DEVELOPMENT OF CONDUCTIVE POLYTHIOPHENE FOR ACTUATOR APPLICATIONS: ELECTRORHEOLOGICAL FLUID

.

Datchanee Chotpattananont

A Dissertation Submitted in Partial Fulfilment of the Requirements for the degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2005 ISBN 974-9651-79-0

I 22242983

Thesis Title:	Development of Conductive Polythiophene for Actuator
	Applications: Electrorheological Fluid
By:	Datchanee Chotpattananont
Program:	Polymer Science
Thesis Advisor:	Assoc. Prof. Anuvat Sirivat
	Prof. Alexander M. Jamieson

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

Nantagon Thurset. College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Nantayor Janumet

(Assoc. Prof. Nantaya Yanumet)

ender Un fank De

(Prof. Alexander M. Jamieson)

Anuaterwat

(Assoc. Prof. Anuvat Sirivat)

7 Supartor &

(Assist. Prof. Pitt Supaphol)

thy Yatty attin

(Dr. Cattaleeya Pattamaprom)

บทคัดย่อ

ครรชนี โชติพัฒนานนท์ : การพัฒนาพอลิธิโอฟีนสำหรับประยุกต์เป็นแอกชูเอเตอร์: ของใหลอิเลกโตรรีโอโลจิคอล (Development of Conductive Polythiophene for Actuator Applications: Electrorheological Fluid) อ. ที่ปรึกษา : รศ.คร. อนุวัฒน์ ศิริวัฒน์ และ ศ.คร. อเลกซานเคอร์ เอิ่ม จาไมซัน 218 หน้า ISBN 974-9651-79-0

ของใหลอิเลกโตรรีโอโลจิกอลเป็นสารแขวนลอยชนิดหนึ่ง ซึ่งประกอบด้วยอนุภาค ของแข็งที่มีขนาคเล็กกระจายตัวอยู่ในตัวกลางที่ไม่นำไฟฟ้า สมบัติทางกระแสวิทยาของของไหล ้นี้จะเปลี่ยนแปลงไปเมื่อได้รับการเหนี่ยวนำจากสนามไฟฟ้า เนื่องจากการจัดเรียงตัวของอนุภาค เป็นโครงสร้างที่มีลักษณะเป็นสายโซ่ในทิศทางขนานกับทิศทางของสนามไฟฟ้า ซึ่งอนภาคใน สายโซ่เหล่านี้ยึดติดกันด้วยแรงไฟฟ้าสถิต ในงานวิจัยนี้ อนุภาคพอลิธิโอฟีน ได้ถูกสังเคราะห์ด้วย การพอลิเมอร์ไรซ์แบบออกซิเคทีฟ หลังจากนั้น ของไหลอิเลคโตรรีโอโลจิคอลได้ถูกเตรียมโดย กระจายอนุภาคพอลิธิโอฟีนในซิลิโคน ออยล์ และทำการศึกษาผลของความแรงของสนามไฟฟ้า ้ปริมาณของอนุภาค ค่าการนำไฟฟ้าของอนุภาค อุณหภูมิ และสารลดแรงตึงผิวชนิดประจุลบ ที่มี ต่อสมบัติทางกระแสวิทยาของของไหลนี้ เมื่อทำการทคลองวัคสมบัติทางกระแสวิทยาภายใต้ สนามไฟฟ้าของของไหลนี้ พบว่า ของไหลนี้แสคงสมบัติเป็นของไหลอิเลกโตรรีโอโลจิกอล และ จากการทคลองภายใต้แรงเฉือนแบบกวัคแกว่ง พบว่า ค่าสตอเรจและลอสมอคูลัสมีค่าเพิ่มขึ้นเมื่อ เพิ่มความแรงของสนามไฟฟ้า และก่ามอดูลัสนี้เพิ่มสูงขึ้นถึง 10 ลำดับขั้น เมื่อทำการเพิ่มความแรง ของสนามไฟฟ้าจาก 0 ถึง 2 กิโลโวลต์ต่อมิลลิเมตร นอกจากนี้ยังพบว่า ปริมาณของอนุภาคและ ้ ค่าการนำไฟฟ้าของอนุภาค จะมีผลต่อสมบัติทางอิเลคโตรรีโอโลจิคอลของของไหลนี้ ในช่วง ความแรงของสนามไฟฟ้าที่ไม่สูงมากนักเท่านั้น เมื่อทำการทคลองเปิค-ปิคสนามไฟฟ้าสลับไปมา ้ผลปรากฏว่า ของไหลพอลิธิโอฟีนมีการตอบสนองอย่างรวดเร็ว โดยเมื่อมีการเปิดสนามไฟฟ้า ค่า ้มอดูลัสของของไหลนี้จะเพิ่มขึ้นทันทีทันใดจนถึงค่าสมดุลค่าหนึ่ง และเมื่อนำสนามไฟฟ้าออก ค่า มอดูลัสจะลดลงทันที แต่ไม่ลดลงถึงค่าเริ่มต้นก่อนการให้สนามไฟฟ้า และจากการวัดสมบัติทาง กระแสวิทยาภายใต้แรงเฉือนแบบกวัดแกว่งนี้ ยังพบอีกว่า เมื่อสนามไฟฟ้ามีความแรงมากพอ พฤติกรรมของของไหลพอลิธิโอฟีนนี้จะเปลี่ยนไป โคยเปลี่ยนจากของไหลที่มีสมบัติคล้ายของ ใหลเป็นของไหลที่มีสมบัติคล้ายของแข็ง ซึ่งการวิเคราะห์ตามทฤษฎีการเปลี่ยนแปลงจาก ้สารละลายเป็นของแข็ง สามารถนำมาใช้ได้กับการเปลี่ยนแปลงสมบัติที่สภาวะสมคุลของของไหล ้นี้ จากการวิเคราะห์พบว่า ค่าของเลขคัชนีชี้กำลังวิสโคอีลาสติกในสภาวะเจลของของไหลนี้อยู่

ระหว่าง 0.01 ถึง 0.16 ซึ่งเมื่อนำไปคำนวณหาค่า fractal dimension พบว่าอยู่ในช่วง 2.4-2.5 และค่าความแข็งแรงของเจลเพิ่มขึ้นเมื่อมีการเพิ่มความแรงของสนามไฟฟ้า นอกเหนือจาก การศึกษาข้างค้นแล้ว ในงานวิจัยนี้ยังได้ทำการศึกษาสมบัติทางอิเลคโตรรีโอโลจิคอลของของไหล พอลิธิโอฟีนภายใต้แรงเฉือนแบบต่อเนื่องด้วย จากการทดลองพบว่า ภายใด้สนามไฟฟ้า ของไหล นี้จะมีพฤติกรรมแบบของไหลบิงแฮม โดยของไหลประเภทนี้จะมีค่าความเค้นวิกฤตค่าหนึ่ง การ ไหลของของไหลบิงแฮมจะเกิดขึ้นได้ก็ต่อเมื่อมีการให้แรงเค้นที่มากกว่าค่าความเค้นวิกฤตนี้ ซึ่งค่า

ความเก้นวิกฤตนี้มีความสัมพันธ์กับความแรงของสนามไฟฟ้าและปริมาณของอนุภาคเป็นฟังก์ชัน โดยเลขคัชนีซี้กำลังของความสัมพันธ์ระหว่างค่าความเค้นวิกฤตและความแรงของ ยกกำลัง ้สนามไฟฟ้ามีค่าใกล้เคียงกับค่าที่ได้จากการทำนายโดยทฤษฎีพอลาไรเซชัน ซึ่งเท่ากับ 2 ก็ต่อเมื่อ ปริมาณและค่าการนำไฟฟ้าของอนุภาคไม่สูงมากนัก และจากการศึกษาอิทธิพลของอุณหภูมิต่อค่า ความเด้นวิกฤตของของไหลนี้ พบว่า ค่าของความเด้นวิกฤตเพิ่มขึ้นเฉพาะในช่วงที่มีการเพิ่มของ อุณหภูมิจนถึง 25 องศาเซลเซียสเท่านั้น โคยหลังจากนั้นค่าของความเค้นวิกฤตจะไม่ขึ้นกับ นอกจากนี้ยังพบว่าการเติมสารลดแรงตึงผิวชนิดประจุลบในปริมาณเล็กน้อย อุณหภูมิอีกต่อไป สามารถเพิ่มค่าของความเค้นวิกฤตได้ โดยอิทธิพลของสารลดแรงตึงผิวนี้สามารถสังเกตได้อย่าง ้หัดเจนเบื่อสนามไฟฟ้าบี่ความแรงต่ำ และจากการทดลองเปิด-ปิดสนามไฟฟ้าสลับไปมา ผล ปรากฏว่า ของไหลพอลิธิโอฟีนมีการตอบสนองอย่างรวคเร็ว โดยเมื่อมีการเปิดสนามไฟฟ้า ค่า ้ความเค้นวิกฤตของของไหลนี้เพิ่มขึ้นทันที และเมื่อปิคสนามไฟฟ้า ของไหลภายใค้แรงเฉือน แบบต่อเนื่องนี้สามารถกลับคืนสู่สภาพเคิมได้อย่างสมบูรณ์ การจัคเรียงตัวของอนุภาคในของไหล พอลิธิโอฟีน สามารถสังเกตได้อย่างชัดเจนจากการศึกษาลักษณะทางกายภาพภายใต้สภาวะไร้แรง เฉือน ซึ่งพบว่า เมื่อไม่มีสนามไฟฟ้านั้นอนุภาคมีการกระจายตัวอย่างสม่ำเสมอ แต่เมื่ออยู่ภายใต้ อนุภากจะมีการจัดเรียงตัวเป็นโครงสร้างสายโซ่ โดยปริมาณและความหนาของ สนามไฟฟ้า ้เมื่อมีการเพิ่มขึ้นของความแรงสนามไฟฟ้าและความเข้มข้นของ โครงสร้างสายโซ่จะเพิ่มขึ้น นอกจากนี้ยังสามารถสังเกตเห็นแขนงย่อยของโครงสร้างสายโซ่อีกด้วย อนุภาคในของไหล ้โดยเฉพาะอย่างยิ่งในของไหลที่มีปริมาณอนุภาคมากและอยู่ภายสนามไฟฟ้าที่มีความแรงสูง

ABSTRACT

4282001063: Pol ymer Science Program
Datchanee Chotpattananont: Development of Conductive
Polythiophene for Actuator Applications: Electrorheological Fluid
Thesis Advisors: Assoc. Prof. Anuvat Sirivat
and Prof. Alexander M. Jamieson, 218 pp. ISBN 974-9651-79-0
Keywords: Polythiophene/ Conductive polymer/ Actuator/ Electrorheological
fluid/ Suspension/ Gelation/ Oscillatory shear/ Steady-state shear/
Yield stress

Electrorheological (ER) fluids are suspensions that exhibit a dramatic change in rheological properties in the presence of AC or DC electric fields. Commonly, they are composed of polarizable particles dispersed in a non-conducting fluid. In this study, poly(3-thiophenacetic acid), PTAA was synthesized via an oxidative polymerization and doped with perchloric acid to control its conductivity. The suspension containing perchloric acid-doped poly(3-thiopheneacetic acid) as dispersed particles and silicone oil as medium was then prepared. The ER characteristics of PTAA/silicone oil suspensions were further investigated in both oscillatory and steady shear using rheometer which equipped to a high-voltage generator. The effects of electric field strength, particle concentration, particle conductivity, operating temperature, nonionic surfactant were examined. When the electric field is applied, the PTAA/silicone oil suspension exhibits viscoelastic behavior and the ER response is enhanced with increasing electric field strength. From oscillatory shear experiment, the dynamic moduli of the suspension grew up dramatically by ten orders of magnitude as the electric field strength is increased through the range 0-2 kV/mm. Moreover, the effects of particle concentration and conductivity become apparent at intermediate electric field strength (~ 100 V/mm). Upon subsequent applications of electric field, the suspension shows instantaneously response. After the electric field is released, the sample recovers but not completely. In addition, the equilibrium rheological properties of the suspension satisfy the sol-

gel transition conditions where tan δ becomes independent of frequency when the sufficiently strong electric field strength is provided. According to the gelation analysis, the values of the viscoelastic exponent n located in the range 0.05-0.83 result in the fractal dimension values of 2.5-1.5. The steady shear experimental results show that the PTAA/silicone oil suspension shows the typical ER response of Bingham flow behavior upon the application of electric field. The yield stress increases with electric field strength, E, and particle volume fraction, ϕ , according to a scaling law of the form, $\tau_y \varpropto E^\alpha \phi^\gamma$. The scaling exponent $\alpha\,$ approaches the value of 2, predicted by the polarization model, as the particle volume fraction decreases and when the doping level of the particles decreases. In addition, the yield stress under electric field initially increases with temperature up to 25 °C, and then levels off. The effect of nonionic surfactant addition is evident at relatively weak electric On applying and subsequently releasing the electric field, field strength. respectively, the steady state viscosity and the complex viscosity each instantaneously increase and then return to their baseline values, i.e., complete recovery. Morphology of PTAA/silicone oil suspension under quiescent conditions is further observed using optical microscope. The micrographs show that the particles are randomly distributed at zero field, whereas on application of the electric field, a transition to an organized fibrillar structure occurs. The density and thickness of the fibrils increases with the field strength and particle concentration and some branching is obviously observed. Furthermore, we investigated the creep and recovery behaviors of PTAA particles in silicone oil suspensions upon the application of electric field. The effects of field strength, particle concentration, and the doping degree (conductivity values) on creep and recovery behaviors of the ER fluid were examined. The data show that the creep curves of this ER fluid consisted of both elastic and viscous responses at low stresses. With increasing stress, the fluid showed an instantaneous elastic response whereas the retarded elastic and the viscous responses diminished. After the removal of the applied stress, the strain decreased but did not completely relax to the original value indicating that this fluid exhibited a partially elastic recovery. The elastic recovery response decreased with increasing stress and then disappeared at some critical stress value, corresponding to the static

yield stress. The equilibrium compliance parameters, J_C and J_R , were found to decrease with increasing particle concentration and particle conductivity. The recovery increased with increasing electric field strength, particle concentration, and particle conductivity. Moreover, the equilibrium compliance parameters at zero electric field, J_{Co} and J_{Ro} , strongly depend on the particle concentration and particle conductivity. The activation electric field, E_C , and the recovery electric field, E_R , depend only on the particle conductivity but independent of particle concentration.

ACKNOWLEDGEMENTS

Appreciation is expressed to those who have made contributions to this dissertation. First the author gratefully acknowledges her advisors, Assoc. Prof. Anuvat Sirivat from The Petroleum and Petrochemical College, Chulalongkorn University and Prof. Alexander M. Jamieson from Department of Macromolecular Science, Case Western Reserve University, for giving her the opportunity to be in the interesting avenue of research, their attention to the development of this work, invaluable knowledge, meaningful guidance, tolerance, and their encouragement all along the way.

She gratefully acknowledges all faculty members and staffs at The Petroleum and Petrochemical College, Chulalongkorn University for their knowledge and assistances. C.P.O. Poon Arjpru is especially thanked for his valuable advice to the experiments and many fruitful discussions.

Assoc. Prof. Nantaya Yanumet, Assist. Prof. Pitt Supaphol, and Dr. Cattaleeya Pattamaprom are further acknowledged for being her dissertation committee, making comments, and their helpful ideas and suggestion.

She wishes to express her deep gratitude to her family for their unconditional love, continual encouragement, understanding, and for being her limitless inspiration source during all these years she has spent for her PhD study.

She owes her special thanks to all of her teachers in her life for giving her knowledge and supports. She is thankful for the contributions, wonderful friendship, liveliness, and supports from her friends and the other members of her research groups.

This work would not be carried out successfully without financial supports provided by the Thailand Research Fund (the RGJ grant no. PHD/0128/2542 and TRF-BGJ grant no. BGJ/03/2544), the American Fulbright Association (through the Fulbright – TRF Junior Research Scholarship Program), the Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium), and the Conductive and Electroactive Polymers Research Unit.

TABLE OF CONTENTS

Tit	le Page	i
Abs	stract (in English)	iii
Abs	stract (in Thai)	vi
Ac	Title Page Abstract (in English) Abstract (in Thai) Acknowledgements Table of Contents List of Tables List of Tables List of Figures Abbreviations List of Symbols Abbreviations List of Symbols Abbreviations Abbrev	viii
Tal	Title Page Abstract (in English) Abstract (in Thai) Acknowledgements Table of Contents List of Tables List of Tables List of Figures Abbreviations List of Symbols PTER I INTRODUCTION II LITERATURE SURVEY III EXPERIMENTAL IV ELECTRORHEOLOGICAL PROPERTIES OF PERCHLORIC ACID-DOPED POLYTHIOPHENE SUSPENSIONS 4.1 Abstract 4.2 Introduction 4.3 Experimental 4.4 Results and Discussion 4.5 Conclusions	
Lis	t of Tables	xii
Lis	t of Figures	xiii
Ab	breviations	xviii
Lis	t of Symbols	xix
CHAPT	ER	
Ι	INTRODUCTION	1
II	LITERATURE SURVEY	12
III	EXPERIMENTAL	21
IV	ELECTRORHEOLOGICAL PROPERTIES	
	OF PERCHLORIC ACID-DOPED	
	POLYTHIOPHENE SUSPENSIONS	26
	4.1 Abstract	26
	4.2 Introduction	27
	4.3 Experimental	28
	4.4 Results and Discussion	31
	4.5 Conclusions	39
	4.6 Acknowledgements	39
	4.7 References	40

PAGE

V	SCALING OF YIELD STRESS OF POLYTHIOPHENE	
	SUSPENSIONS UNDER ELECTRIC FIELD	51
	5.1 Abstract	51
	5.2 Introduction	52
	5.3 Experimental	53
	5.4 Results and Discussion	56
	5.5 Conclusions	61
	5.6 Acknowledgements	62
	5.7 References	62
VI	GELATION OF POLYTHIOPHENE SUSPENSION	
	DRIVEN BY AN ELECTRIC FIELD	77
	6.1 Abstract	78
	6.2 Introduction	79
	6.3 Experimental	79
	6.4 Results and Discussion	80
	6.5 Conclusions	87
	6.6 Acknowledgements	88
	6.7 References	88
VII	CREEP AND RECOVERY BEHAVIORS OF	
	POLYTHIOPHENE-BASED ELECTRORHE-	
	OLOGICAL FLUID	98
	7.1 Abstract	98
	7.2 Introduction	99
	7.3 Experimental	100
	7.4 Results and Discussion	101
	7.5 Conclusions	107
	7.6 Acknowledgements	108
	7.7 References	108

CHAPTER			PAGE
VIII	CONCLUSIO	ONS AND RECOMMENDATIONS	123
	REFERENCI	ES	127
	APPENDICE	S	130
	Appendix A	The FTIR spectrum of poly(3-thiophene	
		acetic acid)	130
	Appendix B	The ¹ H-NMR spectrum of poly(3-thiophene	
		acetic acid)	132
	Appendix C	The UV-Visible spectra of poly(3-thiophene	
		acetic acid)	134
	Appendix D	The thermal analysis	135
	Appendix E	Morphological Observation	138
	Appendix F	Four-point probe system for conductivity	
		measurement	140
	Appendix G	Determination of ohmic's law regime	142
	Appendix H	Determination of the geometric correction	
		factor (K)	145
	Appendix I	Specific conductivity measurement	147
	Appendix J	The electrorheological properties under the	
		oscillatory shear measurement	157
	Appendix K	The electrorheological properties under the	
		steady shear measurement	187
	Appendix L	The creep and recovery behaviors of HClO ₄	
		doped poly(3-thiopheneacetic acid	191

CURRICULUM VITAE

197

LIST OF TABLES

TABLE

CHAPTER IV

4.1	Properties of HClO ₄ doped PTAA suspensions in	
	silicone oil and electrical conductivity values of	
	PTAA pellets	43
4.2	Induction and recovery times at 25 ± 0.1 °C of	
	HClO ₄ doped PTAA suspensions under various	
	electric field strengths	43

CHAPTER VI

6.1	Properties of HClO ₄ doped PTAA suspensions in silicone	
	oil and electrical conductivity values of PTAA pellets	92
6.2	Viscoelastic properties of HClO ₄ doped PTAA suspensions	
	in silicone oil at temperature of 25 °C	93

CHAPTER VII

7.1	Viscoelastic properties of HClO ₄ doped PTAA	
	suspensions in silicone oil (viscosity 100 cSt) at	
	temperature of 25 °C	110
7.2	Values of the equilibrium compliance parameters and the	
	activation electric field of PTAA/silicone oil suspensions	111

LIST OF FIGURES

FIGURE

PAGE

CHAPTER I

1.1	Approach for classification of smart or active materials	1
1.2	Repeating units of several conductive polymers	7
1.3	Schematic representation of the band structure of a metal,	
	a semiconductor, and an insulator. (E_g is the energy gap	
	between the valence band, VB, and the conduction band, CB)	8
1.4	Soliton in trans-polyacetylene (left) and electronic state	
	induced between the VB and CB by the soliton (right)	9

CHAPTER II

2.1	Schematic draw of rheological behavior of the	
	electrorheological fluids	13
2.2	(a) In the presence of an electric field, the particles	
	in an ER fluid form chains or fibrillated structures;	
	(b) Mechanism of chains formation and alignment	
	of dipole particles. The interactions of these dipoles	
	cause attraction, repulsion, rotation, and alignment	
	of particles, creating chains that align with the	
	applied electric field	14

CHAPTER IV

4.1	Scanning electron microscopy of HClO ₄ doped	
	polythiophene particles	44
4.2	Storage and loss moduli of 20% wt. HClO ₄ highly	
	doped polythiophene/silicone oil suspension (HPT20)	
	at 25 ± 0.1 °C: (a) storage moduli G'; (b) loss moduli G"	45

4.3	Storage and loss moduli of HClO ₄ highly doped	
	polythiophene/silicone oil suspensions at 25 ± 0.1 °C:	
	(a) storage moduli G'; (b) loss moduli G"	46
4.4	Storage and loss moduli of 20% wt. HClO ₄ doped	
	polythiophene/silicone oil suspensions at temperature	
	of 25 ± 0.1 °C: (a) storage moduli G'; (b) loss moduli G"	47
4.5	G' and G'' values at frequency 0.01 rad/s of $HClO_4$	
	doped polythiophene/silicone oil suspensions at	
	temperature of 25 ± 0.1 °C: (a) highly doped, 10%	
	and 20% wt. and (b) lowly doped and highly doped, 20% wt.	48
4.6	Temporal response of storage moduli G' of (a) 20% wt.	
	HClO ₄ highly doped polythiophene/Silicone oil suspension	
	(HPT20) at various electric field strength (b) HClO ₄	
	doped polythiophene/Silicone oil suspension at electric field	
	strength 1000 V/mm at temperature of 25 ± 0.1 °C	49
4.7	Master plot superposing G' and G" data of $HClO_4$ doped	
	polythiophene/silicone oil suspensions at 25 ± 0.1 °C:	
	(a) storage moduli G'; (b) loss moduli G". Open symbols	
	represent LPT20 and solid symbols represent HPT20.	
	Here $\varepsilon_0 = 8.8542 \text{ x } 10\text{-}2 \text{ F/m}$, $\varepsilon_s 2.71 \text{ F/m}$, $\mu_s = 10\text{-}4 \text{ m}2\text{/s}$,	
	and $\beta = 0.9985$ and 0.9999, respectively, for LPT20 and HPT20	50

CHAPTER V

5.1	Measurement of the static yield shear stress with different	
	electric field strengths using controlled shear stress sweep for	
	5 wt % highly doped polythiophene suspension (HPT5) at 25 $^{\circ}\mathrm{C}$	67

5.2	Effect of particle concentration on the static yield stress	
	of highly doped polythiophene suspensions at various	
	electric field strengths The lines indicate least squares fits	
	to a power-law which yields scaling exponent values, α ,	
	of 1.94, 1.81, and 1.69, for the HPT5, HPT10, and HPT20	
	suspensions, respectively	68
5.3	Effect of particle conductivity on the static yield stress of 20 wt $\%$	
	HClO4 doped polythiophene suspension at various electric field	
	strengths; (O) HPT20, (\Box) LPT20, and (∇) undoped polythiophene.	
	The lines indicate least squares fits to a power-law which yields	
	scaling exponent values, α , of 1.90, 1.90, and 1.69 for the UPT20,	
	LPT20, and HPT20 suspensions, respectively	69
5.4	The dependence of the static yield stress on electric field	
	strength for different volume fractions of highly doped	
	polythiophene suspension (HPT) at 25 °C	70
5.5	The effect of operating temperature on static yield stress	
	of 20 wt % HClO4 doped polythiophene suspension	
	(HPT20) at various electric field strengths	71
5.6	Effect of addition of Tween20 on the static yield stress	
	of 20 wt % HClO4 doped polythiophene suspension	
	(HPT20) at various electric field strengths	72
5.7	Effect of switching the applied electric field on the	
	viscosity of a 20 wt % highly HClO4 doped polythiophene	
	suspensions during stress sweep test at 25 oC: an applied	
	field of 2 kV/mm is switched on and off alternately;	
	(a) steady shear viscosity and (b) complex viscosity	73
5.8	Optical micrographs of 5 wt % highly doped PTAA/	
	silicone oil suspension (HPT5) at various electric field	
	strengths under quiescent conditions	74

PAGE

- 5.9 Optical micrographs of HPT5 under quiescent conditions,
following application of a constant electric field of 3 kV/mm75
- 5.10 Optical micrographs of highly doped PTAA/silicone oil suspensions (HPT) under quiescent conditions at different particle concentrations and electric field strengths
 76

CHAPTER VI

6.1	Storage and loss moduli of 20% wt. HClO ₄ highly doped	
	polythiophene/0.1 Pa.s silicone oil suspension (HPT20/ η 0.1)	
	at 25 ± 0.1 °C: (a) storage moduli G'; (b) loss moduli G"	94
6.2	Storage and loss moduli of 20% wt. HClO ₄ highly doped	
	polythiophene/0.5 Pa.s silicone oil suspension (HPT20/n0.5)	
	at 25 ± 0.1 °C: (a) storage moduli G'; (b) loss moduli G"	95
6.3	Storage and loss moduli of 20% wt. HClO ₄ highly doped	
	polythiophene/silicone oil suspension at 25 ± 0.1 °C:	
	(a) storage moduli G'; (b) loss moduli G". White symbols are	
	for 0.1 Pa.s oil and filled symbols are for 0.5 Pa.s oil	96
6.4	tan δ vs. frequency of HClO ₄ doped polythiophene/silicone oil	
	suspensions as various electric field strengths: (a) HPT20/ η 0.1	
	and (b) HPT20/η0.5	97

CHAPTER VII

7.1	Schematic diagram of compliance response of creep and	
	recovery curves under a constant applied shear stress and	
	the removal of stress for the typical viscoelastic material	112
7.2	Creep and recovery curves of the 20 wt% highly doped	
	PTAA suspension under the electric field strength of	
	1 kV/mm at various applied stress values:	
	(O) 5 Pa and (Δ) 10 Pa	113

7.3	Creep and recovery curves of the 20 wt% highly doped	
	PTAA suspension under the electric field strength of	
	1 kV/mm at various applied stress values:	
	(\Diamond) 50 Pa, (∇) 70 Pa, and (\Box) 76.5 Pa	114
7.4	The % recovery as a function of the applied stress of	
	20% wt highly doped PTAA suspension under field	
	strength of 1 kV/mm	115
7.5	Creep and recovery curves of the 20 wt% highly doped	
	PTAA suspension at a constant applied stress value of	
	50 Pa with various electric field strengths	116
7.6	Equilibrium creep compliance, J_C , of highly doped PTAA	
	suspensions at a constant applied stress of 50 Pa at various	
	electric field strengths	117
7.7	Equilibrium recovery compliance, J_R , of the highly doped	
	PTAA suspensions at a constant applied stress of 50 Pa at	
	various electric field strengths	118
7.8	The % recovery as a function of the electric field strength	
	of highly doped PTAA suspensions at a constant applied	
	shear stress of 50 Pa	119
7.9	Equilibrium creep compliance, J_C , of 20% wt doped PTAA	
	suspensions at a constant applied stress of 50 Pa at various	
	electric field strengths.	120
7.10	Equilibrium recovery compliance, J_R , of 20% wt doped	
	PTAA suspensions at a constant applied stress of 50 Pa	
	at various electric field strengths.	121
7.11	The % recovery as a function of the electric field strength	
	of 20% wt. HCLO ₄ doped PTAA suspensions at a constant	
	applied shear stress of 50 Pa	122

ABBREVIATION

- ER Electrorheology
- DC Direct current
- AC Alternate current
- PTAA Poly (3-thiophene acetic acid)
- FT-IR Fourier transform infrared spectrometer
- NMR Nuclear magnetic resonance spectrometer
- UV-Vis Ultraviolet-visible spectrometer
- TGA Thermogravimetric analysis
- SEM Scanning electron microscopy
- HPT5 5% wt. highly doped polythiophene suspension
- HPT10 10% wt. highly doped polythiophene suspension
- HPT20 20% wt. highly doped polythiophene suspension
- LPT20 20% wt. lowly doped polythiophene suspension
- UPT20 20% wt. undoped polythiophene suspension
- CSS Controlled shear stress

LIST OF SYMBOL

- τ shear stress
- τ_y yield stress
- $\dot{\gamma}$ shear rate
- E_o applied electric field strength
- η shear viscosity
- G' storage modulus (Pa/s)
- G" loss modulus (Pa/s)
- t_{ind} induction time
- t_{rec} recovery time
- ϕ volume fraction
- α scalling exponent
- γ scailing exponent
- σ electrical conductivity
- R resistant
- t disk thickness
- K geometric correction fractor
- β relative polarizability
- K_f dielectric permittivity of medium
- η^* complex oscillatory steady shear viscosity
- ω frequency
- Hz Hertz
- J_C equilibrium creep compliance
- J_R equilibrium recovery compliance