  ly ing  in 
th e  yz plane  (see  F ig .  2.5 ) , and the  f i e l d  i s  a pp l i e d  in t h e  y - 
d i r e c t i o n .  Since q u a n t i t i e s  vary only in t h e  X - d i r e c t i o n ,  Eq (2.18  ) 
reduced to

4TL ทร 3 B (2.19)
m e 3

Eq. ( 2.19 ) y i e l d s  t he  s o lu t i o n
B y  ( X ) = B# < 0 ) e~*/ '*L (2.20)

where = (mca/ 4 l n s e 3) (2.21)

i s  known as t he  London p e n e t r a t i o n  dep th .
E q . (2 .2 0  ) shows t h a t  the  f i e l d  dec rea se s  e x p o n e n t i a l l y  as one
proceeds  from the  s u r f a c e  i n t o  the  superconduc to r .  Thus t h e  f i e l d  
v an i sh e s  i n s id e  the  bulk  of t he  medium, in  accord with t h e  Meissner 
e f f e c t .  As a m a t te r  of f a c t  , t h i s  agreement was t h e  pr imary 
m o t iv a t io n  f o r  p o s t u l a t i n g  the  London equa t ion  in the  f i r s t  p la c e .

0 1 G 4 G 7
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F ig ure  2.5  S o lu t ion  of t he  London equa t ion .  The magnetic f i e l d  
decays e x p o n e n t i a l ly  w i th in  the  superconducto r .

Note , however , t h a t  Eq. ( 2.20 ) p r e d i c t s  t h a t  the
f i e l d  p e n e t r a t e s  the  sample to  some e x ten t  , t h e  d i s t a n e c  of 
p e n e t r a t i o n  being roughly equal  t o  AL- Thus the  f l u x  i s  not  exp e l l e d  
e n t i r e l y  from the  superconduc to r ,  as was once thought  , but  t h e r e  i s  
a sm al l  reg ion  near t he  s u r f a c e  . i n  which t h e r e  i s  an a p p re c ia b le  
f i e l d '  , e .q .  exper imenta l  work fin d s th at A1= 500 A , 1400
A (37) f o r  pure and high -  Tc superconduc to rs  r e s p e c t i v e l y .

Experiments i n d i c a t e  t h a t  t he  p e n e t r a t i o n  dep th  in c r e a s e s  
w ith  in crea sin g  temperature , and the function

\ < T )  = A(0)  [1 - (T /T c ) a3_ l / ^ (2.22)

p ro v id e s  a good f i t  to  t h e  d a t a  fo r  a l l  t em pera tu res  (38 ) s in c e  ทs 
i s  th e  only v ar ia b le  q uantity  in Eq. ( 2.21 ) , Ve in fe r

ทB ( T ) = ท_ (0) [ 1 -  ( T/Tc )* (2.23)

Eq. ( 2.23 ) i s  known as t h e  G or te r  - Casimir ( 5 ) formula.
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2 .2 .2  P ip p a rd ’ s Genera l ized  Equation
The London equa t ion  , which we have d i s c u s s e d  in  the  

p rev ious  s e c t i o n  , was used t o  d e s c r ib e  the  e lec t rodynamics  of 
superconduc to rs  u n t i l  about  1950. At t h a t  t ime , P ippard  ( 7 ) 
s t a r t e d  a s e r i e s  of m easu rem ents  of the  microwave su r fa c e  impedance 
of superconduc to rs  ; h i s  most impor tan t  conc lus ion  , as we have 
a l r ea d y  mentioned , was t h a t  fo r  pure superconduc to rs  t he  London 
equ a t ion  should be r e p la c e d  by a non - l o c a l  equa t ion .

P ippard  in t ro d uced  the  coherence l eng th  whi le proposing  a 
n on loca l  g e n e r a l i z a t i o n  of the  London equa t ion  ( 2.8 ) .T h i s  was done 
in analogy t o  chambers’ non loca l  q e n e r a l i z a t i o n  ( 39 ) of ohm’ s law 
from J (x )  = d  E (X) to

J(x) = 3_d_ .ritritE(x)] e~R/^ d 3x^
4 l £  Ra

For t h i s  and o th e r  reasons  , P ippard  p roprosed  a
n o n loca l  g e n e r a l i z a t i o n  of Eq. ( 2.16 ) in which J  ( X ) i s
dete rmined  as a s p a t i a l  average of A th roughout  some ne ighbor ing  
reg ion  of dimension £ 0 ~  10-a cm. For h ea v i ly  doped a l l o y s  , $ 0 i s  
comparable with  t h e  e l e c t r o n i c  mean f r e e  pa th  X  in  t h e  normal 
metal  ; f o r  pure meta ls  , however, £ 0 i s  not  i n f i n i t e  , but  i n s t e a d  
t en d s  t o  a c h a r a c t e r i s t i c  length^known as P ippard  coherence  l en g th .

The r e l a t i o n  P ippard  proposed t o  r e p la c e  t h e  London equa t ion  i s  
J (X) = - nae^ . _3 R CR.A ( x j l e  n/  £ (2.24)

me 4H 0 R4

where R = X-X and R = [ r I . The coherence  l e n g th  i s  given by

I s l  i (2.25)



18

where i s  a c o n s t a n t  of t he  pure m a t e r i a l  ; in p a r t i c u l a r  £ = £ 0 
in  t h e  pure  m a t e r i a l ,  and £ = i .  f o r  t  << £ 0 . The P ippard  coherence  
l e n g th  ^  , e s t im a t io n  by an u n c e r t a i n ty  -  p r i n c i p l e  , only e l e c t r o n s  
w i th in  kBTc of t he  Fermi energy can play  a major r o l e  in  a 
phenomenon where s e t s  in a t  Tc , and th e s e  e l e c t r o n  have a 
momentum range 4 P ~ k0 Tc / vr  , where VF i s  t h e  Fermi 
v e l o c i t y .  Thus VAX >/ ธ / 4P -  h  VF / kB T 1. , l ead ing  t o  the  
d e f i n i t i o n  of a coherence  l eng th  £ .

a h V1.
c

(2.26)

Using Eq. ( 2 . 2 2  ) , he computed the  p e n e t r a t i o n  depth  f o r  v a r ious
v a lu es  of 5 ,and >1_ and compared the  r e s u l t s  with  exper imenta l  d a t a .  He 
found (40) t h a t  he could f i t  t h e  d a t a  on both  t i n  and aluminum by 
t h e  cho ice  of a s i n g l e  parameter  a = 0.15 in Eq. ( 2.26 ) For
comparison , t h e  BCS theo ry  ( 11 ) of pure samples leads  t o  a very 
s i m i l a r  non loca l  r e l a t i o n  and i d e n t i f i e s  £ 0 as

£ 0 = 0.18 h V,  = h_VF (2.27)
KbTc TT^o

where A„ i s  t he  energy gap a t  zero  t em pera tu re .

The P ippard  equa t ion  r e l a t e s  t he  induced s u p e r c u r r e n t  J  t o  
t h e  v e c t o r  p o t e n t i a l  A . In t h e  pre sence  of an a p p l i e d  magnetic 
f i e l d  , however , A co n ta in s  c o n t r i b u t i o n s  from th e  e x t e r n a l

—เ
' c u r r e n t s  as wel l  as from J  i t s e l f  , t he reby  r e q u i r i n g  a s imul taneous  

s o l u t i o n  of Eq. ( 2.24 ) and Maxwell’ s equa t ion  de te rm in ing  t h e  
magnet ic f i e l d .  N ev e r the le s s  , i t  i s  p o s s ib l e  t o  e x t r a c t  t he  
im por tan t  p h y s i c a l  f e a t u r e s  by n o t ing  the  e x i s t e n c e  of two
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c h a r a c t e r i s t i c  l e n g th s .  The v e c to r  p o t e n t i a l  y a r i e s  with t h e  s e l f  - 
c o n s i s t e n t  t em pera tu re  - dependent  p e n e t r a t i o n  len g th  , which need 
not  be t h e  same as t he  London p e n e t r a t i o n  leng th  โ d e f in e d  in Eq. 
( 2 .2 1 ) ]  , whi le t h e  i n t e g r a l  ke rne l  has a t em pera ture  -  independent
range  £ 5 which i s approxim ate ly  the sm al le r of £ and i . I f  £ 0 << A ,
then  t h e  v ec to r p o t e n t i a l v a r i e s slowly and can be e v a lu a t e d  a t
X = X. In t h i s way , we ob ta in

J k(x) 2- n _ * / ’ - 3 /  da x Rk Rji e ~ayJr
าท c j 0 4K Ra

- ท.1e° Af (X) K
c-o

/  dR - o / t  e 5
me i

or
J (x) = - ทse z 1 Î Û ) . Ï << A (2.28)

me ( i t  t>

Any sample t h a t  s a t i s f i e s  t h i s  l o c a l  c ond i t ion  ( £ << -A ) i s  known as 
a London superconduc to r  , because Eq. ( 2.24 ) rep roduces  the  
form of London equa t ion  ( 2.16 ) but  with  th e  c o e f f i c i e n t  
reduced by a f a c t o r  (1 + £ /X) 1. Comparison with  Eqs. ( 2.15 ) and 
(2 .18) immediately g ives  the  cor responding  p e n e t r a t i o n  dep th  a t  zero  
t em pera tu re

A (0) = - \ ( 0 )  {£_+Jüi_)W2 lo c a l  l i m i t  ^ <<A(2.29)

For a pure  London superconduc to r  ( b  << X ) , Eq. (2 .29) reduces  t o  
t h e  p rev ious  London ex p re s s io n .
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In p r a c t i c e  , most superconducting  elements a t  low
tem pera tu re  v i o l a t e  t h e  con d i t io n  fo r  a pure London superconduc to r ,  
which r e q u i r e s  £ 0 << ^ .  Hence London superconducto rs  a re  u s u a l l y  
h e a v i l y  doped a l l o y s ,  where the  leng th  £ i s  de te rmined  by JL 
i n s t e a d  of £0, and t h e  fo l lowing  i n e q u a l i t y  holds ะ 4 ~ f  << ^  in 
t h i s  case  Eq. ( 2.29 ) exp la in s  the  observed i n c re a s e  in the
p e n e t r a t i o n  depth  f o r  d i r t y  a l l o y s  where Jl << .  ̂ , I f  a sample i s  a 
London superconduc to r ,  Eq. (2.22 ) shows t h a t  i t  remains one f o r  a l l  
T < Tc Since t h e  p e n e t r a t i o n  depth of any superconducting
m a t e r i a l  i n c re a s e s  r a p id ly  as T Tc 5 however , a l l
superconduc to rs  become London superconducto r s u f f i c i e n t l y  c lo s e  to  Tc .

I t  i s  impor tan t  t o  emphasize t h a t  eqs .  ( 2.28 ) and ( 2.29 ) 
a re  only c o r r e c t  f o r  £  << A , and t y p i c a l  non loca l  l i m i t  ( £  >> % ) 
when the  m a t e r i a l  i s  konwn as a P ippard  superconduc to r .  We can
c a l c u l a t e  the  p e n e t r a t i o n  depth  a t  zero t em pera tu re  , and found t h a t

A(°) = 8_ ( O ) ! / ' 3 non loca l  l i m i t  =£>>/!  (2.30)
9 2H

This exp ress ion  i s  independent  of the  mean f r e e  pa th  & because
t h e  s p a t i a l  i n t e g r a t i o n  in Eq. (2 .24 ) i s  l im i t e d  by the  p e n e t r a t i o n  
dep th  A and not  by ^  . Eqs. ( 2 . 2 9  ) and ( 2.30 ) c o n s t i t u t e  a
c e n t r a l  r e s u l t  of t h e  P ippard  Theory.

2 .2 .3  Flux Q uan t iz a t ion  in a Superconducting Ring
Flux q u a n t i z a t i o n  i s  an example of a long -  range 

quantum e f f e c t  which the  coherence of t he  superconduc t ing  s t a t e  
extends over a r i n g  or so le n o id .  Let US f i r s t  c on s ide r  t he  London 
eq u a t io ns  imply a s t r i k i n g  c onse rva t ion  law. For s i m p l i c i t y  , we
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s tudy  only the  l i n e a r i z e d  equa t ions  ( 2.8 ) , ( 2.9 ) and ( 2.10 )

- eE

-1 >1II = - 1 dJ (2.31)
m dt ทSC dt

Consider a s u r f a c e  ร bounded by a f ixed  c losed  curve c t h a t  l i e s
wholly in the  superconducting  m a te r i a l  (See Fig 2.6 ) . Independent  of
whether ร a l so  l i e s e n t i r e l y  in the  superconducto r ( See Fig 2.6a
or b ) ,  we may i n t e g r a t e  Maxwell’ s equation  ( 2.12 ) t o  ob ta in

J  ds.dB = - c /  ds (v X E) = - c <b d l .E  (2.32)
dt  c

where the  r i g h t  s ide  has been t rans formed  with S to k e s ’ theorem.

F i g u r e  2 . 6  I n t e g r a t i o n  contour fo r  e v a lu a t io n  of f l u x o i d  (a) 
s imply connected  ; (b) m u l t ip ly  connected.

Since c  l i e s  in t he  superconducto r , Eq. (2.31  ) 
i s  a p p l i e d  a t  every p o in t  , g iv ing
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(2.33.'

We see that the fluxoid c 40 ] defined as

(2.34)

remains constant for a ll time. I t  is clear that (p  d iffe rs  from the 

magnetic flux by an additional contribution arising from the induced 

supercurrent. With added assumptions , i t  is possible to derive more 

specific results.

1. I f  c  is su ffic ien tly  far from the boundaries , then J is 

exponentially small , and <p reduces to the magnetic flux.

2. I f  the in te rio r of c  is wholly superconducting (See Fig 2.6a), 

then the other London equation ( 2.15 ) immediately implies that 

vanishes.

3. As a corollary of the previous conclusion, is the same for any 

path C # that can be deformed continuously into c  , always remaining 

in the superconductor.

London also observed that Eqs. ( 2.15 ) and ( 2.8 ) can be 

written in terms of the vector potential as follows

V X ( mv eA ) (2.35)

where V X A (2.36)

The canonical momentum is given by 

*p = mv - eAeA

e



which may be consider a generalized condition of irro ta tiona l flow. 

In addition , the fluxoid may be writhen as

^ = ร (v X A) . ds - me ^  dl . v_

e

Normal ring in 

magnetic f ie ld

Figure 2.7 Flux trapping in 

recent measurements are those of 

lifetim es of order 10ธ years.

eA) . dl (2.38)

(2.39)

/ IV
Cooled below Tc 

Superconducting ring in 

magnetic f ie ld  5magnetic 

f ie ld  then removed 

a superconducting ring. Typical 

J. File and R.G. H ills  , who find
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This equation is reminiscent of the bohr - Sommerfeld quantization 

relation , and , indeed , London suggested that the fluxoid is 

quantized in units of he /e ( 41 ). As shown in Fig. 2.7 , th is 

prediction was subsequently confirmed ,but the observed quantum unit 

is he / 2e (42,43 ) such persistent currents have been observed 

over long periods ( 44 )

2.3 Thermodynamics of the Superconducting state

Like the electromagnetic properties , the thermal properties , 

Gibbs free energy , entropy and electronic specific heat of also 

change sharply as the temperature is lowered through the

transition temperature for superconductivity. The Meissner effect 

shows that the transition in presence of a magnetic fie ld  through the 

normal and superconducting state boundary Hc = H (0) [1 - (T/Tc)2] 

is reversible , and therefore that the laws of theraodynamies are 

applied to N-S phase transition. In th is section , we show the 

discontinuity in these thermal properties and discuss the behavior 

of the electronic specific heat above and below Tc , which shows 

that entropy is carried by excitations in the superconducting state 

separated from the normal state by an energy gap.

2.3.1 Gibbs free energy

When the magnetic quantities are changed by small amounts , 

the work done on the system is given by (4TO 1 /  d3 X H.dB, so that 

the change in the Helmholtz free energy density becomes

= - SdT + (41)_1 H.dBdF (2.40)
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with the corresponding d iffe re n tia l relation

ร = 41 3̂_F. )

3B .. T
(2.41)

Here we assume the volume is held constant , and ร is the entropy 

density.

The flux expulsion associate with the Meissner effect 

indicates that a bulk superconductor in an external magnetic f ie ld  H 

is uniquely characterized by the condition 1 = 0 ,  independent of 

the way the state is reached ( see Fig 2.2 ). We therefore infer 

that the superconductor is in true thermodynamic equilibrium and 

accordingly apply the techinques of macroscopic thermodynamics. For 

most experiments , however , i t  is impossible to manipulate the flux  

density B d irectly  ; instead , the external currents ( in a

solenoid , for example ) control the magnetic fie ld  H , and we 

prefer to make a Legendre transformation from the Helmholtz function 

F ( T,B ) to the Gibbs free energy density

G ( T , H ) = F - ( 41U ~1 B.H (2.42)

with the corresponding d iffe re n tia l relations

dG = - SdT - (4K)_1 B.dH (2.43)

ร B = - 411 (2.44)

Consider along 

magnetic f ie ld . I f  the

superconducting cylinder in a para lle l 

f ie ld  H = Hz is increased at constant

temperature , Eq. ( 2.44 ) gives
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GJT , H) - G11 (T , 0) = - 4E J  B (H ) d h '
O

(2.45)

To a good approximation , the normal state of most

superconducting elementts is non magnetic ( B = H ) , and we find

GS(T , H) - Gn(T ,0 )  = - (8E) 1 แ2 (2.46)

In contrast , B vanishes in the superconductor , which yields

Gs (T , H) = Gs (T , 0) (2.47)

The two phases are in thermodynamic equilibrium at the

thermodynamic c r it ic a l f ie ld  Hc. This condition may be expressed 

by the equation

Gs (T , Hc) = Gn (T , Hc) (2.48)

and a combination of Eqs. ( 2.46 )-( 2.48 ) immediatly gives

Gs (T , 0) ะะ Gn (T , 0) - (8K)-1 h“ c (2.49)

Fs (T , 0) = Fn (T , 0) - (8H)'1 H3c (2.50)

These equations show that a negative condensation energy -H2C / 8K

per unit volume accompanies the formation of the superconducting 

state. We have , therefore , in an external magnetic f ie ld  H a 

difference in the Gibbs free energy density between the 

superconducting and normal state. From Eqs. ( 2.46 ) - ( 2.49 ) ,

lead to the general result

ะะ (8 E ) '1 (H2 - H2c)Gs (T , H) - Gn (T , H) (2.51)
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2.3.2 Entropy and Specific heat

We now proceed to use the expressions above for the Gibbs 

free energy to compute the entropy, latent heat and the discontinuity 

in the electronic specific heat at the normal and superconducting 

state. The derivative of Eq. ( 2.51 ) with respect to temperature 

yie ld  the entropy difference between the two state

รa (T , H) - รn (T , H) = (410 1 H^dHMT'i) (2.52a)

dT

Figure 2.4 shows that the right side is negative , so that 

the superconducting phase has lower entropy than the normal phase. 

This is in agreement with experiment ( 45 ) shown in figure 2.8.

Figure 2.8 Entropy ร of alumimum in the normal and superconducting 

state as a function of the temperature.
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F inally , from the thermodynamic identity , the specific heat

the difference in the electronic specific heats at constant f ie ld  of 

the two phases 5 c - CNH , may be derived from Eqs. ( 2.52 > as

CSH - CnS T K d H j2 + Hc d*Hc] (2.53)

4H dT dTa

In particular, at the transition temperature Tc and Hc = 0 , 

so we have for the transition in the absence of an applied 

magnetic fie ld  , so that the jump in the specific heat at Tc 

becomes

(C0 - Cn)Tc _ Tc [ (d He)„_ ] 2 (2.54)

4H dT

Eq. (2.54) has been well verified  experimentally ( 46 ) shown in 

figure 2.9.



X I0-2

Temperature (K)

Figure 2.9 The heat capacity of Nb in the normal and superconducting 

state showing the sharp discontinuity at the c r it ic a l temperature..

For zero applied fie ld , at the transition temperature there 

is no latent heat ( Eq. 2.52 ) , and there is a jump in the specific 

heat ; consequently the transition to the superconducting state is 

second - order phase transition in the absence of a magnetic f ie ld .

In practice , not only does one observe a discontinuity at 

Tc , one also obtains a deviation from the linear dependence of the 

electronic specific heat on T ( Con = ไโ T ) , to an exponential
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dependence on T below Tc , proportional to exp (-A/kBT) , Û 

being the energy gap. To derive the exponential dependent, i t  is 

necessary to consider a system of elementary excitations or quasi - 

particles in the superconducting state that require a f in ite  energy 

2 Û to be excited above the ground state of the many - electron 

system. The existence of such quasi - pasticles is accounted for by 

the BCS theory ( 11 )

2.4 Ginzburg - Landau Theory

This section w ill serve as the briefest of introductions to a 

theory whose ramifications reach extensitvely into the rest of th is 

thesis. The theory is based on the pioneering work of Landau on 

second - order phase transition.

The phase transition at Tc singnal the appearance of an 

ordered state in which the electrons are p a rtia lly  condensed into a 

fric tion less  superfluid. Ginzburg and Landau ( 15 > describe the 

condensate with a complex order parameter ^  (X). |3MX)|r  was 

to represent the local density of superconducting electrons , ท 15. 

The observed second - order phase transition implies that ï ' ( x )  

vanishes for T >/ Tc , and that i t  increases in magnitude with 

increasing Tc - T > 0 .  Near Tc the quantity \~ } t \1 is 

small , and the macroscopic free energy d e n s i t y  F= of the 

superconducting state in zero fie ld  is assumed to have and expansion 

of the from

F = = Fn0 + + jg/ Ï /  + . . . .  ( 2 . 5 5 )

where Fn0 is the free energy density of the normal state in zero

magnetic f ie ld  and where /.a nd  p are real temperature dependent
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phenomenological constants. In equilibrium,

5FS = 0 , 9 aF. > 0 ,

d î i \ l  พ ื4

and in addition we must have that เ^ '( = 0 for T >/ Tc and

I’H' I 2 >, 0 for T < Tc. I t  follows that = 0 , > 0 , and for

T < T 1. , (X. < 0. Thus in equilibrium , for T < Tc ,

(2.56)

(2.57)

where Y o0 is the value in zero fie ld  ( i .e . ,  at an in fin ite  distance 

from any boundary ) , and we have assumed thatc^-(T) = (7 -T ) y  

( ci s ^ )  an^ e - p(Tc). From Eq ( 2.57 ) one can get *'■

d r  7’ TC

4  IL ^  ■ 4  It ( T

K

)2 fd ^ ) (2.58)

The from of th is expression is well known to be completely confirmed 

be experiment.

The second important step that Ginzburg and Landau look was 

to state that , i f  there was a spatial variation of % , as well as a 

magnetic f ie ld  H derived from a potential A , the energy density 

in the superconducting phase FSH , was give'n by

F = h = F_0 + H2 + 1 I (-lhv - eA) I t  I (2.59)

8H 2ffl c
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The equation for Y  many now be found from the requirement that the 

to ta l free energy of the body /  FSH dv , Thus , varying with respect 

to Y  » ve find that

1 (- ihv - eA ) * Y  + 3Fs0 = 0 (2.60)

27Y) c

and moreover , at the boundary of the superconductor , in view of 

the arbitrariness of the variation Y *  , the following condition 

must hold ะ

ท ■ (-ihv - eA ) ไ}?

c.

0 (2.61)

Where ท is the unit vector to the boundary.

So far as the equation for A is concerned , and using 

condition that V. A =0 and vary the free energy with respect to 

A, we obtain the usual expression ;

v3A = - 4 TtJ = 2 ftehi ( Y  7  y  - ÿ V ÿ “ ) + 4Ke3 I A (2.62)

d me me3

in which the right - hand side constans the expression for the 

supercurrent

J = - ieb ( Y  7 Ï  - ÿv Y * ) - ^   ̂ ^  (2.63)

me me

The application of the Ginzburg - Landau equations , Eqs. 

( 2.60 ) and ( 2.62 ) , to a planar boundary leads to the following
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results. One can define paramenter the penetration depth A (of the

dimension of length ) , and K the Ginzburg - Landau parameter

( dimensionless ) as follows

2.
À = mcajB mca = mca (2.64)

4lteaM 4Keam  4Keans

Ka ะะ 1 (me)2 $ = ( 2ça ) Hc A 2 (2.65)

2K eh he2

We can consider the dimensionless Ginzburg - Landau parameter

K ,to  be the ratio of penetration depth A , to the coherence length 1

K = A / % (2.66)

where -  t — (2.67)

2m K l

Experiments ( 42,43, 47 ) indicate that , m replaced by an effective 

mass m* , and e replaced by the charge of a pair of electrons e* ,

2m , e 2e (2.68)

and ท replaced by an effective superelectron density ท

t \ 1 n=

2

(2.69)

where ท is the number of single electrons in the condensate.
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With the iden tifica tion  ท 11’* = I Ï I 2 , this agrees

with the usual de fin ition  of the London penetration depth. In the 

orig inal ( 15 ) formulation of the theory , i t  was thought that e* 

and m* would be the normal electronic value. However ,

experimental data has turned out to be f it te d  better i f  e* -  2e . 

The microscopic pairing theory of s u p e r c o n d u c t i v i t y  makes i t  
unambiguous that e* = 2e exactly , the charge of a pair of 

elections. In the free - electron approximation , i t  would then be 

natural to make m* = 2m and ท*B = ( 1/ 2) ท B , where ทB

is the number of single electrons in the condensate with these 

conventions , eq. (2.64) A* = m*c2 / 4He* 2 ท* = me2 / 4Tle2ns 

so the London penetration depth is unchanged by the pairing.

Eqs. ( 2.56 ) and ( 2.64 ) lead to an exp lic it form for 

temperature dependent of A ,

A ~  (1 - t r 1' 3 ■ t = โ / Tc  (2.70)

we have seen earlie r , Eq. ( 2.22 ) , that the Gorter - Casimir

temperature dependence A ~  (1 - t * ) 1/2 f i t s  experimental data

at a ll temperature. Near Tc 5 Eqs. ( 2.22 ) and ( 2.70 ) , the two 

forms of temperature dependence are in agreement. In fact , 

(1 - t * ) 1/2 = ( l+ t2)~1/2 (1+t) 1/2 ( l - t ) _1/2 and for t  near 1 the

f i r s t  two terms are slowly varying 5 so that the dependence on t

is dominated by singularity given by the last term , (1 - t)"3/z ,

In s im ila rity  Eq. ( 2.7 ) , Hc~ ( l - t 2) reduces to Eq. (2.58) 5

H ~ (1 - t ) ,  for t  near 1 ( or T near ).

A second important result that Ginzburg - Landau theory 

obtained was that, for K << 1 , the interphase surface energy ^ ทร
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between normal and superconducting phase is

t f nm = 1.89 _A H2C , K << 1 (2.71)

K 8H

thus explaning the very large positive energy ( )> H3C / 8 T[ ) 

needed to explain the Meissner effect , and the structure in the 

intermediate state , physically , the significance of th is

result was that while the magnetic f ie ld  decayed over a

characteristic distance X  to a vanishingly small value in a 

the superconductor , decayed to zero toward the normal region

over a much longer distance .

Ginzburg and Landau made further observation , without 

pursuing i t  , that for K > 1/J2 ,  è becomes negative. This 

was subsequently recogonized as defining the difference between 

type I and type I I  superconductors (deta il show in chapter 3 }. 

Solutions of the Ginzburg - Landau equations for special cases , we 

w ill  discuss in chapter 3 .

2.5 Microscopic Theory of Superconductivity

Although the most remarkable properties of superconductor 

are those associated with electromagnetic fie lds , superconductors 

also exhibit s trik ing thermodynamic effects, which played a central 

role in the development of the microscopic theory. The result , 

experimental by Maxwell (9) and Reynolds , et a l . (10) discovered, 

what is now know as the isotope effect , that the transition 

temperature Tc of d ifferent isotopes of the same element varies 

with the isotopic mass , M , and i t  obeys the empirical law

i 1.0305920



36

Tc ~  M'W2 (2.72)

This result indicates that the dynamic of isotopic core effects 

superconducting state. The modern theory of superconductivity was 

promulgated by Bardeen , Cooper , and Schrieffer (11) in the ir

classic paper in 1957. The BCS theory has now gained universal

acceptance because i t  has proved capable of explaining a ll observed 

phenomena relating to superconductivity. Therefore , in interest of 

s im plic ity , le t US instead give a brie f qualitative , conceptual 

exposition of the BCS theory.

2.5.1 BCS Theory

The BCS theory has evolved from idea of Cooper ( 12 ) who 

f i r s t  introduced the concept of an elementary superconductor (Cooper 

Pair). The basic idea that even a weak attraction can bind pairs of 

electrons into bound state was presented one year before the BCS 

theory, what he showed was that the Fermi sea of electrons is

unstable against the formation of at least one bound pair, regardless

of how weak the interaction is , so long as i t  is attractive. This 

is very important, because , in a bound state , electrons are paired 

th e ir motion are correlated. The pairing can be broken only i f  an 

amount of energy equal to the binding energy is applied to the system.

Our two electrons pair are called a Cooper pair. The binding 

energy is strongest when the electrons forming the pair have equal 

and opposite momenta and spin (center of mass momentum is zero and 

opposite spins ) , that is kt , - kl- . I t  follows , therefore , 

that i f  there is any attraction between them , then a ll the electrons 

in the neighborhood of the Fermi surface condense into a system of 

Cooper pairs.
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In technical lite ra tu re , attractive interaction comes in only 

when one takes the motion of the ion cores into account. The physical 

idea is that the f i r s t  electron polarizes the medium by attracting 

positive ions ; as illus tra ted  in figure 2.10 , these excess 

positive ions , in trun , a ttract the second electron , giving an 

effective attractive interaction between the electrons.

Figure 2.10 The screening of electron 1 by the positive ions of the 

la ttic e  - solid circles represent the two electrons considered.

I f  th is attraction is strong enough to overrid the repulsive 

screened Coulomb interaction 5 i t  gives rise to a net attractive 

interaction, and superconductivity results.

Since these la ttice  deformations are resisted by the same 

stiffness that makes a solid elastic , i t  is clear that the 

characteristic vibration , or phonon , frequencies w ill play a role, 

th is  coupling to the la ttice  means that an electron can emit a phonon, 

that is a set the ions into vibration , and i t  can also absorb a



38

phonon. A possible intermediate process is one in which a phonon is 

emitted by one of the electrons and absorbed by the other ,as 

illu s tra te d  in figure 2.11 , inclusion of th is  intermediate process 

means that the energy of the two electrons is altered , so the phonon 

exchange has the same effect as a derect interaction between the 

electrons , re a lity  the attraction between electrons is a second - 

order process.

Figure 2.11 Phonon exchange between electrons. This is 

the fundamental process of superconductivity.

The equivalent direct interaction for the exchange of one phonon 

turns out to be where , following figure 2.13 , the momentum of the 

incoming electron are h £ and h 1i '  , and the momentum of the 

exchanged phonon is "hq.

From the suggestive results of Cooper , th is line of 

reasoning led to a reduction of the problem of determining the ground 

state of Cooper pairs to the model BCS Hamiltonian ะ
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H = Z é  c* c , + ï. V ' b ^ b  (2.73)BCS k k £ k ̂  k k k XK6

The f i r s t  term is th is expression gives the unperturbed energy of 

the electrons forming the pairs ; the second is the pairing 

interaction in which a pair of electrons in ( k t , - k t  ) scatters to 

( k 4, , -k 1 ), and

b \  = c \ 1 c * - 1 . b, = c-«1 c '2 -74>

are , respectively , creation and annihilation operators for a pair 

of electrons in ( k t , - k t  ). These operators obey the commutation 

relations of the so - called imperfect Bose gas ะ

l h k , ๖ \  ] = <l-nk4- ท_J  h fc 11' , tbk,๖k/,] = = 0 (2.75)

The anticommutator of bk and b 1/ , is

(bk 1 b ,) , - 2 b„ b„. , <1 (2.76>

from which i f  follows that (bk)2 = 0 , according to Schrieffer ( 48 ).

This point is essential to the theory and leads to the energy 

gap being present not only for dissociating a pair but also for 

making a pair move with a to ta l momentum d iffe rent from the common 

momentum of the rest of the pairs. I t  is th is feature which enforce 

long - range order in the superfluid over macroscopic distance.

The determination of the ground state of the model BCS 

hamiltonian can now be accomplished by variational method. Since in 

the superconducting ground state we are interested only in completely 

paired states , we may retain only the part of the f i r s t  term in Eq.

( 2.73 ) that connects pairs with zero net momentum ;
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«.os = * 2  'r« .'b\ ' b« ( Z . ท )
k  kk.

For the ground state , We take Schrieffer’ s wave function

m  > = T f  (น 15 + vk bJไ,» |0 > (2.78)

where 10 > is the

K

vacuum state and นk , vk are variational

parameters that may be assumed to be real and , because of overall

normalization of 9

I uk! + I vk I = 1 (2.79)

The variational calculation , which is pretty standard ( 49 ) , 

yields the following results

v \  = ( 1/2) Cl - (Ek -A )/E k] (2.80)

where ________________________

Ek = J ( £ k - M ) ~  + fl*k (2.81)

and J A  ( a Lagrange m u ltip lie r in the variational calculation ) has 

the physical significance of the chemical potential (Fermi energy ) ; 

while Ak , called the energy gap , satisfies gap equation ,

= ' l l , .  ykfc' V  (2-82>

2 " T T

From th is  expression , one obtains in the simple model for which

-V , ~ m ! and / e - j t i < tw . (2.83)

0 Otherwise
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the resu lt that Ak = Ao ( for |ék -M-\ < l w «) and zero otherwise where

A 0 = 2 t w  exp : -1/N(0)V ] (2.84)

where N(o) is  the density of s ta te s  in energy at the Ferai surface. 
Further , the condensation energy at absolute zero , i . e .  the energy 
d ifferen ce between the superconducting and the normal s ta te s , is  
found to be

A dr = (- 1/2 ) N(0)

This is  the condensation energy 
d efin itio n  equal Hc2(o )/8  It , 
namie c r i t ic a l  f ie ld .

a (2.85)

at T = 0 , which must by
where HC(T) is the thermody -

Since we have id e n tified  Ek as the exc ita tion  energy of a 
fermion quasi - p a r tic le  , the probability of i t s  excita tion  in the 
thermal equilibrium is  the usual Fermi function

f (Ek) = (e^ 'K + l ) " 1 (2.86)

It  is  fa ir ly  straightforward to generalize the gap equation 
to  f in i t e  temperatures , Eq. ( 2.83 ) becomes

. .  1, ,  . ,  -

If Vkk, is  approximated by ( 2.83 ) , then Ak i s  again of form 
Ao (independent of k ) and Ao ( p ) ( p = l /k BT) s a t i s f ie s



This may be solved numerically. The gap A0fT) decreases as 

tempesature increases , and vanishes entire ly at T = T 1. as shown 

in Fig 2.12. Thus , as T Tc and the gap vanishes, a ll the 

electron become normal.

Figure 2.12 plot of the temperature dependence of the energy gap 

paramenter Ao (T).

Note that Ao vanishes with in fin ite  slope as T Tc , 

leading to the second - order phasetransition The transition 

temperature is given by

f>u)
1 = J  dx tanh^ X j  (2.89)

N(0)V X -2

1 = In ( h t*J ^ c - /  dxlnxd (tanh ( X 1J
N(0 )V ๐ dx 2



Hence

kB Tc = 2j;Y h พ e 1/MC“ ’ V (2.90)

แ

where r is an Euler’ s constant 5 thus

KBT0 = 1.14 hcu exp. C-l/N(o)V] (2.91)

where 11ฬ is phonon energy for in the la ttice  , cutoff at the Debye 

energy t  พ0 ,

ธฟ = hcJ = kB 0D (2.92)

with 90 is the Debye temperature 5 ©0 = hf£ / kB

Also at T = O K ,

Ao ( 0 )  = hwD (2.93)

sinh Cl/N(o)V]

which in the weak coupling lim it , gives

A0(o) = 2 hwD exp [-l/N(o)V] (2.94)

Comparing this with Eq. ( 2.91 ) , we see that

Ac1(0)

kTc

2 = 1.76 

1.14

or

2 a o ( 0 ) 3.52 kB Tc (2.95)

so that the gap at T = 0 is indeed comparable in energy to kBTc. 

The numerical factor 3.52 has been tested in many experiments and
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found to be resonable. That is , experimental value of 2 û o ( 0 ) 
for d ifferent materials and d ifferent direction in k space 

generally fa l l  in range 3.0 to 4.5 kB Tc , with most clustered near 

the BCS value 3.50 kBT(= .

Eq. ( 2.91 ) contains the isotope effect , dimensionally , น}0 

must be given as WD ^  ( K/M ) i y a  , where K is a force constant 

of the la ttice  , therefor CO 0''' M wa , We already remarked that V 

should be independent of M , so Eq. ( 2.91 ) does give Tc ~  M~1/2.

2.5.2 Strong - Coupling Theory

On the basics of the physical features of the BCS theory 

above , a wide variety of phenomena in superconductors has been 

worked out by numerous workers in the fie ld . Deviations from the BCS 

theory occur , however , when , as point out in connection with a 

McMillan formula (14) , Tc is given by

Tc = H exp [ - 1 . 0 4  (1+ A )/ (1+0.62 A ) ]  ( 2 . 9 6 )
1 .45

where , for the strong - coupling superconductors , A is 

the electron - phonon interaction strength , which is proportional 

to (M WM 1 , yK* is the screened electron - electron Coulomb 

interaction and &  is the Debye temperature , and for weak - coupling 

superconductors ( A << 1 )

1.04 (1+ A ) ~  1 = 1 (2.97)

/Ud+0.62 ) M  N(0)V

hence , McMillan formular reduces to Eq. ( 2.91 ) , orig inal BCS 

theory , the electron - phonon coupling s lreng th^ is  much greater
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than unity ; i .e . ,  ^ ))  1 ะ Superconductors for which th is condition

is true include Pb, รท, Hg, Nb, and certain alloys like  Nb3 รท and 

are called strong - coupling superconductors. These deviations can 

occur in three ways ,

1. The quasi - partic le picture can become impedance i f  ,fo r 

example , the damping rate becomes comparable with the 

quasi - partic le  excitation energy.

2. The assumption of an effective two - body instantaneous 

interaction between quasi - particles may not provide 

an adequate representation of the retarded nature of the 

phonon - induced interaction

3. The pairing hypothesis may break down.

In most circumstance , only the f i r s t  two poss ib ilities  are operative 

while the pairing hypothesis appears to be generally sounds for both 

weak and strong - coupling superconductors.

The theory of the strong - coupling superconductors was 

developed by Eliashberg ( 13 ) and others. I t  has the d is tinctive

feature , however , that i t  provides a natural framework for 

correlating results from a number of d ifferent experiments that 

allows the many - body problem to be tackled in smaller , more 

tractable pieces. Most of these features arise from the fact that in 

the strong -coulping theory the energy gap parameter A (x ,t) becomes 

a complex function of space and time , i .e . ,  has real and imaginary 

part. The search for a superconductor is centered on now to control 

the parameters^, and H* in the fabrication of a superconducting 

alloy , so that Tc w ill be as large as possible.
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