CARBON DIOXIDE GASIFICATION OF CELLULOSE

Wasan Cheewasukthaworn

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole

,

western Reserve Oniversity and institut Français du Fe

2005

ISBN 974-9937-07-4

I22242636

Thesis Title:	Carbon Dioxide Gasification of Cellulose
By:	Wasan Cheewasukthaworn
Program:	Petrochemical Technology
Thesis Advisors:	Asst. Prof. Boonyarach Kitiyanan
	Prof. Johannes Schwank
	Assoc. Prof. Pramoch Rangsunvigit
	Assoc. Prof. Vissanu Meeyoo
	Assoc. Prof. Thirasak Rirksomboon

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantaya Januarit College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Kitiyana ____ (Asst. Prof. Boonyarach Kitiyanan) (Assoc. Prof. Vissanu Meeyoo) Prof. Johannes Schwank)

amoch R

(Assoc. Prof. Pramoch Rangsunvigit)

(Assoc. Prof. Thirasak, Rirksomboon)

(Asst. Prof. Sirjat Jitkanka)

Antonin Amountain

(Dr. Suksun Amornraksa)

ABSTRACT

4671026063: Petrochemical Technology

Wasan Cheewasukthaworn: Carbon dioxide Gasification of Cellulose.

Thesis Advisors: Asst. Prof. Boonyarach Kitiyanan, Prof. Johannes Schwank, Assoc. Prof. Thirasak Rirksomboon, Assoc. Prof. Vissanu Meeyoo and Assoc. Prof. Pramoch Rangsunvigit. 96 pp. ISBN 974-9937-07-4

Keywords: Biomass/ Carbon dioxide/ Cellulose/ Gasification/ Dry reforming

Biomass can be converted to gaseous products via the gasification process. Major components of biomass are cellulose, hemi-cellulose and lignin. This work focused on the gasification of cellulose using CO₂ as the gasifying agent. Cellulose was gasified at specified temperatures ranging from 600 to 900 °C with ZSM-5, Fe, Co, and Co-Fe bimetallic as catalysts. The main gasification products were CO, CH₄ and H₂. An increase in gasifying temperature led to higher total gas yield and lower liquid yield. The use of CO₂ produced CO rich gas products. When steam was used as the gasifying agent, H₂ was produced more, while CO was produced less. The use of catalysts produced more CO and H₂ yields in the gas phase , and reduced the amount of liquid yield. Some light hydrocarbons such as ethylene, ethane, and propane were also found in the gaseous products. The liquid products from both CO₂ and steam gasification contained mainly aliphatic and alicyclic compounds, alcohols, esters, nitrogenated and oxygenated compounds.

บทคัดย่อ

วสันต์ ชีวาสุขถาวร : กระบวนการแกสิฟิเคชั่นของเซลลูโลสในสภาวะที่มีแก๊ซ การ์บอนไดออกไซด์ (Carbon dioxide Gasification of Cellulose) อ. ที่ปรึกษา : ผศ.คร. บุนขรัชต์ กิติขานันท์, ศ.คร. โจฮานเนส ชวางค์, รศ.คร. วิษณุ มีอยู่, รศ.คร. ปราโมช รังสรรค์วิจิตร และ รศ. คร. ธีรศักดิ์ ฤกษ์สมบูรณ์ 96 หน้า ISBN 974-9937-07-4

งานวิจัยนี้ศึกษาถึงการแปรรูปของเซลลูโลสเป็นผลิตภัณฑ์ที่มีจุณค่าเพิ่มจาก กระบวนการแกสิฟิเคชันในสภาวะที่มีแก๊ซการ์บอนไดออกไซด์และใช้ตัวเร่งปฏิกิริยาได้แก่ เหล็ก, โคบอลท์, โลหะผสมของเหล็กกับโคบอลท์ และ ZSM-5 การศึกษานี้ได้ศึกษาถึงผลของอุณหภูมิ ดัวเร่งปฏิกิริยา และไอน้ำ จากการศึกษาพบว่าผลิตภัณฑ์หลักเกิดในรูปของก๊าซได้แก่ ไฮโดรเจน การ์บอนมอนอกไซด์ และมีเทน การเพิ่มอุณหภูมิส่งผลให้ปริมาณผลิตภัณฑ์ในรูปก๊าซเพิ่มขึ้น ในขณะที่ผลิตภัณฑ์ในรูปของเหลว และของแข็งลดลง สำหรับกระบวนการแกสิฟิเคชันภายใด้ บรรยากาศของก๊าซการ์บอนไดออกไซด์จะให้สัดส่วนของก๊าซการ์บอนมอนอกไซด์มากที่สุด ในขณะที่กระบวนการแกสิฟิเคชันภายใต้บรรยากาศของไอน้ำจะให้สัดส่วนของก๊าซไฮโครเจน มากที่สุด ผลิตภัณฑ์ในรูปของเหลวจะลดลงเมื่อใช้ตัวเร่งปฏิกิริยามีส่วนช่วยส่งเสริมการเกิด ปฏิกิริยารีฟอร์มมิ่งของผลิตภัณฑ์ที่เป็นของเหลว จากการศึกษายังพบว่ามีสารไฮโครคาร์บอน น้ำหนักเบาเช่น เอธิลีน อีเทน และ โพรเพนเกิดขึ้นในผลิตภัณฑ์ที่เป็นก๊าซ สำหรับผลิตภัณฑ์ที่เป็น ของเหลวจะประกอบไปด้วยสารประกอบหลายประเภทเช่น อะลิฟาติก, อะลิไซคลิก, เอสเทอร์, แอลกฮอล์, สารประกอบที่มีออกซิเจน และสารประกอบที่มีในโตรเจน

ACKNOWLEDGEMENTS

This thesis work is partially funded by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium) and Rayong Olefins Company.

This work would not have been possible without the assistance of the following individuals and organizations.

First, the author is deeply indebted to Assoc. Vissanu Meeyoo and Asst. Boonyarach Kitiyanan for providing useful recommendations, creative comments, and encouragement the course of this work.

Special thanks to all of the Petroleum and Petrochemical College's staff and Mahanakorn University's staff..

Finally, the author would like to take this opportunity to thank all friends and senior students for their friendly help, cheerfulness, creative suggestions, and encouragement. The author had the most enjoyable time working with them all. The author is also greatly indebted to his parents and family for their support, love, and understanding.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	viii
List of Figures	ix
CHAPTER	
I INTRODUCTION	1
II BACKGROUND AND LITERATURE REVIEW	3
III METHODOLOGY	33
3.1 Materials	33
3.1.1 Catalyst Preparation Materials	33
3.1.2 Gases	33
3.1.3 Biomass	33
3.2 Catalyst and Sample Preparation	34
3.2.1 Catalyst Preparation	34
3.2.2 Sample Preparation	34
3.3 Catalyst Characterization	34
3.3.1 BET Surface Area	34
3.3.2 X-ray Diffraction (XRD)	35
3.4 Experimental Apparatus	36
3.4.1 Gas Transporting Section	36
3.4.2 Catalytic Reactor	36
3.5 Product Analysis	36

4

	CURRICULUM VITAE	84
	REFERENCES	81
V	CONCLUSIONS AND RECOMMENDATIONS	78
	4.6 Fischer-Tropsch Synthesis	74
	4.5 Bio-oil Cracking	72
	4.4 Liquid Product Characterization	54
	4.3.4 Gas Production from Steam Gasification	59
	4.3.3 Product Distribution from Steam Gasification	57
	4.3.2 Gas Production from CO ₂ Gasification	41
	4.3.1 Product Distribution from CO ₂ Gasification	50
	4.3 Gasification of Cellulose	49
	4.2.2 X-ray Diffraction	47
	4.2.1 BET Surface Area	45
	4.2 Catalyst Characterization	45
	4.1 Catalyst Screening	41
IV	RESULTS AND DISCUSSION	41
	3.6.4 Liquid Product Characterization	39
	3.6.3 Steam Gasification	38
	3.6.2 CO_2 Gasification	38
	3.6.1 Catalyst Screening	37
	3.6 Experimental Procedures	37
	3.5.3 Gas Chromatography/Mass Spectroscopy (GC/MS)	37
	3.5.2 Gas Chromatography (GC)	37
	3.5.1 Mass Spectrometer (MS)	36

LIST OF TABLES

TABLE

15

PAGE

2.1	Proximate analysis of some biomass feedstocks (wt %)	8
2.2	Ultimate analyses for typical biomass materials (wt %)	10
2.3	Properties of selected biomass materials (wt %)	11
2.4	Cellulose/lignin content of selected biomass (wt %)	12
2.5	Gasifier reactor types and characteristics	18
2.6	Typical product yields (dry wood basis) obtained by different	
	mode of pyrolysis of wood	26
2.7	Typical properties of wood derived crude bio-oil	28
2.8	Typical properties and characteristics of wood derived crude	
	bio-oil	29
4.1	Selected molecular ions from mass spectrometer	41
4.2	Integrated MS intensities (arbitrary units)	44
4.3	BET surface areas of prepared catalyst	45
4.4	Crystal size of fresh and spent catalyst	48
4.5	Gas production from CO ₂ gasification and Encinar's work	57
4.6	Retention time and possible component of liquid product	70
4.7	Gas composition from catalytic bio-oil upgrading at 350 °C	
	with ZSM-5.	73

LIST OF FIGURES

FIGURE

2.1	Olefins production	3
2.2	Products from thermochemical conversion of biomass	4
2.3	Chemical structure of cellulose	5
2.4	Chemical structure of hemicellulose	6
2.5	Chemical structure of lignin	6
2.6	Reaction pathways of olefins production from biomass	
	gasification	32
3.1	Schematic of experimental apparatus	40
4.1	Evolution profiles of hydrogen from CO ₂ gasification of	
	cellulose with different catalysts	42
4.2	Evolution profiles of carbon monoxide from CO ₂	
	gasification of cellulose with different catalyst	43
4.3	Evolution profiles of methane from CO ₂ gasification of	
	cellulose with different catalyst	43
4.4	Evolution profiles of ethylene from CO ₂ gasification of	
	cellulose with different catalyst	44
4.5	SEM picture of fresh Co catalyst	45
4.6	SEM picture of fresh Fe catalyst	46
4.7	SEM picture of fresh Co-Fe catalyst	46
4.8	XRD patterns of fresh Co, Fe, and Co-Fe catalysts	47
4.9	XRD patterns of spent Co, Fe, and Co-Fe catalysts from	
	CO ₂ gasification of cellulose	47
4.10	XRD patterns of spent Co, Fe, and Co-Fe catalysts from	
	steam gasification of cellulose	48

PAGE

FIGURE

.

4.11	Product distribution from CO_2 gasification at 600 °C	50
4.12	Product distribution from CO_2 gasification at 700 $^{\circ}C$	50
4.13	Product distribution from CO_2 gasification at 800 °C	51
4.14	H ₂ production from CO ₂ gasification with and without	
	catalysts	52
4.15	CO production from CO ₂ gasification with and without	
	catalysts	52
4.16	CH_4 production from CO_2 gasification with and without	
	catalysts	53
4.17	C_2H_4 production from CO_2 gasification with and without	
	catalysts	53
4.18	C_2H_6 production from CO_2 gasification with and without	
	catalysts	54
4.19	C_3H_8 production from CO_2 gasification with and without	
	catalysts	54
4.20	CO_2 conversion from CO_2 gasification with and without	
	catalysts	55
4.21	Product distribution from steam gasification at 600 °C	57
4.22	Product distribution from steam gasification at 700 $^{\circ}$ C	58
4.23	Product distribution from steam gasification at 800 °C	58
4.24	H ₂ production from steam gasification with and without	
	catalysts	59
4.25	CO production from steam gasification with and without	
	catalysts	60
4.26	CO ₂ production from steam gasification with and without	
	catalysts	60

PAGE

4.27	CH ₄ production from steam gasification with and without	
	catalysts	61
4.28	C ₂ H ₄ production from steam gasification with and without	
	catalysts	61
4.29	C_2H_6 production from steam gasification with and without	
	catalysts	62
4.30	C ₃ H ₈ production from steam gasification with and without	
	catalysts	62
4.31	Chromatogram of liquid obtained from CO ₂ gasification (a)	
	and steam gasification (b) at 700 °C without catalyst	65
4.32	Chromatogram of liquid obtained from CO ₂ gasification (c)	
	and steam gasification (d) at 700 °C with Fe catalyst	66
4.33	Chromatogram of liquid obtained from CO ₂ gasification (e)	
	and steam gasification (f) at 700 °C with Co catalyst	67
4.34	Chromatogram of liquid obtained from CO ₂ gasification (g)	
	and steam gasification (h) at 700 °C with ZSM-5 catalyst	68
4.35	Chromatogram of liquid obtained from CO ₂ gasification (i)	
	and steam gasification (j) at 700 °C with Co-Fe catalyst	69
4.36	Reactor configuration for catalytic bio-oil upgrading	73
4.37	Hydrocarbon distribution from Fischer-Tropsch synthesis at	75
	350 °C with Fe catalyst	
4.38	Hydrocarbon distribution from Fischer-Tropsch synthesis at	75
	350 °C with Co catalyst	
4.39	Hydrocarbon distribution from Fischer-Tropsch synthesis at	76
	350 °C with ZSM-5 catalyst	
4.40	Hydrocarbon distribution from Fischer-Tropsch synthesis at	76
	350 °C with Co-Fe catalyst	

FIGURE		PAGE
4.41	Comparison between prepared catalyst and catalysts in	
	literatures	77
5.1	Possible routes of olefins production from biomass	79

•

.

xii