
C H A P T E R  I V

Ginzburg Y  -Theory of High Tc Superconductivity

The Ginzburg - Landau theory is enormously successful 

in explaining the properties of conventional bulk superconductors. In 

th is  chapter, we shall present the free energy density from the 

Ginzburg Y  ~ theory and apply for the properties of high-Tc 

superconductors.

Based on various experimental observations on the high - Tc 

superconducting oxides to date , one gets several surprises. I t  is 

of course too early to reach a consensus on the microscopic 

understanding of various phenomena in these materials. Before we go 

to model in section 4.1, we present a b rie f account of our 

preliminary attempts at a macroscopic phenomenological level for some 

of the electrodynamical and transport properties of the oxide 

materials.

The superconducting materials are inhomogenous with defects 

and oxygen deficiencies. I t  also possesses certain amount of 

structural disorder. Spectroscopic and transport measurements reveal 

in favor of the granularity of the materials. Besides , the materials 

are poor metals at high temperature and are insulating 

(semiconducting) antiferromagnetic (53 - 59) with short - range 

interaction (60) in the intermediate range of temperature.
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4.1 The Model

In th is  section an expansion is made of free energy function. 

The assumed coexistance of high - Tc superconductivity and

antiferromagnetism. Let [  is the order parameter , then in the 

absence of a magnetic f ie ld  the free energy is

โ  m = Ft10 + A l ï  l a + j.B IT I4 + 1C !Y l 6 + --------- (4.1)

2 3

where Fr i s the free energy of the normal state in zero magnetic 

f ie ld  , and the coefficients A , B and c are to be taken as 

functions of temperature , T.

4.1.1 The Coefficients Temperature Dependence 

The state of complete thermodynamic equilibrium corresponds 

to a mimimum of the free energy Fs with respect to Y i.e . ,  to 

the condition

We now find the temperature dependence of A , B and c. 

Equation (4.2) for the value , Y 0» of Y  at the minimum gives

AY + B | Y | \  + c|Y| Y  -  0 (4.3)

Below the c r it ic a l temperature we have Y ะ 0 , whence the 

equilibrium value

! Y o \ 2 = -  B + / b 2 -  4AC ( 4 . 4 )
2C
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We chose the plus sign in front of the square root , and the 
coefficient c is small and positive. This choice ensures satisfaction, 
below Tc, of the stability condition (the minimum of the free energy) 
in the equilibrium state

I Vo I = - B 4 B (1-4AC/Ba)wa
2C

where 4 AC/B2 < 1
lim เ^ !2
c —4 0 +

- B 4 B ( 1 - 4AC/2B2 4 — ■ 

2C

= - A/B (4.5)

Substituting Eq. (4.5) into (4.1) the equilibrium free energy given 
by

F. ร - F = - An o  — (4.6)
2B

At Tc we have l^l 0 , thus it is obvious that
A(TC) = 0 , Below the Tc , เพ 2 > 0 and Fร - F„o < 0 »
consequently A < 0 and B > 0. In the self - consistent theory of 
second - order phase transitions , the coefficients A,B and c are 
regarded as expandable in power of (Tc - T) and , with the scaling 
thory (see Appendix ) , we have

A (4.7a)
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B = B 0 (Tc - T J '3 (4.7b) 
Tc

c = Co (4.7c)

where Ao , Bo and Co are positive phenomenological parameters.

4.1.2 Gingzburg - Theory and External Magnetic Field 
The free energy density function of the high - Tc 

superconductors system in a given external magnetic field H as a 
function of y  and A has the following form

Fร -  Fr10 + A mn + IB ทแ + lcjlj*
2 3

+ 1 1 (-ih จ  - e A) 1̂ 2 + h2 (4.8) 
2m* c 8lt

where h V X A , the coefficients A , B and c in Eq. (4.7) are
the same as Ginzburg’s proposal (33). Hence , we called the 
Ginzburg -  theory for high - Tc superconductivity.

4.2 Hinimization and Results

4.2.1 The Ginzburg - Landau equations
We must now minimize the Gibbs free energy density Gs 

with respect to the order parameter Y  > an̂  vector potentail A. 
We set

/  d3x [ Fs - (4แ) 1 h.H] = /  daGs (4.9)
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where the integral is extended over the volume of the sample. This 
variational problem leads, by standard methods (see Sec. 3.1.2) , 
given the following field equations

Aÿ + B l Ÿ l  ï  + c \ w \  +1 ( , - i h  V -  e_A)3î£ = 0 (4.10)
2m“ c

J = c V X h = - i e* h ( ï  V ï  - t y v  1£U 1 - (e*)3 I ¥ i A (4.11)
4H 2m'1 m“c

Equations (4.10) and (4.11) are the fundamental Ginzburg - Landau 
equations. The first gives the order parameter and the second 
gives the currents, that is , the diamagnetic response of a 
superconductor.

Equations (4.11) has thus given for the penetration depth ,

X 3 = m*c3_____  (4.12)
4H ( e V m *

as obtained in any standard text (45). If the dimension of the 
specimen are much greater than Tv , then we have B = 0 , absence of a 
magnetic field , inside specimen , Eq. (4.10) reduces to Eq. (4 .3 ) lï |z 
can be replaced by its equilibrium value in absence of magnetic
field IÏJ1 defined by Eq. (4.5). with A and B given by Eq. (4.7) 
lead to an explicit form for temperature depence of A ,

= m“e (4.13a)
4H(e*)3(Ia/ b)
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A (T) = j i V B £ _  j /a ( 1- I  J-1' 3 (4/13๖)
AlKe*)2 A0 Tc

For the purpose of calcutaling a upper critical field Hce 
of high - Tc superconductivity in a bulk sample we have considered 
the simplest case which there are no surface involved , so we assume 
a uniform applied H along the z axis

H = Hz . (4.14)

A convenient choice (38) a vector potential A is

A = H X y (4.15)

With Eq. (4.15), the nonlinearized form of Eq. (4.10) becomes

- x t z S  - h2 &  + 1 ( - i t  จ. -  e*HZ )2ÿ  s O T - B n r / W r f l ÿ
โ * * ท  2m 3 2  2m 3 y c  1 6 )

Since the effective potential depends only on X , which 
implies that the corresponding of the eigenfunction are plane waves

ÿ (X) = f (x) e4*v̂  e1(*z (4.17)

Substituting this into Eq. (4.16) and rearranging terms give

-h2 d2f + (e*H)3 (x-xo)2f = (|Al -h3k2 ) f-B f 3-CfB (4.18)
2m* dx2 2m“c2 2m2

XD [yhc 
e“ H

w h e r e ( 4 . 1 9 )
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We can solve Eq. (4.18) immediately by noting that it is 
the Schrodinger equation for a particle of mass m* bound in a 
harmonic oscillator potential well centred at xo with force
constant (e**H)a / m*ca. This problem is formally the same as
that of finding the quantized states of a normal charged particle in 
a magnetic field separated by the cyclotron energy hu>c. The 
resulting harmonic oscillator eigenvalues at ground state are

A - B//2 + c//s' - ft k3_ = l t w  (4.20)
2m 2

where = ( e* H ) (4.21)
m“ c

In view of Eqs. (4.20) and (4.21) , thus

H = 2 m*c (  IAI - B//2 - c / j z  - ft3ka_ ) (4.22)
he1* 2ma

The highest value of H is upper critical field HcE , and it is 
obviously given by kz = 0.

Hc2 = 2mac(lAI - B//2 -  ç//j? (4.23)
•he“

Where the corresponding eigenfunction is the ground state wave 
function of the harmonic oscillator

e x p  [ - ( x - x o ) a /  £ ( T ) 1f (X) ( 4 . 2 4 )
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where (61 , 62) (T) Î1 (4.25)
2m“ 0 A l - B//2 r C / f T  )

The coherence length ^ (T) is the characteristic distance for 
variations in the order parameter. We can rewrite Eq.( 4.23) as

(4.26)
2K^  ( โ )

where <6 he
e'

When we have neglected B and c , Eqs (4.23) and (4.25) 
reduces to

(T)
2m“/Af

(4.27a)

or

and

(T) ( j L - r  f 1 - ! ) '2m“Ao Tc

2m*  C  I  A I
ธe “

(4.27b)

(4.26a)

2m“c |A j  ( l  -  T-)f 
-he“ T

(4.28b)

This means that the solutions of the linearized Ginzburg -
Landau equation have been obtained by dropping the terms Bl̂ f
and 01^1^3 in Eq. ( 4.6 ) ,corresponding to dropping iBffî^and

4C1̂ 1 in Eq. (4.8). These omission will be justified only if 3
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Z 2.Iïl<<lïj= - A/B . The linearized theory will be appropriate only 
when the magnetic field has reduced to a value much smaller than } แ 0.

4.2.2 Thermodynamic Field and Specific Heat 
The thermodynamic critical field Hc is the field at which 

the Gibbs free energies Gf5 and Gn in the superconducting and
normal phase are equal. B is zero in the superconducting phase , and 
is zero in the normal phase , with I ^ \ z  = I A|/b Eq. (4.9) 
therefore gives for the energies at applied field H

G_5 = v(Fn0 - A + c lAl3 + Ha ) (4.31a)
2B 3B3 8 It

Gn = V Fr10 (4.32b)

where V is the volume of the specimen. The thermodynamic critical 
field is given by GI1 = Gn , neglect c , (C is small) and 
combining with Eqs. (4.13) and, (4.27) , we find

or

4 It [ AI 
B

(4jt A2 ) (l - i f  

Bo T
(4.32a)

Hc = 4
2/2“ It A §■

(4.32b)

We recall from Eq.(4.6) that a free energy density 
the superconducting oxide and normal state in absence magnetic field 
is then

F= - Fn0 = -_A2
2B
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and the specific heat has a discontinuity at transition given by
c = -T 32F/9TZ ,

Cs - Cn = aC = Â  (4.33)
Me

4.2.3 The Lower Critical Field
We shall consider a high - Tc superconductor in a low 

magnetic field H 5 the sample exhibits a complete Meissner 
effect , and B vanishes. As H is increased to the Lower 
critical field H , the penetration of magnetic flux becomes 
favorable , and quantized flux lines (vortices) are formed 
parallel to the field H = Hz. By definition , when H = Hc1 
the Gibbs free energy must have the same value whether the first 
vortex is in or out of the sample. Thus 5 at Hc1

Gs (no flux) = Gs (first vortex)

or , since Gร = F_ - (H/4TC) /  h d3x
Fร = F_ + *1 L - Hc1 *0L

4H

Where £ is the free energy per unit length of a 
vortex filament , and L is the length of the vortex line in the 
sample. Thus,

Hc  1 4TL £1
♦ o

(4.34)
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Ve can now calculate the free energy per unit length , 
Neglecting the core , we have only the contribution from the field 
energy and kinetic energy of the currents

61 = /  d3ร̂  h° + 1 I ( -ihv -e* A) ï | 3 j- (4.35)
811 2m“ c

Ve consider the extreme type II limit , in which K = / \  /  }~ >> 1, 
because useful analytic results can be obtained. The simplification 
results I t  can rise from zero to limiting value within a core 
region of radius . Thus , over most of the vortex (of radius A >>£) 
the high - Tc superconductor will act like and ordinary London 
superconductor. In the London model , บ แ 2' remains constant at 
large distances r^A >> ^ . Thus essentially the whole of magnetic
flux passes through the region outside the core. Let , m  = l i t  I exp 
(i$(x)) , the order parameter can very through its phase $(x) y and 
the second term of Eq. (4.35) may be rewritten as

I (-ihv - e*A) ÿ|3 = 1_ I fi M  - e*A I 3 3 (4.36)
c 2m“ c

Comparison with Eq. (4.11) shows that this expression is related 
to the supercurrent Js , and Eq. (4.35) becomes

where ท*s =
several ways. If 
the equation

= / d 3s |h 3 + m* J3_ j (4.37)
8ft 2(e*)3n*s

. 2.I¥ l . Eq. (4.37) may be rewritten in 
the superfluid velocity field V is defined by
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ท* e*v (4.38)

then 6 1 assumes the intuitive from

/  d s I  h.2 + _! m* V* ท* 3 I+ 1 m
8ft 2

(4.39)

expressed as the sum of the magnetic field energy and the electronic 
kinetic energy. Alternatively , Ve may use Maxwell’s equation , V X  h 
= (4ft/c) Js , to find

where

t 1 = 1 ร  d2s I h2 + ;\2 [ V X  h|2 \  (4.40)

In order to calculate £ 1 , we must have solution for
magnetic field h( r  ) , with a singlurity at r̂> 0* In the absence 
of vortices 5 outside the core , the Eq. (4.11) is

J3 = - (e*)2 /? /2 A
m* e 

or
(4ft g) V X  Js + h = 0 (4.41)

c .

If this relation held everywhere, the fluxoid for any path 
would be zero. We correct this by inserting a term to take acount 
for singular behavior at the vortex core, so that Eq. (4.41) becomes



9 6

(411_) V X J + h = Z4 0 b < -  y  ) (4.42)

where Z is a unit vector along the vortex and ) i s  a two -
dimensional delta function at the Maxwell equation , V X h = (4IL/OJ 

. we obtain

X ( v  X h,'  + h z 4 <$2': r  ) (4.43)

since v.h = 0 , Eq (4.43) can be written

V 2 h - h
X*

- z ±0 è  2 ( r > (4.44)

at r 0 , Eq (4.44) becomes ,

V 2 h  -  h

r

d2 h 
dr2

+ 1 dh - ( 1 )h = 0
r dr  ̂2

(4.45)

with boundary condition h(r )= 0 , at 03 . Thus the appropriate
solution is

h (  ท c 1 K0 ( r / x  ) (4.46)

where K0 is a zero - order Hankel function imaginary , €1 is 
arbitrary constant evaluate c 1 5 using
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Eq. (3.40) . and Eq. (4.46)
/h .d s = ♦ 0

or , 2 It/ hrdr = $0
211 c 1 ร 0 Ko (r / A ) rdr = $0
so we obtain , c 1 = 4, / 411 /? , the complete
solution of Eq. (4.45) is

h ( r ) = $0 K ( r 1 X  ) (4.47)
411

Eq. (4.40) , using the vector identity
I V X h 12 = (v X h) . (v X h)

V . (น X V )  = (v X น).V - (v X V ) . น

and combining Eq. (4.43) , may be written

£1 = 1  J  d“s I h2 + A( v  X พ X b).h + V «(h X ( v  X h)
81

= /  d“s h. |h+  ̂ V X V X b| + j. £  d°s |h X V X hj
81 8 It

= 1  ร  d2s h.z 4>a^(r) + 1 f i  d2s |  h X V X hj(4.48)
8 It 8 It

where the line integrals are around the inner and outer perimeter 
of the integration area, since the integration excludes the core , 
the first term contributes nothing. The second term goes to zero 
at infinty , but gives a finite contribution in encircling the 
core, namely

£1 = Ç  'j ร  das é̂ (r) K (r/A ) (4.43)
411
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Eq. (4.49) , consider near the singlurity ,

Ko(r / A ) -  - In (r / A) = In ( A / r) (4.50)

substituting Eq. (4.50) into the integrand , using the properties 
of delta function and it is natural to cut off the integral at , 
we get ,

é ç แ>O ^ /  d3s ร  (r ) ln( A /r > 
411

= ( £o J ln  ( A / J, )

4 IL
(4.51)

substituting Eq. (4.51) into Eq. (4.34) , we find the lower critical 
f ield

$0 in (4 )
41 /

(4.52)

$0 (l-T)2' 3 lnfk(O) {1-T')1'
41LA(0) IV T

(4.53)

where K(0) = A (0) / £(0) . Eqs. (4.26), (4.32) (4.52) can be
written in the form

K ,  -  ( 1*" )
Ink

Hc 1 = He Ink
ร 2 K

(4.55)

(4.56)



9 9

where K = /W £■ . Thus , apart frome the In K term ,

5c = 5c. = f t  K
Hc 1 Hc

or Hc (Hc  1

1/2

(4.57)

(4.58)

so that Hc is approximately the geometric mean of Hc1 and Hc2

4.2.4 Nucléation at Surfaces
The calculation that led to Eq. (4.26) is only valid in an 

infinite medium. It neglects boundary effects. Since real 
superconductors are finite in size , the behavior of surfaces must 
be consider. We now turn to the calculation of critical fields in the 
presence of surfaces and called the surface critical field or 
surface necleation field Hc.3 .

The simplest case is when we have an applied field parallel 
to the surface of a bulk specimen. In our chosen gauge , = An = 
0 , so the boundary condition becomes simply

3Ï = จ ุ l = 0 . at x=0 (4.59)
3 X 3 X

A very simple variational approach gives quite a good approximation 
and illustrates the usefulness of variational methods in working with 
the - theory. We outline the calcutation here , leaving the 
details as an exercise. Motivated by Eq. (4.28) , we take our trial 
function to be

Y  (x) f ( X )  e • K Y - a x . ■ * y y (4.60)
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with X measured from sample surface and is bounded as X , this 
function automatically satisfies the boundary condition of Eq. (4.59)

Since B (ไt*IA and c terms are small compared with
the other terms in the right hand ride of Eq. (4.16) they can thus 
be neglected , at near Tc. Substituting Eq. (4.60) into Eq. (4.16) 
then yields

-ft2 (& + (e*H)3 (x -x j2 f = /A If (4.61.'
2m“dx2 2m*e2

Therefore , due to the boundary condition for the surface of bulk 
specimen

I AI= Jf(x)Kf(x)dx (4.62)
/  f (X) f(x)dx

where y i  = ft d* + (e*H)2 (x-xo) (4.63)
2m1* dx2 2m>* c2

consider term /  f(x )^  f(x) dx = 11

11 = - f t2 /  d2f dx + ร  (e*H)2 (X-XD )2 f2dx
2m*1 ClX 2mV

oO ©a
-_ft2 f  ^ df)dx + j "  (e*H)2 (x-xo)2f“dx*aCM 3 dx dx °  2m*e2

oO oQ

-ft2 ... fd f -  J^df^df J dx + 
°  dx dx

f (ê H)2 (x-x
2m1* dx 0  2 < m c ? ~

X* o



101

= - ธ2 /  (!df f  dx tA+ /  (e* H>2 (x-xa)2f2dx
2m11 dx 2mV

Inserting It, from the last Equation into Eq. (4.62) and
using the trial function f(x) = exp (-ax2) , we find that

1 A 1 = l  a + (e*H)3 j 1 - X
< -  r + *0")1(4.64)

2m11 2muca 4a Ea J

Mininize this expression with respect to xo , '■ i.e .,
and to a ( i.e. , 9/A\/aa = 0) , we thus obtain

X๐ = ( l/2na)1/2
a = e“ H ( 1 - 2 y a

2 he 11

Substituting X and a from these last two equations into Eq.
(4.64) gives

[Al = ( K '\ e ft H (4.65)l 11-2 1 2 m* c

The surface critical field Hc3 , is given by Eq. (4.65) Thus,

3 = (3.32) m* c 1 A 1 (4.66)
he2

the relation of Hc3 to the upper critical field
is clarified if we reexpreess Hc3 in term of using Eq.
(4.23). In this way , we arrive at the expression for Hc3

Hc3 = 1.66 Hc z (4.67)
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4.3 Application for Thin Filins

4.3.1 Critical Current of a Thin vire or Film 
This will be the case if the sample is a thin wire or film so 

oriented with respect to any external field that any variation of lîtM 
would need to occur in a thickness d<<  ̂(T). In that case, the term 
in the free energy proportional to ( จ Hül )a would give an 
excessively large contribution if any substantial variation oceured. 
As a result they do not, and we can approximate ^(x) by l'ÿ) exp(i$ 
(x)>, where f¥l is constant. In this case, the expressions for the
current density and free energy density can be written in the simple
forms

Jx = - ieuh l ï l  g(i 9» )- m3(-i 90 )-( e‘ )a I f l  a Ax
2m“ d x  d x  m*e

= e“b0 4) 1̂ 1 3 - ( e“)3/ ชุ/!3 A_ 
1 * 3x เท1,e

= £ ax j

m* d x  c
(4.68)

or J=

-A

e“lÿ/3 (fcv ♦ -  e* A ) = e*|^|2 v_ 
■ m* c

(4.96a)

where v= = 1 chv 1» - e A ) 
m* c

(4.96b)

and, we get

Fร Fn0+A Url IB l¥/\_lcm% lmVs3 l ï | 3+h3 
2 3 2 8lt

(•4.70)
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Let us now apply these equations to treat the case of a 
uniform current density through a thin film or wire. We can 
always neglect it for a sufficiently thin conductor. Then, for given 
V , we can minimize Eq. (4.70) to find the optimum value of |T£|2.

d  ¥ 11 A + B |ŸI 2 + c IY|4 + 1 m* v= = 0
3เฑ ิ2 2

We neglect term |^|4<< l ï f  the result is

= 1 y j 1 p - i  <4-71'
2 [Al

Substituting Eq. (4.71) into Eq. (4.69a), we get

J ร = e “ i ¥ j 3 f i  ’  ) v * ( 4 - 72)
2 1 A 1

Js this has a maximum value when / d v s  -  0
We find that 5 m“v* /  I Al = 2/3, Substituting into Eq. (4.72), the
appropiate the critical current is

Jc 2 e“ JŸ] 2 [2 lAl \1/a (4.73)
3 3 m“

Using Eqs. (4.5) and (4.27a), we obtain

Jc . y r _  ca <m“iA|)wa
6 j 3 K '  e“/ a
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1 ftça = 1_ ^0 c_ (4.74a)
6 /s'il e A 6 Jift  ̂^

Combining this with Eq. (4.32b) yields

Jc (T) = c H_ (T) (4.74b;
3 J e  11 TUT)

Finally, after some straightforward manipulation we find

J. ■ - 1  ( * „ ) p - i r  <4-75>
3 3 B 0 rn T. Tc

4.3.2 Parallel Critical Field of thin Films
In order to calulation of the parallel critical field of thin 

films. We consider a film of thickness d  < ^  ,  in an external field H 
applied parallel to the plane of film and having the same value at 
both faces. In this case, we have to solve equation (4.61), now with 
the boundary conditions

dy - df at x=i d (4.76)
dx dx

In this problem, we simplified with thin limit, f can hardly 
vary across the film, and we can intigrate Eq (4.61) across the 
thickness of the film, we have,

f
+ d / z + d / L

( 4 L )
-  (^) + (e*H)a f  (x-xo)a fdx -  j ' l  A  1 f dx

2m* - dx x=+d 2 dx x=-d 1 2 2  ท า  € - d / 1 -d/i

the first term is zero because of the boundary conditions, the other 
terms , we can take f as a constant of, to get
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(e^H)a (d3 * X 3 d ) f
2muc3 1 2

IAI £0 d (4.77a)

2 m* cg u_|____
(e V  (d3/12 + xo3

(4.77b)

The largest value of H is Hc11. This obviously reguires 
taking xo = 0 in Eq.(4.77a), which means, not surprisingly,that 
the potential well for the problem is symmetric. Eq. (4.77b), 
combining with Eqs. (4.12), (4.25) and (4.32), we (62) find

This parallel critical field can exceed the thermodynamic critical 
field Hc by a large factor if d/A is small enough . The physical 
reason for this is simply that the thin film, being largely 
penetrated by the field, has little  diamagnetic energy for a given 
applied field in comparison to an equal volume of a bulk 
superconductor.

(4.78)

/ริ แ>_ =2 J e  H_(T) A (T)
id ^ (T) d

(4.79)
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