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Catalytic combustion of natural gas has been considered as an ongoing
challenge to achieve ultra low emissions, and improve turbine efficiency over the
past decade. The hest catalyst suggested was Pd/y-Al:os, however, its lights-off
temperature and time-on-stream properties are still challenging to be enhanced as
well as cost reduction on noble metal usage. In this study, palladium (Pd), platinum
(Pt), and lanthanum (La) were employed and also co-loaded in bi- and tri-element
system supported on Y-Al.0s washcoated ceramic monolith. Multi-flow reactor
equipped with gas chromatograph (GC) based on the concept of high throughput
screening was employed to screen both conversion and selectivity of all catalysts.
Two parameters affecting combustion activity, which are the calcination steps related
to the alumina phase and loading amount, were prior studied to determine an
appropriate conditions used for generating other catalysts for further experiments.
The combustion activity results indicated that the catalyst should be prepared by pre-
calcinating washcoated monolith at 500°c for 3 hrs before being impregnated with
b%wt of total loading. After that, it should be re-calcined at 900°c for 3 hrs before
being used. The substitution of Pd by Pt, while maintaining 5% total loading, was
observed to improve the combustion activity, however, its combustion activity was
slightly decreased when Pt was further substituted by La. Nevertheless, the use of Pd
and Pt in equivalent amount with three times of La dilution (Pd:Pt:La = 1.1:3) was
suggested to be the best formula not only due to its high combustion activity at even
low temperatures, but also the reduction of noble metal usage.
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