ปัจจัยที่มีผลต่อความละเอียดของมิลเบสจากกระบวนการบดสี

นางสาวนงลักษณ์ ชินชุมากร

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชา วิศวกรรมเคมี ภาควิชา วิศวกรรมเคมี บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2540 ISBN 974-638-574-7 ลิขสิทธ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

FACTORS AFFECTING FINENESS OF MILL BASE FROM GRINDING PROCESS

Miss Nongluk Chinchumakorn

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering in Chemical Engineering

Department of Chemical Engineering

Graduate School

Chulalongkorn University

Academic Year 1997

ISBN 974-638-574-7

Thesis title

FACTORS AFFECTING FINENESS OF MILL BASE FROM

GRINDING PROCESS

Ву

Miss Nongluk Chinchumakorn

Department

Chemical Engineering

Thesis Advisor

Mr. Jirdsak Tscheikuna, Ph.D.

Thesis Co-advisor

Mr. Chaloemsak Chophothong, B.Ind.Tech.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master's Degree.

Thesis Committee

W Vankaganideen Chairman

(Professor Supawat Chutivongse, M.D.)

(Professor Wiwut Tanthapanichakoon, Ph.D.)

Dean of Graduate School

Indsal Tschuit Thesis Advisor

(Mr. Jirdşak, Tscheikuna, Ph.D.)

Thesis Co-Advisor

(Mr) Chaloemsak Chophothong, B.Ind.Tech.)

(Mr. Varun Taepaisitphongse, Ph.D.)

นงลักษณ์ ชินชุมากร: ปัจจัยที่มีผลต่อความละเอียดของมิลเบสจากกระบวนการบดสี (FACTORS AFFECTING FINENESS OF MILL BASE FROM GRINDING PROCESS) อ.ที่ปรึกษา: อ.ดร.เจิดศักดิ์ ไชยคุนา, อ.ที่ปรึกษาร่วม: คุณเฉลิมศักดิ์ ช่อโพธิ์ทอง 72 หน้า. ISBN 974-638-574-7

งานวิจัยนี้ศึกษาปัจจัยที่มีผลต่อความละเอียดของมิลเบสจากกระบวนการบดสี โดยทำการหา ความละเอียดของมิลเบสด้วยเครื่องไกรนด์เกจมิเตอร์ ส่วนผสมของสีที่ใช้ในการทดลองประกอบด้วยผงสี ไทเทเนียมไดออกไซด์ สารยึดเกาะประเภทอะคริลิกเรซินและ ตัวทำละลายที่ใช้คือ บิวทิล ไกลคอล อีเทอร์, เอ็น-บิวทานอล, เอธิล ไกลคอล อะซิเตต และ โซลเวสโซ 150 ใช้ถังผสมที่ทำด้วยเหล็กและเครื่องบดประเภท แซนด์มิลโดยมีกลาสบีดเป็นตัวกลางบด ตัวแปรสำคัญที่ใช้ศึกษา คือ เวลาในการผสมอยู่ในช่วง 60 ถึง 120 นาที ความหนืดของสีก่อนบดอยู่ในช่วง 70 ถึง 85 เคยู อัตราการไหลของสีในเครื่องบดอยู่ในช่วง 16 ถึง 20 กิโลกรัมต่อนาที และเวลาที่ใช้ในการบดอยู่ในช่วง 3 ถึง 8 ชั่วโมง

ผลการศึกษาพบว่า เวลาในการผสมและความหนืดของสีก่อนทำการบดมีเป็นส่วนทำให้สามารถ บดสีได้ดีและเร็วขึ้น ส่วนอัตราการไหลของสีในเครื่องบดในช่วงที่ศึกษานี้มีผลต่อความละเอียดของสีน้อยมาก และเวลาในการบดแปรผกผันกับความละเอียดของมิลเบส

นอกจากนี้จากผลการศึกษาในการบดสีปริมาณ 2500 กิโลกรัม สามารถแสดงได้ว่า ที่เวลาในการ ผสม 120 นาที ค่าความหนืด 70 เคยู อัตราการไหลของสีในเครื่องบด 20 กิโลกรัมต่อนาที เวลาในการบด 7 ชั่วโมง 5 นาที เป็นสภาวะในการบดที่เหมาะสมที่สุด สามารถประหยัดเวลาที่ใช้ในการผสมและการบด

ภาควิชา	วิศวกรรมเคมี	ลายมือชื่อนิสิต
สาขาวิชา	วิศวกรรมเคมี	ลายมือชื่ออาจารย์ที่ปรึกษา Jidad Ischuit
ปีการศึกษา	2540	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม 🎎 🎏

พมพัตนุกษัทยที่สักษ์ความการเพลงเก็บกระการตั้งการเก็บเรียกร้อ

#C717389

: MAJOR CHEMICAL ENGINEERING

KEY WORD: MILL BASE / GRINDING / PAINT

NONGLUK CHINCHUMAKORN: FACTORS AFFECTING FINENESS OF MILL BASE FROM GRINDING PROCESS.

THESIS ADVISOR: MR.JIRDSAK TSCHEIKUNA, Ph.D. THESIS CO-ADVISOR: MR.CHALOEMSAK

CHOPHOTHONG, B.Ind.Tech. 72 pp. ISBN 974-638-574-7

This work is conducted to study the factors affecting fineness of mill base from grinding process. Grind gauge meter is an important equipment used to measure fineness. Raw materials in the experiments consist of Titanium dioxide as pigment, acrylic resin as binder and Butyl Glycol Ether, N-Buthanol, Ethyl Glycol Acetate, Solvesso 150 as solvents. The mixing tank is made of steel and the grinding machine is sand mill with glass bead as grinding media. Variation factors are as follows: mixing time varied from 60 to 120 minutes, viscosity of mill base before grinding varied from 70 to 85 KU, flow rate of mill base varied from 16 to 20 kg./min., and grinding time varied from 3 to 8 hours.

The results have shown that both mixing time and viscosity are seemed to positively grinding efficiency and grinding time. However, from the study, effect from flow rate conditions is insignificant. Also, grinding time is inverse proportional to fineness of mill base.

One major finding from processing 2500 kilograms of mill base is that the most suitable grinding conditions are 120 minutes mixing time, 70 KU viscosity, 20 kg./min. flow rate, and 7 hours. 5 minutes grinding time. The condition mentioned has provided the benefit, in term of time saving, in mixing and grinding process.

ภาควิชา	วิศวกรรมเคมี
สาขาวิชา	วิศวกรรมเคมี
ปีการศึกษา	2540

ลายมือชื่อนิสิต ใหญ่ ลายมือชื่ออาจารย์ที่ปรึกษา Lindsal Judin

ลายมือชื่ออาจารย์ที่ปรึกษาร่วม....

ACKNOWLEDGEMENT

I would like to express gratitude and deep appreciation to my advisor, Dr. Jirdsak Tscheikuna and my co-advisor, Mr. Chaloemsak Chophothong for their patience, helpful guidance and encouragement in all aspects throught the period of this project. In addition, I owe grateful thanks to Prof. Dr. Wiwut Tanthapanichakoon and Dr. Varun Taepaisitphongse for their comments and correction of this manuscript. I am deeply grateful to The Nippon Paint (Thailand) Co.,Ltd., for the use of equipment, materials, raw materials and excellent facilities. Thanks for all people in the company who have contributed to the accomplishment of this study.

Furthermore I wish to express my appreciation to Mr. Supol Visitdumrongkul for all of his support and Mr. Sanya Worrawichawongse for his grammatical correction.

Finally, my sincere gratitude to my parents and my friends for their understanding and encouragement throughout this successful thesis.

CONTENT

F	Page
THAI ABSTRACT	IV
ENGLISH ABSTRACT	. V
ACKNOWLEDGEMENT	. VI
LIST OF TABLES	VII
LIST OF FIGURES	VII
CHAPTER	
I. INTRODUCTION	1
II. THEORY AND LITERATURE REVIEW	3
2.1 General knowledge of paint	3
2.2 Paint production	8
2.2.1 Mixing	8
2.2.2 Grinding	11
III. EXPERIMENTAL PROCEDURE AND ANALYSIS TECHNIQUES	18
3.1 Experimental procedure	19
3.2 Analysis techniques	25
3.2.1 Analysis of viscosity	25
3.2.2 Analysis of fineness	26
IV. RESULTS AND DISCUSSIONS	28
4.1 General	28
4.2 Instrumental and Experimental error	28
4.2.1 Instrumental error	28
4.2.2 Experimental error	29
4.2 Discussions	30

CONTENT(Continued)

ŀ	-age
4.3.1 Effect of mixing time	30
4.3.2 Effect of viscosity	32
4.3.3 Effect of flow rate	38
4.3.4 Effect of grinding time	44
V. CONCLUSIONS	49
REFERENCES	50
APPENDIX	52
A. Raw materials specifications	53
B. Standard test method for fineness dispersion	57
C. Data from experiments	63
VITA	. 72

LIST OF TABLE

lab	le I	Page
2.1	Main class of solvents	7
2.2	Effect of milling time	14
2.3	Time comparison of sand grinding and ball milling time	16
2.4	Degree of dispersion	17
3.1	Dimensions of the mixing tank	20
3.2	Dimensions of the receiving tank	22
4.1	Precision of fineness measurement of mill base	. 29
4.2	Repeatability of experiment	29
A-1	Specification of Ti-Pure R-902.	. 53
A-2	Specification of Acrydic A-418	54
A-3	Specification of Butyl cellosolve	. 54
A-4	Specification of N-buthanol	55
A-5	Specification of Cellosolve acetate	55
A-6	Specification of Solvesso 150	56
B-1	Type and measuring range of fineness gauge	58
B-2	Finishing degree of surface of fineness gauge	58

LIST OF FIGURE

Figu	ure Pa	age
2.1	Primary particle of a crystalline pigment	. 5
2.2	Aggregates of primary particles	6
2.3	Agglomerate of primary particles	6
2.4	The sawtooth propeller	10
2.5	Turbine types	11
2.6	Effect of viscosity in relation of flow time and medium solid content	15
2.7	Milling and grinding times to give 50% diameter for Irgalit Blue GLS and Irgalite Green DBN	
2.8	Relation between milling and grinding time and 50% diameter for Irgazin Violet	10
	6RLT	17
2.9	Effect of absolute viscosity with relative grinding efficiency	18
3.1	Diagram of the mixing tank, disperser, diameter of tank	19
3.2	Location of sampling of the mixing tank	21
3.3	Diagram of the receiving tank, disperser, diameter of tank	21
3.4	Shows flow diagram of grinding process	22
3.5	Grinding machine	23
3.6	Diagram of cylindrical chamber	24
3.7	Stormer viscometer	25
3.8	Grind gauge meter	27
4.1	Effect of mixing time before grinding at viscosity 70 KU.	30
4.2	Effect of mixing time before grinding at viscosity 72 KU	30
4.3	Effect of mixing time before grinding at viscosity 74 KU	31
4.4	Effect of mixing time before grinding at viscosity 76 KU	31
4.5	Effect of mixing time before grinding at viscosity 85 KU	31
4.6	Effect of viscosity on fineness of mill base at mixing time 60 min., flow rate 16	
	kg./min	33
4.7	Effect of viscosity on fineness of mill base at mixing time 60 min., flow rate 18	
	kg /min •	33

LIST OF FIGURE (Continued)

Figure	e	Page
4.8 E	Effect of viscosity on fineness of mill base at mixing time 60 min., flow rate 20	
k	g./min	. 34
4.9 E	Effect of viscosity on fineness of mill base at mixing time 90 min., flow rate16	
k	g./min	. 34
4.10	Effect of viscosity on fineness of mill base at mixing time 90 min., flow rate18	
	kg./min.	. 35
4.11	Effect of viscosity on fineness of mill base at mixing time 90 min., flow rate 20	
	kg./min.	. 35
4.12	Effect of viscosity on fineness of mill base at mixing time 120 min., flow rate 16	
	kg./min.	. 36
4.13	Effect of viscosity on fineness of mill base at mixing time 120 min., flow rate 18	
	kg./min	. 36
4.14	Effect of viscosity on fineness of mill base at mixing time 120 min., flow rate 20	
	kg./min.	. 37
4.15	Effect of flow rate in grinding step on fineness of mill base at mixing time	
	60 min., viscosity 70 KU	39
4.16	Effect of flow rate in grinding step on fineness of mill base at mixing time	
	60 min., viscosity 74 KU	39
4.17	Effect of flow rate in grinding step on fineness of mill base at mixing time	
	60 min., viscosity 85 KU.	40
4.18	Effect of flow rate in grinding step on fineness of mill base at mixing time	
	90 min., viscosity 72 KU.	40
4.19	Effect of flow rate in grinding step on fineness of mill base at mixing time	
	90 min., viscosity 76 KU.	41
4.20	Effect of flow rate in grinding step on fineness of mill base at mixing time	
	90 min., viscosity 85 KU	41
4.21	Effect of flow rate in grinding step on fineness of mill base at mixing time	
	120 min., viscosity 70 KU	42

LIST OF FIGURE (Continued)

Figur	re F	age
4.22	Effect of flow rate in grinding step on fineness of mill base at mixing time	
	120 min., viscosity 74 KU	42
4.23	Effect of flow rate in grinding step on fineness of mill base at mixing time	
	120 min., viscosity 85 KU	43
4.24	Effect of grinding time on fineness of mill base at mixing time 60 min.,	
	viscosity 72 KU	45
4.25	Effect of grinding time on fineness of mill base at mixing time 60 min.,	
	viscosity 76 KU	45
4.26	Effect of grinding time on fineness of mill base at mixing time 90 min.,	
	viscosity 70 KU	46
4.27	Effect of grinding time on fineness of mill base at mixing time 90 min.,	
	viscosity 74 KU	46
4.28	Effect of grinding time on fineness of mill base at mixing time 120 min.,	
	viscosity 72 KU	47
4.29	Effect of grinding time on fineness of mill base at mixing time 120 min.,	
	viscosity 76 KU	47
B-1	Example of fineness gauge (100 μm)	58
B-2	Depth of grooves of fineness gauge (100 μm)	59
B-3	Example of fineness gauge (50 μm)	59
B-4	Depth of grooves of fineness gauge (50 μm)	59
B-5	Example of fineness gauge (25 µm)	59
B-6	Depth of grooves of fineness gauge (25 μm)	60
B-7	Scraper (Common)	. 60
R-8	Example of evaluation of graining according to distribution diagram	62