
CHAPTER II
BACKGROUND AND LITERATURE SURVEY

2.1 Process Integration

The term o f  process integration w as em erged in the 8 0 ’ร. The initial 
focu s o f  this tech n o logy  is heat recovery and has expanded con sid erin g  to 
cover  several aspects o f  process d esign  during the late 8 0 ’ร and the 9 0 ’s. In 
the 9 0 ’s, it has been ex ten siv e ly  used to describe certain system s oriented  
a ctiv itie s  related prim arily to process design  and becom e to a m ajor strategic  
d esign  and planning tech n ology  for industrial com panies.

N ow  process integration is a strongly grow ing fie ld  o f  process 
engineering . It is a standard curriculum  for process en g in eers in both 
ch em ica l and m echanical engineerings at m ost u n iversities around the world. 
B y d efin ition  o f  International Energy A g en cy  (IE A ) in 1993 that describes  
p rocess integration w hich  is the system atic  and general m ethod for d esign in g  
integrated production system s, ranging from individual p rocess to total sites, 
w ith  sp ecia l em phasis on the e ffic ien t use o f  energy and reducing environm ent 
e ffec t. W ith this tech n o logy , it is p ossib le  to sig n ifica n tly  reduce cost o f  
ex istin g  plants, w h ile  new  p rocesses can often  be design ed  w ith reduction in 
both investm ent and operating costs.

2.2 Pinch Technology and Pinch Analysis
•>

The m ost im portant concept and the one that or ig in a lly  gave birth to 
the fie ld  o f  process integration is pinch concept. C ourse and develop m en t o f  
pinch tech n o lo g y  started with Bodo L in n h off (1 9 7 8 ), a PhD. student from the 
corporate laboratory Imperial C hem ical Industries L im ited (IC I), under the 
su p ervision  o f  Professor John Flow er, university  o f  L eeds, d ev ised  a new  
approach to describe energy flo w  in process heat exchanger netw ork. It w as 
an introduction o f  therm odynam ic princip les into what w as then ca lled  process  
sy n th esis and heat exchanger network design . O ver the last tw o decad es it has
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em erged as an unconventional d evelopm ent in p rocess d esign  and energy  
conservation . T his approach w as develop ed  and becom e pinch tech n ology  
fin a lly . Pinch tech n o logy  provides a system atic  m eth od o logy  for energy  
sav in gs in p ro cesses and total sites. T hese techniques g iv e  p rocess engineers a 
clear picture o f  optim um  energy needed for any p rocesses and has been proved  
to be e ffic ien t in d evelop in g  the best integrated p rocess d esign  for both new  
plant and retrofits. The term o f  pinch analysis is o ften  used to represent the 
application  o f  the too ls and algorithm s o f  pinch tech n o lo g y  for studying  
industrial p rocess. The developm ent o f  pinch tech n o lo g y  can be represented  
in rubic cube as show n in Figure 2 .1 . It indicated the start o f  pinch tech n ology  
fo cu sin g  on heat exchanger network w ith m inim um  energy consum ption o f  
grassroots d esign . During the 8 0 ’s and 9 0 ’ร, pinch tech n o lo g y  has expanded  
in all three d im en sion  o f  the cube to cover alm ost p rocess design .

H ea t and P ow e r

—  H e a t  E x c h a n g e r  N e tw o r k s

------- E n e r g y

--------  C a p ita l C os t

--------  R aw  M a te r ia l
_____ B a tch

------- R e tro fits
— N e w  D e s i g n s

Figure 2.1 The rubic cube indicating the d evelop m en t o f  pinch tech n o logy  
(G underson, 2 0 0 2 ).

A s m entioned  above, pinch tech n ology  presents a sim p le m eth od ology  
for sy stem a tica lly  an alysis o f  chem ical p rocesses and the surrounding utility  
system s w ith the help o f  fundam ental therm odynam ics o f  the first and second  
law s. Thus w e should  know  this principle for aid to understand concept o f  
pinch tech n o lo g y . The first law  o f  therm odynam ics provides the energy
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equation for ca lcu lating  the enthalpy changes in the stream  passing through a 
heat exchanger. M eanw hile the second law  determ ines the d irection  o f  heat 
flo w  that heat energy may on ly  flo w  from hot to cold  stream s. T his prohibits 
tem perature crossovers o f  the hot and co ld  stream tem perature profile  through  
the exchanger unit.

The exam ple o f  process integration by pinch tech n o lo g y  can be 
illustrated  in Figure 2.2  and 2 .3 . C onsider the sim ple process on Figure 2 .2 , 
w here feed  stream  is heated before entering to a reactor and product stream is 
co o led  after outlet. Steam s are used to heat the feed  stream  in heat exchanger  
1. A t the sam e tim e, coo lin g  water is used to cool product stream  in heat 
exchanger 2. Tem perature-Enthalpy (T -H ) diagram  for feed  and product 
stream s d ep icts the hot (steam ) and co ld  (co o lin g  water, CW ) u tility  load w hen  
there is no vertical overlap o f  the heat and cold  stream p rofiles.

Steam=A

*■

F ig u re  2 .2  A  sim p le flow  schem e w ith tem perature-enthalpy p rofiles  
(w w w .ch erso u rces.co m ).

http://www.chersources.com
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Steam=A-X

Figure 2 .3  Im proving flow  schem e with tem perature-enthalpy  
(w w w .ch erso u rces.co m ).

A p p ly in g  to develop  this process is presented in Figure 2.3. A dding a 
new  heat exchanger 3 recovers product heat (X ) to preheat the feed . The hot 
and cold  u tilities  (steam  and CW ) are reduced by the sam e am ount o f  X. The 
am ount o f  heat recovered  (X ) depends on the m inim um  approach tem perature 
that is a llo w a b le  m inim um  temperature d ifference approach (ATmin) in the 
stream  p rofiles  for heat exchanger unit. The point w here ATmin occurs is 
defined  as the “p in ch ”. From T-H diagram , the am ount o f  X  corresponds to 
ATmin o f  20 ° c . B ased on second law  o f  therm odynam ics that prohibits any 
tem perature crossover  betw een the hot and the cold  stream s, a m inim um  heat 
transfer driving force must alw ays be a llow ed  for a fea sib le  heat transfer 
d esign . Thus the tem perature o f  the hot and cold  stream s at any point in the 
exchanger m ust a lw ays have a m inim um  tem perature d ifferen ce  (ATmin). This 
ATmin value represents the bottleneck o f  the heat recovery.

The e ffec t o f  ATmin is very important for m aking d ec is io n  not only in 
d esign in g  but a lso  in econ om ic criteria. Increasing the ATmin valu es leads to

http://www.chersources.com
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higher u tility  requirem ent and low er area requirem ent. Thus the se lection  o f  
ATmin value has im plication  for both capital and operating costs. Table 2.1 
sh ow s typical ATmin value for several types o f  p rocesses. T hese are values  
based on L in n h o ff M arch’s application experience.

Table 2.1 T ypical ATmin values for various types o f  processes  
(w w w .lin n h offm arch .com )

N o
Industrial

Sector
E xperience ATmin 

V alues
C om m ent

1 O il R efin in g 20-40 °c

R ela tively  lo w  heat transfer 
co e ffic ien ts , parallel com p osite  

curves in m any application , 
fou lin g  o f  heat exchangers

2 P etrochem ical 10-20 °c
R eb oilin g  and con d en sin g  duties 

provide better heat transfer 
c o e ffic ien ts , low  fou ling

3 C hem ical 10-20°c A s for p etrochem icals

4
L ow

Tem perature
P rocesses

บocA

Pow er requirem ent for 
refrigeration system  is very  

ex p en siv e  ATmin d ecreases w ith  
lo w  refrigeration tem peratures

To sum m arize, the integration o f  new  process into the ex istin g  facility  
provid es sig n ifica n t im provem ent in the d esign  o f  process plants that w ould  
m in im ize the net cost o f  energy purchase. The m ost usefu l tool that enables 
this d esign  advance is the pinch tech n o logy , a system atic techn iques for 
optim ization .

http://www.linnhoffmarch.com
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2.3 Pinch Analysis for Heat Exchanger Networks (HENs)

G enerally , applications o f  pinch an alysis for heat exchanger can be 
d iv id ed  into tw o cases. The first one is pinch an alysis for n ew  plant designs 
and the other is pinch analysis o f  ex istin g  fa c ilitie s  retrofits. The former are 
used to id en tify  opportunities for heat integration and d istilla tion  im provem ent 
w h ile  the latter com m only  used to identify  opportunities for im proving heat 
integration and to optim ize the use o f  ex istin g  u tilities system . The stepw ise  
procedure o f  pinch analysis used and related in this work can be d ivided  into 
four steps. The exam ple calcu lation  is proposed for easy  to understand. Table
2.2  sh ow s the hot and cold  stream s data that con sists  o f  tem perature inlet, 
tem perature outlet and m ass heat flo w  capacity. The m inim um  temperature 
approach (ATmin) equal 10 °F  is ch osen  to calcu lation .

Table 2.2 The hot and co ld  stream s data

Stream  no. C ondition M Cp (Btu/hr UF) Tin (UF) Tout (°F )
1 Hot 1000 250 120
2 Hot 4000 200 100
3 Cold 3000 90 150
4 Cold 6000 130 190

2.3 .1  Setting the Tem perature Interval
B y ch oosin g  ATmin equal 10 °F , a graph can be established  

sh ow in g  tw o tem perature sca les that are sh ifted  by 10 °F , one for the hot 
stream s and the other for cold  stream s as show n in Figure 2 .4 .
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Figure 2.4 S hifted  tem perature sca le  and tem perature intervals.

From the second law  o f  therm odynam ics, heat from  any hot 
stream s in the high-tem perature intervals can be transferred to any o f  the cold  
stream s at low er-tem perature intervals. For a starting point, heat transfer in 
each interval w ou ld  be considered separately. The necessary  equation is 
show n b e lo w

Qinterval =  { £  (mCp)hot,interval - E (mCp)cold,interval } AT,interval (2.1)

For exam ple, the first interval obtains Q1 =  (1 0 0 0 )(2 5 0 -2 0 0 ) = 
50 X 103 Btu/hr. Figure 2 .5  show s net energy required at each interval. .

2 .3 .2  G enerating C ascade Diagram
A s m entioned above, energy w ill transfer from high- 

tem perature interval to low -tem perature interval. Figure 2 .6  sh ow s the energy  
transfer in th is case.
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Figure 2.5 N et energy required at each interval.
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The hot and cold  u tilities are required to sa tisfy  energy dem and  
in the interval. In this case, energy d efic it is observed  in third tem perature 
interval and 70 Btu/hr from hot utility  is used to supply energy needed in the 
interval. A t the end o f  the tem perature interval, the rem aining energy w ill
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reject to a cold  u tility . This diagram is called  cascade diagram  that reveals the 
m inim um  hot and cold  utility  required in the process and sh ow  heat cascade  
through the tem perature intervals

2 .3 .3  G enerating Grand C om posite Curve (G C C )
GCC is a tool for determ inating u tility  tem perature and 

decid in g  on u tility  requirem ents. The GCC is constructed by rearranging the 
cascade diagram  from Figure 2 .6 . The m inim um  hot u tility  is taken at the 
h ighest tem perature interval and the sam e am ount o f  energy is transferred  
energy sam e as procedure dow n to the low est tem perature interval. A fter that 
plotting b etw een  average temperature vs. heat transfer o f  each tem perature 
intervals, w e can generate the GCC as show n in Figure 2 .7 .

Average Temperature
250 240 235

200 190 195

160 150 155

140 130 135

120 110 115
100 90 95

F ig u r e  2 .7  G enerating grand com p osite  curve.

T his technique w as used in 1982 by Itech, Shiroken and 
U m eda. It sh ow s the variation o f  heat supply and dem and w ith in  the process. 
T his too l helps m axim ize the use o f  cheaper utility  le v e ls  and m in im ize  the 
use o f  ex p en siv e  u tility  lev e ls . Figure 2.8  sh ow s advantage o f  grand
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com p osite  curve in the utility consum ption. From this figure, it is not 
n ecessary  to supply the hot utility  at the h ighest tem perature lev e l but the 
u tility  can be supplied over tw o tem perature lev e ls  T h I (HP steam ) and T h2 
(LP steam ). The total m inim um  hot utility  requirem ent rem ains the same: 
Q Hm in = HI (HP steam ) + H2 (LP steam ). S im ilarly , Q cm in = C l 
(R efrigerant) + C2 (C oolin g  water). The point at T ||2  and Tc2 lev e ls  w ith  
u tility  duty o f  H2 and C2 on the GCC are ca lled  the u tility  pinch.

Temperature

F ig u r e  2 .8  The advantage o f  Grand com p osite  curve in u tility  consum ption .

2 .3 .4  D esign  o f  Heat E xchanger N etw ork
The design  o f  heat exchanger netw ork is best execu ted  using  

the Pinch D esig n  M ethod (PD M , L in n h off and H indm arsh, 1983). The basic  
PDM  respects the decom p osition  o f  process and u tility  p inch points provide a 
strategy and m atching rules enable the engineer to obtain an in itial netw ork, 
w h ich  ach iev es the m inim um  energy target. The d esign  strategy sim p ly  starts 
at the p inch point. From Figure 2 .7 , there is no energy transfer betw een  the 
third and fourth tem perature intervals. This point is ca lled  pinch point, where 
driving forces are lim ited and the critical m atches for m axim um  heat recovery
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m ust be se lected . The m atching rules sim p ly  ensure su ffic ien t driving forces 
to m in im ize  the num ber o f  units. The design  then gradually m oves aw ay from  
the p inch, m aking sure that hot stream s are u tilized  above pinch and v ise  versa  
for co ld  stream s b elow  pinch.

The m atching rules for pinch exchangers can be expressed  m athem atically  by

A b ove  pinch mCp,cj >  mCp.Hi
nc > ทน

B e lo w  pinch mCp H i > mCp,cj
ทน > nc

w here Hi and Cj are potential stream s to be m atched in a heat exchanger  
nn and nc are number o f  hot and cold  stream s, resp ective ly  
m is m ass flo w  rate

I f  the above eq u alities are not satisfied  for a com p lete  set o f  
pinch exch an gers, stream sp litting has to be considered  in order to reach  
m axim um  en ergy recovery (M ER ). It is a lw ays p o ssib le  to sp lit stream  
sp littin g  to sa tisfy  all inequalities, that total mCp o f  co ld  stream  are larger 
than total mCp o f  hot stream s above pinch, and v ic e  versa for ones b elow  
pinch. M oreover, there are three rules form ing the basis for practical netw ork  
can be sum m arized b elow ,

•  N o  external heating b elow  the pinch
• N o  external coo lin g  above the pinch
• N o  heat transfer across the pinch

The v io la tion  o f  any o f  the above rules results in the higher 
energy requirem ents than the m inim um  requirem ents th eoretica lly  p ossib le . 
T hese rules are ca lled  “rule o f  thum b”. For more understanding, Figure 2 .9  (a) 
and (b) exp la in  the e ffec t o f  heat transfer across pinch. Figure 2 .9  (a) show s
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the sim ple b lock  diagram in general case that no heat transfer across pinch and 
(b) sh ow s the heat transfer across pinch am ount o f  X k w . The utilities  
requirem ent is tw ice as much as case (a). The sam e energy penalty  occurs in 
case o f  adding cold  utility above pinch point and adding hot u tility  below  
pinch point as show n in Figure 2 .9  (c) and (d), resp ectively

QHmin QHm1n + X k W
- C L
Hot End Hot End

Heat Sink Heat Sink
O k W ,L _ L Pinch Q= X k W c L

Cold End Cold End
Heat Source Heat Source

Qcmin
(a) No heat across pinch

Qnmin + Y k W
- C L
Hot End 

Heat Sink
Pinch Q= 0 k w j _ j ^

Cold End 
Heat Source

C U T -
Qcmin

Qcmin +  X  kW
(b) Heat transfer across pinch

Y k W Hot End 
Heat Sink

Pinch Q= 0 k w j _ j _
Cold End 

Heat Source V Z k W

Qcmin + z  k w
(d) Add heating below pinch point(c) Add cooling above pinch point 

Figure 2.9 The effec t o f  “rule o f  thum b” (L in n h o ff and H indm arsh ,1983).

H ow ever, a pinch does not occur in all heat exchanger network  
problem s. Certain problem s rem ain free o f  a pinch until the m inim um  allow ed  
driving force, ATmin, is increased up to or beyond a threshold valu e ATthresh-
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The co n cep i o f  a threshold problem  can be exem p lified  as a “very hot” hot 
stream  m atched to a “very c o ld ” cold  stream so the design  for the netw ork  
co n sists  o f  on ly  hot or cold  u tilities. Figure 2 .10  sh ow s the behavior in term o f  
a p lot b etw een  utility  requirem ents and ATmm.

Figure 2.10 Threshold problem  behavior.

To design  the unpinch heat exchanger netw ork, fast m atching  
algorithm  o f  Ponton and D on alson  (1 9 7 4 ) w as presented. .It is a lso  referred to 
as the h ottest/h igh est m atching heuristic and a llow s netw orks to be generated  
w ith relative ease and rapidity. It does not sp ec ify  stream sp lits and generates  
o n ly  one netw ork. The m ethod is based on heuristic o f  m atching as fo llo w s .

“The hot stream having the h ighest supp ly tem perature w ith the 
co ld  stream  having the h ighest target tem perature”

O nce a m atch is chosen , som e heuristic is required to fix  its 
load. A n appropriate heuristic may transfer the m axim um  p o ss ib le  heat 
subject to ATmjn constraints.

For both PDM  and threshold problem , the graphical m ethod for 
representing flo w  stream and heat recovery m atch ca lled  a gird diagram  
(F igure 2 .1 1 ). A ll cold  and hot stream s are represented by horizontal lines.
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The inlet and outlet tem peratures are show n at either ends. The vertica l line in 
the m iddle represents the pinch tem perature. The circ le  represents heat 
exchanger and unconnected  circles represent exchanger u sin g  hot and cold  
utility .

2.4 Pinch Analysis for Distillation (Distillation Column Targeting)

One o f  the major en ergy-in ten sive  units in ch em ical separation  
p rocess is d istilla tion  colum n. S im ilar to pinch an a lysis for H EN , d istilla tion  
colum n can be sim p ly  represented in term o f  graphical representation  by using  

• pinch an a lysis. D istilla tion  colum n targeting m ethod (D h o le  and L innhoff, 
1992) is u sefu l to identify  design  targets for im provem ents in energy  
consum ption  and e ffic ien cy . This capability  is based on the concept o f  
practical near-m inim um  therm odynam ic condition  (P N M T C ) that accounts for 
ev itab le  in e ffic ie n c ie s  ( i.e , loss due to sharp separation, pressure drop, chosen  
configuration , and feed ) through an actual colum n sim ulation . Figure 2 .12  
sh ow s the PN M TC . The colum n at PNM TC w ill still require in fin ite  stages 
and in fin ite  side exchangers as show n in the Figure 2 .12 .
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A B C D

Inevitable feed losses

Figure 2.12 Practical near-m inim um  therm odynam ic con d ition  (PN M T C ).

T his m ethod can be d ivided into' five  steps. Sim ilar to H E N s, the exam ple  
ca lcu la tion  is proposed to m ake it easy  to understand. C onsidering the data 
properties o f  feed  and product as illustrated in Table 2 .3 .

T a b le  2 .3  Data sp ecifica tion  o f  feed (F), d istilla te  (D ) and bottom s (B )

Properties Feed D istilla te B ottom s
Pressure (kPa) 200 100 102.5
Tem perature ( UC) 100 40 125
M olar flo w  (km ol/hr) 1000 59 9 .9 400.1
M ole fraction liquid 0 .5795 1.0 1.0
M ole fraction  com ponent 1 ( c l ) 0 .2 0 0 0 .3328 0 .0008
M ole fraction  com ponent 2 (c2) 0 .2 0 0 0 .3 2 7 9 0.0081
M ole fraction  com ponent 3 (c3) 0 .200 0 .3225 0 .0163
M ole fraction com ponent 4 (c4) 0 .2 0 0 0 .0 1 5 7 0 .4764
M ole fraction com ponent 5 (c5) 0 .200 0.0011 0 .4984
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2.4.1 C onverge S im ulation  o f  D istilla tion  C olum n and Indication o f  
L ight and H eavy K eys

The com puter sim ulations such as A spen  p lus, PROII and H ysis  
are used to design  d istilla tion  colum n. N orm ally  the output data o f  sim ulation  
provides m olar flo w  rates and com p osition s on a stage-b y-stage  basis. Table
2 .4  presents the result o f  the sim ulation  for ten stages (feed  stage =  5) based  
on a total condenser (w ith  the condenser tem perature sp ec ified  at 40 °C ). 
C onsider a light and heavy key m odel w ith com ponents c4  and c5 are 
con sid ered  as heavy keys. The more vo la tile  o f  these com ponents is the light 
and the le ss  vo la tile  is the heavy key. H eavy keys and light keys are denoted  
subscript H and L resp ectively . A lso , X and Y denote the m ole fraction in the 
liquid (L) and vapor (G ) resp ectively .

Table 2,4 Sim ulation  results for colum n w ith ten stages

Stage N o. x „ * Y h * L* G* H l * Hg*
1 0 .0167 0 .0167 246.3 - 384 -
2 0 .2212 0 .0168 196.7 846.3 510 8226
3 0 .4965 0.0673 162.4 796 .6 697 8406
4 0 .6342 0 .1189 149.3 762 .4 789 8593
5 0 .6858 0 .1457 624 .2 222 .8 3553 2601
6 0 .7 0 6 6 0 .1700 6 2 5 .4 22 4 .2 3728 2686
7 0 .7575 0 .2305 62 7 .2 225.3 4118 2861
8 0 .8412 0 . 3 7 4 7 63 6 .4 227.1 4«873 3254
9 0 .9238 0 .6150 655 .8 236.3 5866 4009
10 0 .9748 0 .8439 400.1 255.8 3995 5005

U nits: flo w s ( C *,G *) in km ol/hr and enthalp ies (H L *,H G *) in k w



18

2 .4 .2  C alcu lation  o f  M inim um  Vapor and Liquid F lo w  R ates and 
M inim um  V apor and Liquid Enthalpies

A s a c lo se  approxim ation to PN M TC , the equilibrium  and 
operating line equations for the key com ponents are show n b elow

G Y l-L X l = D l Light key above feed stage (2.2a)
G Y h-LX h = D h Heavy key above feed stage (2.2b)
LXl-G Y l = B l Light key at/below feed stage (2.2c)
LXh-G Y h =B h Heavy key at/below feed stage (2.2d)

T hese equations m ust be so lved  sim u ltan eou sly  with the 
equilibrium  lin e equations. The stagew ise  com p osition s from  the sim ulation  
(denoted  by *) provide the equilibrium  com p osition s. U sin g  these  
co m p o sitio n s, and noting that the equilibrium  and operating curves are 
co in cid en t at the m inim um  therm odynam ic cond ition , y ie ld s

GmjnYL*-LminX L* = D l Light key above feed stage (2.3a)
GminYH*-LmjnXH* = D h Heavy key above feed stage (2.3b)
LminX L*-GminY L* = B l Light key at/below feed stage (2.3c)
LminXH*-GmjnYH* =B h Heavy key at/below feed stage (2.3d)

Equation 2.3 estab lish ing  the m inim um  vapor flo w  (Gmin) and 
the liquid  flo w  (L mjn) at the stage tem perature. In order to obtain the 
tem perature-enthalpy representation for PN M TC , it n eed s to express the 
m inim um  vapor and liquid flow s in term o f  enthalp ies. U su a lly  sim ulation  
outputs a lso p rovide stage-b y-stage vapor and liquid enthalpy va lu es as show n  
in T able 2 .4  (H g* and H l* resp ectively ) and these va lu es are in equilibrium . 
Thus, the en th alp ies at the m inim um  vapor and liquid f lo w  (Homin and HLmin) 
are obtained from  Ho* and H l* by direct m olar proportionality  fo llo w in g  this 
equation. The resu lts o f  Gmin, Lmin, Hûmin and H Lmm are sh ow n  in T able 2.5.
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Homin = Ho*(Gmin/G*) (2.4a)
H Lmin =  H L* ( L mjn/ L * )  (2.4b)

Table 2.5 The result o f  ca lcu lation  o f  m inim um  vapor and liquid flo w  rates 
and m inim um  vapor and liquid enthalpies

Stage N o. Lmin CJmin HLmin HGmin
1 - - - -
2 0.0 59 9 .9 0 0 5834
3 70 .84 67 0 .7 7 305 7079
4 119.00 718.93 630 8104
5 614.15 21 4 .0 8 3494 2 4 9 8
6 600.03 199.95 3576 2396
7 565.08 167.04 3711 212
8 514.65 114.58 3942 1640
9 46 6 .2 2 66 .15 4171 1122
10 40 0 .1 0 0.0 3995 0

2 .4 .3  C alculating o f  N et Heat D efic it  (Hdef)at Each Stage Tem perature  
A fter calcu lating Hc.min and H L,min, enthalpy balances are set up 

at each  o f  the stage tem peratures and the net enthalpy d efic its  (Hdef) are then  
evaluated  at each o f  these tem peratures. Figure 2 .13 presents the evaluating  
enthalpy d e fic it at a stage.
From this figure, the enthalpy d efic it on each stage is g iven  by

Fldef, 1 — Hl.min" HGmin+ H d above feed stage (2.5a)
Hdef,2 HGmin+ H d - Hp below  feed stage (2.5b)

Table 2 .6  sh ow s the result from calcu lation  o f  net heat d efic it (Hdef) at each  
stage tem perature
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Table 2.6 The result from calcu lating o f  net heat d efic it ( H d e f )  at each  stage  
tem perature

Stage N o. HLmin HGmin H d e f
1 - - -
2 0 5834 -5 029
3 305 7079 -5 969
4 630 8104 -6 669
5 3494 2498 -6 9 5 9
6 3576 2396 -6775
7 3711 212 -6 364
8 3942 1640 -5653
9 4171 1122 -4 9 0 6
10 3995 0 -3 960
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2 .4 .4  C ascading o f  Heat D efic it and G enerating C olum n Grand 
C om p osite  C urve (CGCC)

C olum n grand com posite curve (C G C C ) is a graphical 
representation w hich  can generate by the sam e m ethod as GCC. C onstructing  
CGCC is done by adding the condenser load (7091 kW ) to the H d e f  on each  
stage. The result cascade ( H c a s )  may be plotted against the stage tem perature 
to arrive the CGCC. Table 2 .7  show s the data o f  H cas and Figure 2 .13  
dem onstrates how  the individual enthalpy d efic its  are cascaded to construct 
the CGCC

Table 2 .7  Data o f  H cas  to construct CGCC

Stage No. H d ef Hcas
1 - 7091
2 -5029 2062
3 -5969 1 1 2 2

4 -6669 422
5 -6959 132
6 -6775 316
7 -6364 727
8 -5653 1438
9 -4906 2185

1 0 -3960 3131

There are m any w ays for im proving energy e ff ic ie n c y  o f  
d istilla tion  co lu m n s such as reduction in reflux ratio, feed  con d ition in g  and 
sid e co n d en sin g /reb o ilin g  etc. U sing pinch an a lysis, it is p ossib le  to identify  
w h ich  one o f  th ese colum n m odifications w ould  be appropriate for energy cost  
saving . The colum n m odifications using the CGCC are illustrated in Figure 
2 .14 . First, feed  stage location  o f  the colum n is optim ized  prior to starting the 
colum n therm al analysis. This can be carried out by trying to alternate feed  
stage location  in sim ulation  and evaluating its im pact on the reflux ratio.
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Tray temperature or Tray number

Enthalpy

Figure 2.14 C onstructing the CGCC using stagew ise  enthalpy d efic its  
m od ifica tion  o f  CGCC.

Too high feed location  in the colum n w ill sh o w  a sharp 
enthalpy change on the condenser side on the Stage-H CGCC and it should be 
located  low er. On the other hand, too lo w  feed location  in the colum n w ill 
sh ow  a sharp enthalpy change on the reboiler side on the Stage-H  CG CC and it 
should  be located  upper. An appropriate feed  location  not on ly  rem oves the 
distributions in the Stage-H CGCC but also  results in the reduction o f  
condenser and reboiler duties. A fter feed  stage optim ization  is carried out, it 
m ay strongly  interact w ith the other op tion s for colum n m od ifica tion . The 
CGCC for the colum n is obtained.

F igure.2 .14(a), the horizontal gap b etw een  the vertical axis and 
CGCC pinch point indicates the scop e for reflux im provem ent in the colum n. 
W hen reflux ratio w as reduced, the CGCC w ill m ove c lo se  to the vertical axis, 
resu lting in sav in gs on both the reboiler and condenser lev e ls . The reflux can 
be im proved by adding more stages or im proving the e ff ic ie n c y  o f  ex isting  
stage in case o f  ex istin g  colum n. In order to m ake a ju d ic io u s ch o ice  for the 
reflux ratio, increase in the capital cost due to the increase in the number o f  
stages should  be trad e-o ff against the sav in gs in the operating co sts  o f  reduced 
condenser and reboiler loads. The next step after reflux im proving is to 
evaluate the scop e for feed  con d ition  (pre-heating or coo lin g )



23

as show n in Figure 2 .1 4 (b ). This figure is identified  by a sharp change in the 
Stage-H CGCC shape c lo se  to the feed  w ith a feed  preheating m odification  
exam ple. The extent o f  sharp change approxim ately ind icates the scope for 
feed  preheating. Feed preheating a llow s heat load to be sh ifted  from  reboiler 
to the feed  preheater. S im ilarly, w hen p re-coo lin g  is supp lied , the heat load is 
sh ifted  from condenser to feed  precooler. Feed preheating reduces not only the 
reboiler duty but a lso the temperature leve l at w hich  the hot u tility  (for the 
reboiler and for the pre-heating the feed) needed to be supplied .

Feed Stage Optimisation

Figure 2.15 U sin g  colum n grand com p osite  curve to id en tify  colum n  
m od ifica tion s (D h o le  and L innhoff, 1992).
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The feed  w hich  needs e x c e ss iv e ly  su b -coo led  w ill sh ow  a sharp enthalpy  
change on the reboiler side o f  CGCC. The extent o f  this change determ ines 
the approxim ate feed  heating duty required. Change in the heat duty o f  feed  
pre-heater or p re-cooler w ill lead to sim ilar duty change in the colum n reboiler  
or condenser loads, respectively .

The last step is side con d en sin g /reb o ilin g . Figure 2 .1 4 (c)  
d escrib es the C G C C ’s w hich  show  potential for side con d en sin g  and reboiling. 
A n appropriate side reboiler a llow s heat load to be shifted  from reboiler to the 
sid e reboiler tem perature w ithout sign ifican t reflux penalty. The scope for 
side co n d en sin g /reb o ilin g  can be id entified  from the area beneath or above the 
CGCC pinch point (area betw een  the ideal and actually  enthalpy profiles). I f  a 
s ig n ifica n t area ex ists , say b elow  the p inch, a side condenser can be placed it 
on appropriate tem perature level. This a llow s heat rem oval from the colum n  
u sin g  a cheaper cold  utility . The addition o f  side reboiler, reduces not on ly  
the m ain reboiler duty but a lso the tem perature lev e ls  at w hich  the hot utility  
(for the m ain reboiler and for the side reboiler) needed to be supplied .

N orm ally , feed preheating is at the m oderate tem perature level 
b ecau se it operates outside the colum n and is easier to be im plem ented  than 
side con d en sin g /reb o ilin g .

2.5 Energy Integration

To im prove the overall energy e ffic ie n c y  o f  the p rocess, it is p ossib ly  
done by appropriate integration o f  the colum n w ith the background process. A  
heat exch an ge link is im plied  betw een  the colum n h eatin g /coo lin g  duties and 
the p rocess h ea tin g /coo lin g  duties w ith the u tility  lev e ls . Figure 2 .15  
sum m arizes the principle for appropriate colum n integration w ith the 
background process.
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Figure 2.16 Appropriate integration o f  a d istilla tion  co lu m n  w ith the 
background process.

Figure 2 .1 5 (a ) show s a colum n w ith the tem perature range across the 
pinch tem perature o f  the background process. There is no b enefit in 
integrating the colum n with the background process b ecause the overall energy  
consum ption  rem ains the sam e. The colum n is therefore inappropriately  
placed  as integration w ith the background process.

Figure 2 .1 5 (b ) show s the CGCC o f  the .colum n that ind icates a 
potential for side condensing . The side condenser opens up an opportunity for 
integration b etw een  the colum n and the background p rocess. T herefore the 
overall energy consum ption has been reduced due to the integration o f  the side  
condenser.

Figure 2 .1 5 (c )  sh ow s an alternative the colum n pressure that could be 
increased to a llo w  com plete integration betw een  the colum n and background  
process v ia  the colum n condenser. The colum n is now  on one sid e o f  the 
pinch (not across the pinch). The colum n is therefore appropriately p laced as
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integration w ith the background process.
In con clu sion , the integration opportunities are enhanced by stand­

alone colum n m odifications such as feed  con d ition in g  and side  
co n d en sin g /reb o ilin g . If the colum n is p laced across the pinch, there is no 
potential integration with the background process. On the other hand, it is 
appropriate, i f  it lies  on one side o f  pinch and can be accom m odated  by the 
GCC o f  the background process.

2.6 Literature Review

2.6 .1  D evelop m en t o f  M eth od ology  for P inch A n a ly sis
The m eth od ology  o f  pinch an a lysis is d eve lop ed  for m ore than 

ten years. The m ethod is w id ely  used for m ain reason w hich  is sim ple to 
understand and m ore effic ien t. In 1982, L in n h off and H indm arsh presented  
the d esig n  m ethod o f  heat exchanger netw orks. The m ethod is to com bine  
su ffic ien t s im p lic ity  w ith hand ca lcu la tion s to id en tify  best design . It is so 
sim p le and straight-forw ard that is p ossib le  to proceed  such d esign s for large 
problem  qu ick ly . This m ethod is done by o ffer in g  three fea sib ility  criteria at 
the pinch to ch o o se  stream m atch for d esign in g  heat exchanger netw ork and 
using t ic k -o ff  heuristic to ensure the d esign  is steered tow ards the few est 
p o ssib le  unit and solu tion  o f  the rem aining problem  a llo w in g  consideration  o f  
p rocess constraints and other requirem ents. M oreover, th is d esign  to p o lo g y  is  
trad e-o ff b etw een  energy and capital costs by using heat load loop and heat 
load path. ,

L in n h off and Ahm ad (1 9 9 0 a ) presented a sim ple m eth od ology  
for the d esign  o f  near optim um  heat exchanger netw orks based on cost targets. 
T hese targets prior to the design  g iv e  the results w ith in  fiv e  percent o f  the 
optim um  so lu tion . The detailed capital cost m od els, w as considered  the 
d ifferen ce  in heat transfer co e ffic ien t, non-linear heat exchanger cost law , 
non-counter current exchanger, non-uniform  m aterial o f  construction , pressure 
rating and exchanger type in the netw ork, (A hm ad, L in n h off and Smith, 
1990b).
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The m ethod described above is suitable for just on ly  one pinch  
point in the problem . Therefore, the m ultip le pinch d esign  m ethod w as 
proposed by Jezow sk i (1 9 9 2 ). He review ed  a pinch d esign  m ethod (PDM ) for 
m ultip le pinch problem s. The design  is started by d efin in g  the inverse pinch  
point. This point w ill separate a region betw een  p inches into tw o sub-regions. 
The PDM  proposed by L in n h off and Hindm arsh (1 9 8 2 ) w as used for designing  
w ith som e guidance. The d esign  is started from both p inches sim ultaneously . 
The so lu tion s feature the m axim um  energy recovery and m inim um  number o f  
units.

Ten years later, D istilla tion  colum n targeting (D h ole  and 
L innh off, 1992) w as presented to d esign  d istilla tion  co lu m n s using a 
com bination  o f  therm odynam ic and practical aspects o f  colum n m odifications. 
C olum n optim ization  in vo lves op tion s such as different reflux , pressures side  
con d en sin g /reb o ilin g  and feed preheatin g /coo lin g . This m ethod establishes  
heat load and tem perature leve l for such m od ification s and id en tifie s  the best 
com bined  option. M oreover, it can clarify  the e ffect o f  design  m odification  on  
colum n capital cost.

The integration o f  heat ex ch a n g er . netw ork and d istillation  
colum n is d iscu ssed  by L in n h off e t  a l . ,  (1 9 8 3 ). There w ere tw o observations o f  
this idea, First, i f  the good integration betw een  colum ns and process is 
ach ieved , the colum ns can be run w ith  free o f  u tility  charges. Second, the 
con ven tion a l colum n integration m ethods, e .g ., m ultip le e ffec t colum ns, can 
prevent the good  integration. T hey show ed  that the good  integration w as 
obtained by p lacing colum n in one side o f  pinch, i.e. not across the pinch and 
either the reboiler or condenser being integrated w ith the p rocess. If these  
criteria can be met, energy cost o f  d istilla tion  colum n can e ffec tiv e ly  be 
reduced.

In practice, there are m any petrochem ical plants having been  
invested  for the exchangers. The d esign  for new  plants is not appropriate for 
this case, sin ce m any heat exchangers have to be elim inated  to achieve the 
energy target. The approach has been d evelop ed  about the sam e period as for 
the grass-root one. To apply pinch an alysis in industrial ex istin g  plant, T joe
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and L in n h o ff (1 9 8 6 ) presented a m ethod using pinch an a lysis for process 
retrofits. The assum ption is a good retrofit that m akes the p rocess sim ilar to 
optim um  grass-root design. The first step is to set the target by u sin g  area- 
energy curve. The design  w as done by assum ing that the new  area w ill have 
the sam e e ff ic ie n c y  as the ex istin g  one. The m inim um  tem perature and energy  
sav in gs are set under a sp ecified  payback tim e or investm ent. The retrofit is to 
id en tify  the cross-p inch  exchangers and m odify  them . The m ethod w as also  
applied  for eth y len e plant retrofit (L in n h off and พ itherell, 1986)

The parameter concerning w ith the co st o f  m atching was 
con sid ered  in a new  approach for heat exchanger netw ork retrofit (C arlsson, 
Franck and B erntsson, 1993). The criss-cross m atching w as b e lieved  to g ive a 
low er cost so lu tion  com paring to the vertical m atching. In this approach, the 
cost o f  m atch includes the e ffect o f  other parameters. The m atch co st m atrices 
w as proposed. The m atrices show  the type o f  m atching, cost o f  m atching. The 
d esign ers w ill se lec t the match and the new  m atrices w ill be ca lcu la ted  for the 
rem aining part. The netw orks cost is the sum o f  these ch osen  m atches.

M oreover, the pinch concept is a lso used to d evelop  a 
procedure to op tim ize  a licen so r’s d esign  for com p lex  p rocesses w ith m any 
u tilities  and unit operations (T rivedi e t  a l . ,  1996). The procedure included a 
m ethod to set the m arginal cost for various utility  lev e ls . It a lso  illustrates 
how  to use com p osite  and grand com p osite  curves to set the lev e l and load o f  
various. In addition, the m ethod op tim izes d istilla tion  colum n using the 
con cep ts o f  colum n grand com p osite  curves.

A t the sam e tim e, B riones and K ok ossis (1 9 9 6 ) presented a 
rigorous and system atic  optim ization  m ethod for the retrofit o f  heat exchanger  
netw orks. T his work m akes use o f  both pinch an alysis and m athem atical 
program m ing. The lim itation  behind the conventional m ethod due to the 
assum ption  o f  area and increm ental e ffic ien cy  as w ell as to its in ability  to 
target m od ifica tion  and account for d esign  constrains w h ich  appear regularly  
in retrofit problem . The new  approach so lv e  this problem  by u sin g  pinch to 
con cep tu a lize  the stage o f  d ecom p osition  and instantly  the d ifferent design  
task and using m athem atical program m ing to enable an e ffe c tiv e  search am ong
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the availab le option.
Tw o years later, structural targeting for integration retrofit 

(R eissen  e t  a l . ,  1998) is a new  targeting m ethod for retrofit o f  heat exchanger  
netw orks. It com bines ex istin g  targeting and design  m ethod for retrofit with  
the concept o f  zon in g  used in grassroots design . This m ethod g iv es  targets not 
on ly  for utility saving  and exchanger area investm ent but a lso  for extent and 
location  o f  the required m od ification s. The result o f  this m ethod g ives  
sim plier design  than ex istin g  m ethod and id en tifies alternatives and additional 
p o ssib ilities .

P o lley  and A m idpour (2 0 0 0 ) show ed the procedure for 
retrofitting industrial heat exchanger netw orks. T hey indicated that the capital 
investm ent and payback tim e are the im portant econ om ic indicators for 
process retrofit. The sav in g-in vestm en t plot w as used to determ ine the retrofit 
target. The retrofit an alysis w as started by com paring the perform ance o f  the 
ex istin g  unit w ith the ideal relationship  via  area e ffic ien cy . The analysis is 
based on assum ption that any new  area has at least the sam e e ffic ie n c y  as the 
ex istin g  one. In conventional m ethod, the cross-p in ch  exchangers were  
id en tified  and then m odified . T hey also  indicated the d isadvantages o f  the 
ex istin g  m ethod. At the sam e tim e, they proposed the new  procedure by  
id en tify in g  the structure o f  the revam ped units in the first stage and then 
en ergy-in vestm en t trad in g-o ff w ill be done to size  and m od ify  the exchangers.

2 .6 .2  A p p lication s o f  Pinch A nalysis
The previous literature survey is the developm ent o f  

m eth od o logy  in Pinch analysis and this part is app lications o f  th is method in 
industrial plant.

Pinch tech n o logy  (PT) w as proved to be important for 
engineers to analyze and design  chem ical p rocesses (S tan k iew icz , 1993) . B y  
a llo w in g  engineers to track the heat or pressure flow s in all process streams 
w ithin  a plant, PT m ade it easier to integrate plant d esign . Rearranging  
equipm ents, such as reactors, evaporators, pum ps, d istilla tion  colum ns, and 
separators, can im prove e ffic ie n c y  o f  unit operations, in energy consum ption
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such as heat exchanger netw orks. It is availab le to autom ate the redesign  
p rocess and PT is set to m ove beyond energy, into pressure drop optim ization  
and d istilla tion  co lum ns sequencing.

A l-R iyam i e t  a l . ,  (2 0 0 1 ) applied pinch tech n o lo g y  in Fluid  
cata ly tic  cracking (FC C ) plant by using retrofit technique. SPR IN T software 
is used for ca lcu la tion  and m odify ing  ex istin g  heat exchanger netw orks in 
FCC. The result o f  this work is very good  perform ance. T hey can save  
energy 8 .955  M W  (74%  energy savin gs o f  the scop e o f  d esign ) and utility cost  
sav in gs is about 2 ,3 8 8 ,6 0 0 $  (27%  cost sav in gs decrease) by adding o f  four 
heat exchanger and repiping o f  an ex istin g  exchanger w ith payback period o f  
nineteen  m onths.

In the sam e year Pinch tech n o logy  w as applied  to a nitric acid  
plant, Croatia by M atijasevix  and O tm aeix. The result sh ow  that application  o f  
pinch  tech n o lo g y  can lead towards great energy savin gs and reduce cooling  
w ater and m edium  pressure stream by adding o f  three new  heat exchanger w ith  
payback period o f  14.5 month. (M atijasevix  and O tm aeix, 2 0 01)
P hipps.M .A  and A ndrew  F.A H odley  (2 0 0 3 ) offer the app lication  o f  pinch  
a n a lysis  by u sin g  heat integration softw are to determ ine retrofit opportunities 
w ith in  a refinery process. The application  is done in M EK  (M ethyl Ethyl 
K etone) unit o f  D ew axed  oil so lven t recovery plant. Data and inform ation are 
co llec ted  from E xxon  M obil. For saving  tim e consum ption in trial and error 
sim ulation  and getting  more accurate, SPR IN T softw are w as se lec ted  and the 
result o f  this work sh ow s 15 % o f  energy savings.

The su ccessfu l one for pinch analysis is ap p lication s o f  total, 
p rocess energy integration in retrofitting an am m onia plant (Y ao W ang and 
et.a l., 2 0 0 3 ). T hey use pinch analysis to save 1150 kg/h o f  fuel gas and 1322  
t/h o f  co o lin g  w ater by reconstructing and repiping o f  stream  lines in am m onia  
plant. It is very ach ievab le because they apply this tech n o lo g y  for m ore than 
ten C hinese plants and has generated a profit about 80 m illion  RM B per year.
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