REFERENCES

- Bowman, R.S., Haggerty, G.M., Huddleston, R.G., Neel D., and Flynn, M.M. (1995)
 Sorption of nonpolor organic compounds, inorganic cations, and inorganic oxyanionc by surfactant- modified zeolite. <u>American Chemical Society</u>, 54-64.
- Bowman, R.S., Sullivan E.J., and Li Z. (1997) Mechanisms of contaminant sorption by surfactant-modified zeolite. In Proc. WERC/HSRC '97 Joint Conference on the Environment, 22-24 April 1997, Albuquerque, NM, 104-108.
- Cadena, F., and Bowman, R.S. (1994) Simultaneous Removal of Anionic, Cationic and Neutral Hazardous Pollutant from Solutions. <u>Environmental Science</u> and Technologies, 28, 302-311.
- Castiglia, P.T. (1995) Lead poisoning. Journal Pediatr Health Care, 9, 134-5.
- Chen, H., Yang R., Zhu, K., Zhou, W., and Jiang, M. (2002) Attenuating toluene mobility in loess soil modified with anion-cation surfactants. <u>Journal of</u> <u>Hazardous Material</u>, 94, 191-201.
- Cortes-Martinez, R., Martinez-Miranda, V., Solache-Rios, M., and Garcia-Sosa, I.
 (2004) Evaluation of natural and surfactant-modified zeolite in the removal of cadmium from aqueous solutions. <u>Separation Science and Technology</u>, 39, 2711-2730.
- David, C.R. and Jorge, A.P. (2001) Adsorption of sodium dodecylbenzene sulfonate on organoplilic bentonites. <u>Applied Clay Science</u>, 18,172-181.
- Graeme, K.A. and Pollack, C.V. (1998) Heavy metal toxicity Part 2 : lead and metal fume fever. <u>The Journal of Emergency Medicine</u>, 6, 171-177.
- Haggerty, G.M and Bowman R.S (1994) Sorption of Chromate and other inorganic anions by organo-zeolite. <u>Environmental Science and Technologies</u>, 26, 452-458.
- Hansen, J.C. (1998) The human health programme under AMAP. <u>International</u> Journal Circumpolar Health, 57, 281-291.
- Lee, S.Y., and Kim, S.J. (2002) Adsorption of naphthalene by HDTMA modified kaolinite and halloysite. <u>Applied Clay Science</u>, 22, 55-63.

- Li, Z., and Bowman, R.S. (1997) Counterion Effects on the Sorption of Cationic Surfactant and Chromate on Natural Clinoptilolite. <u>Environmental Science</u> <u>and Technologies</u>, 31, 2407-2412.
- Li, Z. (1999) Sorption Kinetics of Hexadecyltrimethylammonium on Natural Clinoptilolite. Langmiur, 15, 6438-6445.
- Vaca Mier, M., Lopez Raymundo, L.C., Ronald, G., Blanca, E.J., and Pedro, J.J.
 (2001) Heavy Metal Removal with Mexican Clinoptilolite Multi-Component Ionic Exchance. <u>Water Research</u>, 35(2), 373-378.
- Mackay, M. K., Mackay, R.A., and Henderson, W. (1996) <u>Introduction to Modern</u> <u>Inorganics Chemistry</u> 5th Blackie Academic and Professional: London.
- Malakul, P., Srinivasan, K.R., and Wang, H.Y. (1998) Metal Adsorption and Desorption Characteristics of Surfactant-Modified Clay Complexes.
 <u>Industrial & Engineering Chemistry: Research</u>, 37, 4296-4301.
- Mier, M.V., Callejas, R.L., Gehr, R., Cisneros, B.E.J., and Alvarez, P.J.J. (2001) Heavy Metal Removal with Mexican Clinoptilolite : Multi-Component Ionic Exchange. <u>Environmental Science and Technologies</u>, 35(2), 373-378.
- Miessler, G.L. and Tarr, D.A. (2004) <u>Inorganic Chemistry</u> 3rd Pearson Prentice Hall: New Jersey.
- Neupane, D. and Park, J.W. (2000) Partitioning of naphthalene to Gemini surfactant-treated alumina. <u>Chemosphere</u>, 41, 787-792.
- Ouki, S.K., and Kavannagh, M. (1999) Treatment of Metals-Contaminated Wastewaters by Use of Natural Zeolites. <u>Water Science Technology</u>, 36, 115-122.
- Pradubmook, T., O'Haver, J.H., Malakul, P., and Harwell, J.H. (2003) Effect pH on Adsolubilization of Toluene and Acetophenone into Adsorbed Surfactant on Precipitated Silica. <u>Colloids and Surfaces A. Physicochemical and Engineering Aspects</u>, 224, 93-98.
- Saengchote, S. (2003) Enhanced Sorption of Heavy Metal and Organic Contaminants Using Surfactant-Modified Zeolite (SMZ). M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University Bangkok, Thailand.

- Scamehorn, J.F., Schechter, R.S., and Wade, W.H. (1982) Adsorption of Surfactants on Mineral Oxide Surfaces from Aqueous solutions. <u>Colloid</u> <u>Interface Science</u>, 85(2), 463-477.
- Sismanoglu, T., and Pura, S. (2001) Adsorption of Aqueous Nitrophenols on Clinoptilolite. <u>Colloids and Surfaces</u>, 180, 1-6.
- Sriwongjanya, S. (2004) Simultaneous Removal of Heavy Metal and Organic Contaminants by Adsorption Using Surfactant-Modified Zeolite (SMZ).
 M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University Bangkok, Thailand.
- Sullivan, E.J., Hunter, D.B., and Bowman, R.S. (1998) Fourier Transform Raman Spectroscopy of Sorbed HDTMA and the Mechanism of Chromate Sorption to Surfactant-modified Clinoptilolite. (1998) <u>Environmental Science and Technologies</u>, 32, 1948-1955.
- Shawabkeh, R., Al-Harahsheh, A., Hami, M., and Khlaifat, A. (2004) Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater. <u>Fuel</u>, 83, 981-985.
- Upmeier, M.W. and Czurda, K.A. (1997) Use of Clinoptilolite for the optimization of Mineral Clay Liners for Waste Deposits. In CHON, H. (Ed.), <u>Studies in</u> <u>Surface Science and Catalysis</u>, 105, 1633-1639.
- Zhu, L., Chen, B., and Shen, X. (2000) Sorption of Phenol, p-Nitrophenol and Aniline to Dual-cation organobentonite from water. <u>Environmental Science</u> <u>and Technologies</u>, 34, 468-475.
- Zhu, L. and Chen, B. (2000) Sorption Behavir of p-Nitrophenol on the interface between Anion-Cation Organobentonite and Water. <u>Environmental Science</u> <u>and Technologies</u>, 34, 2997-3002.

APPENDIX

Table A1 Adsorption isotherm of CTAB on clinoptilolite at 30° C

Weight of clinoptilolite = 0.2 g

.

Volume of CTAB solution = 20 ml

Molecular weight of CTAB = 364.46 g/mol

	[CTAB]initial	[CTAB]equilibrium	Amount of surfactant
NO	$(\mu mol/L)$ ($\mu mol/L$)		adsorbed (µmol/g)
1.00	60.34	23.09	3.73
2.00	109.75	22.69	8.71
3.00	219.50	23.91	19.56
4.00	327.74	27.24	30.05
5.00	439.01	64.39	37.46
6.00	532.75	112.34	42.04
7.00	740.58	257.65	48.29
8.00	851.30	326.98	52.43
9.00	1075.73	431.83	64.39
10.00	1297.18	578.32	71.89
11.00	1625.52	804.46	82.11
12.00	2264.31	1428.73	83.56
13.00	3320.03	2477.67	84.24
14.00	4416.20	3599.82	81.64

A MONTH OF CTAD						zeta	potentia	ul (mV)		ie)			
adsorbed(µmol/g) 1 st 2 nd 3 rd	1 st 2 nd 3 rd	2 nd 3 rd	3 rd		4 th	Sth	6 th	7 th	8 th	9 th	10 th	Average	S.D.
0.0 -63.6 -61.9 -61.5	-63.6 -61.9 -61.5	-61.9 -61.5	-61.5		-53.9	-70	-55	-56.7	-54.9	-62.1	-58.1	-59.8	s
8.7 -41.4 -44.2 -4	-41.4 -44.2 -44	-44.2 -44	-47	-+	-46.8	-41.5	-40	-37.2	-37.5	-41.9	-37.2	-41.2	3.3
19.5 -28.7 -34.6 -39	-28.7 -34.6 -39	-34.6 -39	-39	5	-39.2	-32.8	-42.1	-46.7	-46.2	-46.4	-42	-39.8	6.2
30.0 -21.7 -23.1 -2	-21.7 -23.1 -2	-23.1 -2	-2	1	-21.6	-20	-22	-21.8	-29.3	-26.8	-26.6	-23.4	3.1
37.4 -9.2 -5 -4.7	-9.2 -5 -4.7	-5 -4.7	4.7		-11.2	-9.7	-11.5	-10	-16.2	-9.6	-11.4	6.6-	3.3
48.2 12.3 18.3 11	12.3 18.3 11	18.3 11	11	9	17.3	18.6	17.5	16.7	21	20	14.3	16.7	3.1
52.4 34.8 42.9 32	34.8 42.9 32	42.9 32	32	.1	31.5	32.5	31.8	33.2	31.4	29.6	31.4	33.1	3.7
64.3 38.1 41 42	38.1 41 42	41 42	42	S.	38.1	37.3	30.8	41.7	38.2	42	30.2	38	4.4
71.9 44.7 38.5 38	44.7 38.5 38	38.5 38	38	3.1	34.4	50.5	37.9	54.9	47.4	30.4	29.3	40.6	8.5

 Table A2
 Zeta-Potential data for CTAB adsorption on clinoptilolite

Table A3 Adsorption isotherm of lead on clinoptilonite in single-Weight of clinoptilolite=0.2 gVolume of lead solution=20 ml

No	[Pb ²⁺]initial	[Pb ²⁺]equilibrium	Amount of Pb ²⁺ adsorbed	S.D.
140.	(mM)	(mM)	(mmol/g)	
1	0.25	0.003	0.023	0.000
2	0.50	0.008	0.046	0.000
3	1.00	0.023	0.092	0.001
· 4	1.50	0.062	0.133	0.001
· 5	2.00	0.123	0.182	0.002
6	2.50	0.217	0.216	0.001
7	3.00	0.388	0.246	0.002
8	4.00	0.761	0.306	0.003
9	5.00	1.417	0.335	0.004

Table A4Adsorption isotherm of cadmium on clinoptilolite in single-solute systemsWeight of clinoptilolite=0.2 gVolume of cadmium solution=20 ml

No	[Cd ²⁺]initial	[Cd ²⁺]equilibrium	Amount of Cd ²⁺ adsorbed	S.D.
190.	(mM)	(mM)	(mmol/g)	
1	0.25	0.002	0.024	0.000
2	0.50	0.005	0.043	0.000
3	1.00	0.024	0.089	0.000
4	1.50	0.076	0.128	0.001
5	2.00	0.182	0.158	0.001
6	2.50	0.445	0.174	0.003
7	3.00	ዮ.605	0.206	0.000
8	4.00	1.156	0.229	0.003
9	5.00	1.794	0.233	0.002

 Table A3
 Adsorption isotherm of lead on clinoptilolite in single-solute systems

Table A5	Adsorption	isotherm	of lead	on SMZ	in sir	ngle-metal	systems
----------	------------	----------	---------	--------	--------	------------	---------

Weight of SMZ	=	0.2 g
Volume of cadmium solution	=	20 ml

No	[Pb ²⁺]initial	[Pb ²⁺]equilibrium	Amount of Pb ²⁺ adsorbed	S.D.
10.	(mM)	(mM)	(mmol/g)	
1	0.25	0.004	0.021	0.000
2	0.50	0.012	0.045	0.000
3	1.00	0.044	0.088	0.000
4	1.50	0.126	0.140	0.000
5	2.00	0.240	0.167	0.001
6	2.50	0.401	0.196	0.000
7	3.00	0.590	0.227	0.001
8	4.00	1.168	0.259	0.001
9	5.00	1.738	0.273	0.003

 Table A6
 Adsorption isotherm of cadmium on SMZ single-metal systems

Weight of SMZ	=	0.2 g
Volume of cadmium solution	=	20 ml

No	[Cd ²⁺]initial	[Cd ²⁺]equilibrium	Amount of Cd ²⁺ adsorbed	S.D.
NO.	(mM)	(mM)	(mmol/g)	
1	0.25	0.003	0.025	0.000
2	0.50	0.003	0.050	0.000
3	1.00	0.018	0.098	0.001
4	1.50	0.067	0.143	0.003
5	2.00	0.160	0.184	0.003
6	2.50	0.302	0.220	0.003
7	3.00	•0.374	0.263	0.003
8	4.00	0.979	0.302	0.003
9	5.00	1.750	0.325	0.004

Table A7 Adsorption isotherm of lead on SMZ in mixed-metal systems

Weight of SMZ	=	0.2 g
Volume of cadmium solution	=	20 ml

No.	[Pb ²⁺]initial	[Pb ²⁺] _{equilibrium}	Amount of Pb ²⁺ adsorbed	S.D.
	(mM)	(mM)	(mmol/g)	
1	0.25	0.024	0.022	0.001
2	0.50	0.075	0.043	0.001
3	1.00	0.271	0.073	0.001
4	1.50	0.583	0.092	0.005
5	2.00	0.966	0.103	0.007
6	2.50	1.383	0.112	0.004
7	3.00	1.768	0.123	0.001

Table A8 Adsorption isotherm of cadmium on SMZ in mixed-metal systems

Weight of SMZ	=	0.2 g
Volume of cadmium solution	=	20 ml

.

No.	[Cd ²⁺]initial	[Cd ²⁺]equilibrium	Amount of Cd ²⁺ adsorbed	S.D.
	(mM)	(mM)	(mmol/g)	
1	0.25	0.037	0.023	0.001
2	0.50	0.071	0.053	0.003
3	1.00	0.162	0.089	0.004
4	1.50	0.501	0.127	0.002
5	2.00	0.930	0.135	0.007
6	2.50	1.334	0.144	0.000
7	3.00	1.868	0.144	0.003

Table A9 Adsorption isotherm of lead on SMZ in mixed-solute system
--

Weight of SMZ	=	0.2 g
Volume of cadmium solution	=	20 ml

No	[Pb ²⁺] _{initial}	[Pb ²⁺]equilibrium	Amount of Pb ²⁺ adsorbed	S.D.
140.	(mM)	(mM)	(mmol/g)	
1	0.25	0.004	0.023	0.000
2	0.50	0.011	0.046	0.000
3	1.00	0.040	0.090	0.000
4	1.50	[·] 0.104	0.131	0.000
5	2.00	0.206	0.167	0.000
6	2.50	0.352	0.207	0.001
7	3.00	0.563	0.226	0.002
8	4.00	1.047	0.272	0.007
9	5.00	1.857	0.278	0.001

Table A10 Adsorption isotherm of cadmium on SMZ in mixed-solute systemsWeight of SMZ=0.2 gVolume of cadmium solution=20 ml

No	[Cd ²⁺]initial	[Cd ²⁺]equilibrium	Amount of Cd ²⁺ adsorbed	S.D.
INU.	(mM)	(mM)	(mmol/g)	
1	0.25	0.002	0.025	0.000
2	0.50	0.003	0.050	0.000
3	1.00	0.013	0.099	0.000
4	1.50	0.062	0.144	0.001
5	2.00	0.182	0.182	0.001
6	2.50	0.391	0.211	0.005
7	3.00	0.605	0.240	0.000
8	4.00	1.156	0.284	0.003
9	5.00	1.794	0.321	0.002

Table A11	Adsorption	isotherm	of toluene of	on SMZ in	n single-sol	ute systems
-----------	------------	----------	---------------	-----------	--------------	-------------

Weight of SMZ	=	0.2 g
Volume of cadmium solution	=	20 ml

No.	[Toluene] _{initial}	[Toluene] _{equilibrium}	Amount of toluene	S.D.
	(µM)	(µM)	Adsorbed(µmol/g)	
1	0	0	0	0
2	500.00	272.036	22.796	0.345
3	1250.00	658.742	59.126	1.129
4	3000.00	1760.092	123.991	0.000
5	4500.00	2686.448	181.355	6.955
6	5500.00	3334.711	216.529	11.856

 Table A12
 Adsorption isotherm of toluene on SMZ in mixed-solute systems

Weight of SMZ	=	0.2 g
Volume of cadmium solution	=	20 ml

	[Toluene] _{initial} (µM)	[Toluene] _{equilibrium} (μM)	Amount of teluene Adsorbed(µmol/g)	S.D.
Toluene(single)	4000	2650.589	134.9411	16.53
Toluene mixed Pb ²⁺	4000	2375.194	162.4806	17.95
Toluene mixed Cd ²⁺	4000	2299.368	170.0632	25.86

Figure A1 FTIR spectra of clinoptilolite

Figure A2 FTIR spectra of CTAB-modified clinoptilolite

Figure A3 FTIR spectra of SMZ

.

٠

Sample of calculation

Surfactant Adsorption Isotherms

Surfactant adsorption isotherm was constructed by plotting the amount of surfactant adsorbed per gram of clinoptilolite (μ mol/g) versus equilibrium concentration of surfactant (μ M).

1. To convert the amount of carbon from TOC (ppm) to initial and equilibrium concentration of CTAB (μ M)

Equation from TOC: $Y = 1.5521 * X$	
X = the amount of carbon from TOC (ppm)	= 5.327 ppm
Y = the concentration of CTAB (μ M)	= 1.5521× 5.327
	= 8.268 ppm
	= 8.268 *1000/364.46
	= 22.686 μM

2. Finding CTAB adsorbed concentration (µM)

[CTAB] _{Adsorbed}	= [CTAB]Initial-[CTAB]Equilibrium
[CTAB] _{Initial}	= 109.75 μM
[CTAB] _{Equilibrium}	= 22.686 μM
[CTAB] _{Adsorbed}	= 109.75-22.686 = 87.064 μM

3. To convert adsorption concentration to moles of adsorption

 $Mole = \frac{Concentration \times Volume}{1000}$ Adsorbed (µmol) = $\frac{(Adsorbed (µM)) \times Volume \text{ of solution}}{1000}$ Adsorbed (µmol) = $\frac{87.064 \times 20}{1000}$ = 1.741 µmol

4. Finding CTAB adsorbed per gram of clinoptilolite

CTAB adsorbed (μ mol/g of clinoptilolite) = <u>Adsorbed (μ mol)</u> the amount of clinoptilolite (g)

= $\frac{1.741}{0.2}$ = 8.71 µmol/g

Heavy metal Adsorption Isotherms

Heavy metal (cadmium and lead) adsorption isotherm was constructed by plotting the amount of cadmium adsorbed per gram of SMZ (mmol/g) versus equilibrium concentration of cadmium (mM).

1. To convert [Metal]_{AAS} (ppm) of standard solution to real equilibrium metal concentration (mM)

For example

[Cd ²⁺] _{AAS} (ppm) of standard solution	= 0.02 ppm
(dilution factor $= 12.5$)	= 0.02*12.5 = 0.25 ppm
equilibrium Cd ²⁺ concentration (mM)	= 0.25/112.41 = 0.0022 mM

2. Finding Cd²⁺ adsorbed concentration

 $[Cd^{2+}]_{Adsorbed} = [Cd^{2+}]_{Initial} [Cd^{2+}]_{Equilibrium}$ $[Cd^{2+}]_{Initial} = 0.25 \text{ mM}$ $[Cd^{2+}]_{Equilibrium} = 0.0022 \text{ mM}$ $[CTAB]_{Adsorbed} = 0.25 - 0.0022 = 0.2478 \text{ mM}$

4. To convert adsorption concentration to mass of adsorption

 $Mole = \frac{Concentration \times Volume}{1000}$ Adsorbed (mmol) = (Adsorbed (mmol)) × Volume of solution 1000
Adsorbed (mmol) = $\frac{0.2478 \times 20}{1000}$ = 0.004956 mmol 1000

5. Finding Cd^{2+} adsorbed per gram of SMZ

 Cd^{2+} adsorbed (mg/g of clinoptilolite) = the amount of SMZ (g) = $\frac{0.004956}{0.2}$ = 4.718 mmol/g

Toluene Adsorption Isotherms

Toluene adsorption isotherm was constructed by plotting the amount of toluene adsorbed per gram of SMZ (μ mol/g) versus equilibrium concentration of toluene (μ M).

 To convert area from GC-Headspace to equilibrium concentration of toluene (μM) Equation from GC-Headspace: Y = X/1.7415 X = area from GC-Headspace = 478.0 Y = equilibrium concentration of toluene (μM) = 478/1.741

= 274.5 μM

.

2. Finding toluene adsorbed concentration (ppm)

.

[toluene] _{Adsorbed}	= $[toluene]_{Initial}$ - $[toluene]_{Equilibrium}$
[toluene] _{Initial}	= 500 μM
[toluene] _{Equilibrium}	= 274.5 μM
[toluene] _{Adsorbed}	$= 500-274.5 = 225.445 \ \mu M$

3. To convert adsorption concentration to moles of adsorption

 $Mole = \underline{Concentration (ppm) \times Volume}$ $1000 \times Molecular weight$ $Adsorbed (mmol) = \underline{(Adsorbed (ppm)) \times Volume of solution}$ $1000 \times Molecular weight$ $Adsorbed (mmol) = \underline{225.445 \times 20} = 4.510 \ \mu mol$ 1000

4. Finding toluene adsorbed per gram of SMZ

toluene adsorbed (μ mol/g of SMZ) = <u>Adsorbed (μ mol)</u> the amount of SMZ (g) = $\frac{4.510}{0.2}$ = 22.544 μ mol/g

CURRICULUM VITAE

Name: Tanaphon Sriplad

Date of Birth: June 1, 1982

.

Nationality: Thai

University Education:

1999-2003 Bachelor's Degree in Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi, Thailand.