CHAPTER IV

Ginzburg Y -Theory of High Tc Superconductivity

The Ginzburg - Landau theory is enormously successful
in explaining the properties of conventional bulk superconductors. In
this chapter, we shall present the free energy density from the

Ginzburg Y ~ theory and apply for the properties of high-Tc

superconductors.

Based on various experimental observations on the high - Tc
superconducting oxides to date , one gets several surprises. It is
of course too early to reach a consensus on the microscopic
understanding of various phenomena in these materials. Before we go
to model in section 4.1, we present a brief account of our

preliminary attempts at a macroscopic phenomenological level for sore
of the electrodynamical and transport properties of the oxide

materials.

The superconducting materials are inhomogenous with defects
and oxygen deficiencies. It also possesses certain amount of

structural disorder. Spectroscopic and transport measurements reveal

in favor of the granularity of the materials. Besides , the materials
are poor metals at high temperature and are insulating
(semiconducting) antiferromagnetic B3 - 59 with short - range

interaction (60) in the intermediate range of temperature.
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4.1 The Model

In this section an expansion is mede of free energy function.
The assumed coexistance of high - Tc superconductivity and
antiferromagnetism. Let [ is the order parameter , then in the

absence of a magnetic field the free energy is

m = FIO + Al la +jBITI4 + 1IC Y] 6 + 4.1)

2 3
where Fr is the free energy of the normal state in zero magnetic
field s and the coefficients A , B and c¢ are to be taken as

functions of temperature , T.

4.1.1 The Coefficients Temperature Dependence
The state of complete thermodynamic equilibrium corresponds
to a mmnum of the free energy Fs with respect to Y i.e., to

the condition

W now find the temperature dependence of A, B and c.

Equation (4.2) for the value , Y O» of Y at the minimum gives
AY + B|Y |\ + c|v| Y - o (4.3)
Below the critical temperature we have Y O , whence the

equilibrium value

lvo\2 = - B +/p2- 4AC (4.4)

Pz O
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\M chose the plus sign In front of the square root , and the
coefficient ¢ is small and positive. This choice ensures satisfaction,

below Tc, of the stability condition (the mnimum of the free energy)
In the equilibrium state

I\ol = - B4 B(1-4ACBa)wa
.
-B.B(1-408B. _ .
L
where 4 AOR < 1
imA12 = - AB (4.5)
c—4o+

Substituting Eg  (45) into (4.1) the equilibrium free energy given
by

F-Fo = (46)

- A
B

A T ve hae [ 0 , thus it is obvious that

Q =0, Blwte T, 2>0adF . Fg<(»
consequently A < 0 ad B>0. Inthe self - consistent theory of
second - orcer phase transitions , the coefficients AB ad ¢ are

regarded as expancable in power of (Tc - T) and , with the scaling
thory (see Appendix ) , we hawe

A A, (L=1)" (4.7a)
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0o
11

B(Tc- TJ'3 (4.70)
Tc

c = O (4.7¢)
where A, B and @ are positive phenomenological parameters.

4.1.2 Gingzburg - Theory and External Megnetic Field
Te free erergy density function of the high - Tc

superconductors system In a given external magnetic field H & a
function of , ad A has the following form

F . HD+Am +IB  +Icjlj*
2 3

+11¢h  -eAM2+2 (4.8)
Ak C 8t

where h vx A, the coefficients A, Badc in By (4.7) are
the same & Ginzourg’s proposal  (33). Hece |, ve called the
Gnzourg - theory for high - Tc superconductivity.,

4.2 Hinimization and Results

4.2.1 The Ginzburg - Lancu equations
W mst now minimze the Ghis free energy density G

with respect to the order parameter v > an*vector potentail A
V¥ set

/] dX [ Fs- (4) 1hH = / daGs (4.9)
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where the integral is extended over the volume of the sample. This
variational problem leads, fy standard methods (See Sec. 3.1.2) |
given the following field equations

A+ By teww +1 v eABE = 0 (4.10)
i) C

Jzcuxh=-ieh(iVi- o wl-E3¥ A @10)
H M it

Equations (4.10) and (4.11) are the fundamental Ginzburg - Lanchu
equations. The first gives the order parameter and the second
gives the currents, that is , the diamagnetic response of a
Superconductor.

Equations (4.11) hes thus given for the penetration depth

03 = A (4.12)
HeVm*

a obtained in ay standard text (45). If the dimension of the
Specimen  are muoh greater than W, then ve have B=0, absence of a
magnetic field , inside specimen , By (4.10) reduces to Eq (4.3)li]z
can he replaced by its equmbnum value in ahsence of magnetic
field 1J1 defined by Eg (4.5). with Aand Bgiven by B (4.7)
lead to an explicit form for temperature depence of A

= e (4.133)
AH(e*)3(lal b)
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A = JiVBE_ jla (11 J1'3 (413 )
AlKe )2 A T

For the purpose of calcutaling a upper critical field He
of high - Tc superconductivity in a bulk sample vie have considered
the simplest case which there are no surface involved , so we assune
a uniform applied H along the z axis

H = H. (414)

Acconvenient choice (38) a vector potential Als
A = HXy (4.15)
With Egp (4.15), the nonlinearized form of Eo (4.10) becomes

s - e t 1 (-1t . - e*HZ 2y sOT-Bnr/W rfly
2m 32 am 3y c 16)

Since the effective potential depends only on x , which
Implies that the corresponding of the eigenfunction are plane waves

§ (X = () edv el*z (4.17)
Substituting this into Eg (4.16) and rearranging tenms give

h2 0 + (@H)3 (ex0)X = (A hK2) FB F3CB (419
Moo e M

where X N’E (4.19)
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W can solve Eg (4.18) immediately by noting that it is
the Schrodinger equation for a particle of mes nf bound in a
harmonic - oscillator  potential well centred at xo with force
constant  (€*Ha / nfca. This problem is  formally the sare as
that of finding the quantized states of a nonvel charged particle in
a magnetic field separated Ly the cyclotron energy fue. The
resulting harmonic oscillator eigenvalues at ground state are

A -BI2 +cls' - k3 = ltw (4.20)
m 2
\ihere = ( e&H) (4.21)
m ¢

In view of Eos. (4.20) and (4.21) , thus

H = 2mc ( W-BI2-. -ftka ) (422
heX e

Tre highest value of H is upper critical field HE , and it is
obviously given by kz =0.

M2 = (Al - BIR - olf? (429)

Where the corresponding eigenfunction s the ground state vawe
function of the harmonic oscillator

f (X exp [-(x-Xo)ar £ (T)1 (4.24)
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were (6L, 6) i (4.25)

MOA - B2 reir)

Te coherence  length ~(T) is the characteristic distance for
variations in the orcer parameter. \¥ can rewrite Eq( 4.23) as

(4.26)
X ()
wWere 8 e
i

Wen we have neglected B ad ¢, Eop (4.23) ad (4.29)
reduces to

(M (4.279)
ot Af
or M e 111 1 (4.210)
ad
m. Al (4.263)
o
ntclAj (I - Tf (4.28h)
1 T

This means that the solutions of the linearized Ginzourg -
Lanceu equation have been obtained by dropping the terms  BIf
ad 01M7™3 in Eg (46 ),corresponding to  dropping iBffi*and
4CI1 In Ey (4.8). Thee omission will be justified only if
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lilk<lij= - AB . Tre linearized theory will be appropriate only
\ihen the magnetic field hes reduced to a value mun smaller than, Q

4.2.2 Tremuocynamic Field and Specific Heat

Tre thermodynamic critical field H is the field at which
the Ghis free energies G ad G in the Superconducting and
normel phase are equal. Biis zero in the superconducting phase , ad
IS zero in the romd phase , with 1. = IAb &y (49)
therefore gives for the energies at applied field H

G = V- A +clAB+H) (431a)
B OB

@ = A (4:320)

where v is the volune of the specimen. The thermodynamic critical
field is gventy QG = G, neglect ¢ , (Cis small) ad
combining with Eos. (4.13) and, (4.27) , ve find

o [A GR) (- (439
B BT
or
ko= 4 (4320)
“EAR

W recall from Eq.(4.6) that a free energy density
the superconducting oxide and normal state in absence magnetic field
IS then

F=-F) = -A

B
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(r-xj

- =
n

_A
2B

and the specific heat hes a discontinuity at transition given by
¢ = T 3FNTZ,
G-Q=aL = A (4.33)
Me

4,23 The Loner Critical Field

\¥ shall consider a high - Tc superconductor in a low
magnetic field H 5 the savple exhibits a complete Meissner
effect , ad B vanishes. A H s increased to the Lover
critical field H -, the penetration of magnetic flux becomes
favorable , ad quantized flux lines (vortices) are formed
parallel to the field H = H By definition , wen H=HI
the Ghos free energy must have the sae value whether the first
vortex is in or out of the sample. Thus 5at H1

G (o flux) =G (first vortex)
or,since G = F-{HIQ/h
F o= F+%L- I-tl*OL
H

Wee £ is the free energy per unit length of a
vortex filament , ad Lis the length of the vortex ling in the

sample. Thus,

H  dE (4.34)
10
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\e can row calculate the free energy per unit length
Neglecting the core , we have only the contribution from the field
energy and Kkinetic energy of the currents

61 = [ BAR+, (v - AT[3j- (439
ar MM C

\e consider the extreme type I limit , in which K=n/iy- > 1,
because useful analytic results can be obtained. The simplification
results « can rise from zero to limiting value within a core
region of radius . This , over most of the vortex (of radius A>>E)
the high - Tc superconductor will act like and ordinary London
superconductor. In the Londn nooel , . remains constant at
large distances A >” | This essentially the whole of magnetic
flux passes through the region outsice the core. Let , » =il exp
(i8(x)) , the orcer parameter can very through its phase $(x) v and
the second term of Eg (4.35) nay ke rewritten &s

|(-ihv - eAY3= L 1AM - eAl3 3 (4.36)
C M C

Comparison with B (4.11) shows that this expression IS related

to the supercurrent Js , and Eg (4.35) becomes

= [d¥h3 +nmr B3 ] (43)
& 2(e*)A’s

where % = [¥° . B (437) nmwy be rewritten in
several ways. If the superfluid velocity field . s defined by
the equation
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* oy (4.38)
then 61 assumes the intuitive from

/dS o2 o M ove <3 (439)
& 2

expressed s the aum of the magnetic field energy and the electronic
kinetic energy. Alternatively , \e nay use Maxwell’s equation , v « h
= (4ftlc) Js , to find

el = ds1 R+ [V.h2o  (440)
\Where

In order to calculate : , we must hawe solution for
magnetic field (. ), with asinglurity at r>0* In the absence
of vortices 5 outside the core , the Eg (4.11) s

33 = - (e*)20712A
I ¢
or
(40..J +h =10 (4.41)
C.

If this relation held everywhere, the fluxoid for any path
would be zero. V¥ correct this by inserting a term to take acount
for singular behavior at the vortex core, so that Eq (4.41) becomes
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@M ) VxJ +h =z00< ) (4.42)

where 2z IS aunit vector along the vortex and ) is @ bao -
dimensional delta function at the Mawell equation , vx h = ([@ILQJ
. Vie obtain
X (v Xh' + h Z4er) (4.43)
since vh =0, Ey (443) can e written

oo -h c740.2(r>  (444)

at r 0, F(4.44) becomss

V2 h h

r
@h + 1ch - (1h =0 (4.45)
dr2 rar 4y

with bouncary condition  h(r )= 0 , at B. Thus the appropriate
solution is

h( cLK (v ) (4.46)

where K0 s a zero - order Hankel function imeginary , €11s
arbitrary constant evaluate c15 using
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Ry (340) . and By (446)

Ih.ds = 40
or , 2t hrdr =
Acl o K(r/A) rdr - ¥

soveobtain, ¢c1 = 4 /4 | the complete
solution of Eq (4.45) is

hr) = o K(ro) (447
i
g (4.40) , using the vector identity
V Xh2 = (vXh . (vXh
V. ( XV) - (V ).V' (V XV).

and combining B0 (4.43) , nay be written

£l = o dSIm+ Avx xblh+Whx v xh
8l

[ dsh kA Xu XD+ j e d% |h Xv Xh
8l |

= . dshza) +. o0 A5 hXVXhidd
8 I ot

where the line integrals are around the inner and outer perimeter
of the integration area, since the integration excludes the core
the first term contributes nothing. The second term goes to zero
at infinty , but gives a finite contribution in encircling the
core, naely
£1 = ¢ 5 O &) K(r/A) (4.43)
]|



g (4.49) | consider near the singlurity |,
Kir/A) - - In@r/A = h(Arn (@50

substituting By (4.50) into the integrand , using the properties
of delta function and it is natural to cut off the integral at |
we get

: c M d% () In(Alr >
a

= (£ Jin (AlJ) (4-51)
i

substituting B (4.51) into Egp (4.34) , ve find the lower critical
field

%0 in (4) (452)
4l

%0 (-T)23 Infk(©) (LTI (459
4y N T

whee KO =AQ) /£0) . Eos (4.26), (4.32) (452) can ke
written In the form

" 4,55
¢ | (1|nk) (4.95)
H1 = K Ik (456)

2K
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where K = /W4H. Ths , apart frone the In Kterm

L = o = K (457)
1 H
or  H H (459)

s that H is approximately the geometric men of H1 ad K2

4.2.4 Nucleation at Surfaces

Tre calculation that led to E (4.26) is only valid in an
Infinite medium It neglects boundary  effects. Since real
superconductors are finite in size , the behavior of surfaces muat
be consider. \¥ now tum to the calculation of critical fields in the
presence of surfaces ad called the surface critical field or
surface necleation field H3 .

The simplest case is wen ve have an applied field parallel
to the surface of a bulk specimen. In our chosen gage , =An=
0, so the boundary condition becomes simply

</ I . = 0.a 0 (459

3X 3X

A very simple variational approach gives quite a good approximation
and illustrates the usefulness of variational methods in working with
the - theory. ¥ outline the calcutation here , leaving the
details as an exercise. Motivated by Eo (4.28) , we take our trial

function to ke
Y (X) f(x) e.KY e Y (460)
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with x measured from sample surface and is bounded & x , this
function automatically satisfies the boundary condition of Eg (4.59)

Since B(tA ad ¢ terms are small conpared with
the other terms in the right hand ride of Eg (4.16) they can thus
be neglected , at near Tc. Substituting B (4.60) into Eq (4.16)
then yields

£ & +(@H3 (-xj2f = IAK (461"
MO e

Therefore , due to the boundary condition for the surface of bulk
Specimen

IAI= Jf(x)Kf(x)dx (4.62)
[ £(X f(x)dx
where i =ft o+ (EH2 (x-x0) (4.63)
htade  dEc?

consider tem [ f(x)™ f(x) ox =11

11 = -ft2/ df & + (eH2 (6XD)2 fak
m e 2mV

® @
-ft2 o df)dx 45 (E*H)2 (x-x0) 2 ok
o8 &k - 2

fo fdf - JAIPAAF I+ RH2 (X
M dX X*oo dX dX 0 2<mc?~
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= -2 (idf ok +/ (e HR (xxa) Xk
ook 2mV

Inserting It, from the last Equation into B} (4.62) and
using the trial function f(x) =exp (-ax2) , ve find that

1AL = At PRI X, 0
M v b B

Mininize this expression with respect to xo, 1 i.e.,
ad to a (i.e.,YAa=0) , ve thus obtain

X = ( I12na)12
a = e“H(1-2 .
2he 1

Substituting X ad a from these last two equations into Ey
(4.64) gives

[Al = | K! e tH (4.65)
11-2 2nfc

Tre surface critical field H3, Is given by By (4.65) Thus,

3 = (332 mc.Al (4.66)
he2

the relation of H3 to the upper critical field
is clarified if ve reexpreess H3 in tem of using Eg
(4.23). In this way , ve arrive at the expression for H3

3 = L6 H (467)
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4.3 Application for Thin Filins

43.1 Critical Current of a Thin vire or Film

This will be the case if the sample is a thin wire or film so
oriented with respect to any external field that any variation of MtV
would need to occur in a thickness o< A(T). In that case, the tem
In the free energy proportional to ( HI )a woud give an
excessively large contribution if any substantial variation oceured.
A a result they do not, and ve can approximate A(X) by 1Y) exp(i$
(x)>, where  f¥lis constant.  In this case, the expressions for the
current density andfree energy density can ke written in the simple
forms

X =-leth ITh g(i » )- m3(-1 0 )-( e)al a A
M‘ dx dx ITTE
= eh04) 13- (€93 NBA
* 3K le
= £ ax; (468)
l’(’l‘ dx C
or J- ey/3 (fove - ex A) =e*M2 v (4.962)
rm* C
where 6’—' =1 dvo-eA) (4.960)
¥ C
and, vie get
F FOAU BI¥A lcm%ImVs31i| 343 (+4.10)

2 3 2 gt
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Let us row apply these equations to treat the case of a
uniform current density through a thin film or wire. V¥ can
always neglect 1t for a sufficiently thin conductor. Then, for given
V, vie can minimize B (4.70) to find the optinum value of [TE2

6 v A+BNVI2+c IYjA+1ny= =
3 2 2

V¥ neglect tem |MA< if the result is

= lyjlp-i 4-11'
Y] pZ[AI

Substituting Eg (4.71) into B (4.69%), ve get

J = iyt vt 477
j 21A1) (4-72)

Js this has a mammyvalue wen— /4vs - 0
¥ find that 5 nmiv*/ IA =203, Substituting into Eg (4.72), the
appropiate the critical current is

J 2¢“3] 2[2 IA Wa (473)
3 30

Using Ecs. (4.5) and (4.27a), ve obtain

& Cyr_ o cadfiAf)wa
63K e/ a
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1 fia =1 "Nc (4.743)
6/dleA 6t "N

Conbining this with B (4.320) yields

Jm =cHM (4.74b;
33e 1L TUT)

Finally, after sone straightforward manipulation ve find

J. 1 s - r 4-B
3§B)m T) IOT(:

4.3.2 Parallel Critical Field of thin Films
In orcer to calulation of the parallel critical field of thin
films. V¥ consider a film of thickness s <» . in an external field H
applied parallel to the plane of film ad having the sare value at
both faces. In this case, ve hae to solve equation (4.61), now with
the boundary condlitions
dy - of at xdd (4.76)
&k

In this  problem, v simplified with thin limit, f can hardly
vary across the film, ad we can intigrate o (4.61) across the
thickness of the film, we have,

f +d/z

(40) (/\_) + (e*H)a f (x-xo)a fax - j+'|d/AL1 f ok
Mcb<><z+9 oL, e e -dfi

the first term is zero because of the boundary conditions, the other
terms , ve can take f as a constant of, to get
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(@Ha (d3* . d) f 1A £0 d (4.773)
,MC3 12

2mfegul (4.770)
(eV (0312 +x03

Te largest value of His HIL This obviously reguires
taking X0 = o in Eq.(4.77a), which means, not surprisingly,that
the potential well for the prodlem is symmetric.  Eg (4.77h),
combining with Egs. (4.12), (4.25) and (4.32), ve (62) find

Hoyyo =(24 ne’a Y -1y (478)
e d° T\

| > =25 HMAQ (479)
i~ d

This parallel critical field can exceed the thermodynamic critical
field H bty a large factor if diAis small enough . The physical
reason for this s simply that the thin film, being largely
penetrated by the field, has little diamagnetic energy for a given
applied field in comparison to an equal volure of a hulk
superconductor.
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