VERTICAL TWO-PHASE FLOW REGIMES AND PRESSURE GRADIENT: EFFECT OF VISCOSITY

Nan Da Hlaing

•

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2005 ISBN 974-9651-21-9

I 2224 2909

Thesis Title:	Vertical Two-Phase Flow Regimes and Pressure Gradient:
	Effect of Viscosity
By:	Nan Da Hlaing
Program:	Petroleum Technology
Thesis Advisors:	Asst. Prof. Kitipat Siemanond
	Prof. James O. Wilkes
	Assoc. Prof. Anuvat Sirivat

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Kitipat Siemmand

(Asst. Prof. Kitipat Siemanond)

- James O Wilkes

~

(Prof. James O. Wilkes)

B. Kitiyaman

(Asst. Prof. Boonyarach Kitiyanan)

huntbourd 31/5/2005

(Assoc. Prof. Anuvat Sirivat)

(Asst. Prof. Pomthong Malakul)

ABSTRACT

4573018063: Petroleum Technology Program
Nan Da Hlaing: Vertical Two-Phase Flow Regimes and Pressure
Gradients: Effect of Viscosity
Thesis Advisors: Assoc. Prof. Anuvat Sirivat,
Prof. James O. Wilkes, and Asst. Prof. Kitipat Siemanond,
67 pp. ISBN 974-9651-21-9
Keywords: Flow regimes/ Bubble flow/ Slug flow/ Churn flow/ Annular flow/

Mist flow/ Liquid viscosity/ Pressure gradient/ Reynolds number

Many industrial processes utilize pipes and equipments that are operated in two-phase flow regimes. In a two-phase gas-liquid co-current vertical flow, there exist a number of different flow regimes, of which the most important are the bubble, the slug, the churn, and the annular regimes. Experiment was carried out in a vertical transparent tube with 0.019 m in diameter and 3 m in length and pressure gradients were measured by the pressure taps connected to a U-tube manometer. Water and 50 vol% glycerol solution were used as the working fluids whose kinematic viscosities were 0.85×10^{-6} m²/s to 4.0×10^{-6} m²/s, respectively. We varied superficial air velocity, j_{air} , between 0.0021~58.7 m/s, superficial water velocity, j_{water} between $0\sim0.121$ m/s, and superficial aqueous glycerol solution, j_{solution}, between $0\sim0.1053$ m/s. The effect of liquid viscosity on the flow regimes and the corresponding pressure gradients along the vertical flow were investigated. As liquid viscosity increases, the boundaries of the bubble, the bubble-slug, and the slug flow regimes in aqueous glycerol solution shift to the right relative to those of pure water. But the boundaries for the churn, the annular and the mist flow regimes remain nearly the same. As Reynolds number of air, (Re)_{air}, increases the pressure gradients decreases in the bubble, the slug, and the slug-churn flow regimes. But in the annular and the mist flow regimes, the pressure gradients increases with increasing Reynolds number of air (Re)air. Finally, the experimentally measured pressure gradient values are compared and are in good agreement with the theoretical values.

iii

บทคัดย่อ

นาย นั้นคะ เฮิง : ขอบเขตของการใหลในแนวคิ่งแบบสองเฟสและผลต่างความคัน : ผล ของความหน็ค (Vertical Two-Phase Flow Regimes and Pressure Gradients : Effect of Viscosity) อ.ที่ปรึกษา : รศ.คร.อนุวัฒน์ ศิริวัฒน์ ผศ.คร.กิติพัฒน์ สีมานนท์ และ ศ. เจมส์ โอวิลค์ 70 หน้า ISBN 974-9651-21-9

การไหลแบบสองเฟสของระบบของเหลวและก๊าซในท่อแนวคิ่งได้รับความสนใจใน อุตสาหกรรมเคมี โดยเฉพาะการนำไปประยุกต์ใช้ในการขนส่งน้ำมันและก๊าซจากหลุมขุดเจาะ กระบวนการอุตสาหกรรมากมายใช้ประโยชน์จากท่อและเครื่องมือที่มีการทำงานแบบขอบเขตการ ไหลแบบสองเฟส การไหลแนวคิ่งสองเฟสทิศทางเดียวของก๊าซและของเหลว มีจำนวนขอบเขต การไหลแบบต่างๆ ได้แก่ ขอบเขตการไหลแบบฟองอากาศ แบบกระสุน แบบปั่นและแบบวง แหวน การทดลองนี้ได้ทำการศึกษาในท่อใสแบบแนวคิ่ง มีขนาดเส้นผ่าศูนย์กลาง 0.019 เมตรและ ยาว 3 เมตร ผลต่างความคันถูกวัดโดยท่อความดันที่ต่อกับมาโนมิเตอร์รูปด้วยู น้ำและสารละลาย กลีเซอรอลร้อยละ 50 โดยปริมาตร ถูกใช้เป็นของไหลในการศึกษาซึ่งมีความหนืดไดเนมาติกส์ เท่ากับ 0.85x10⁻⁶ เมตร²/วินาทีและ40 เมตร²/วินาที ตามลำดับ นอกจากนี้ได้ทำการปรับความเร็ว อากาศเหนือผิว, *j*air, ระหว่าง 0.0021~58.7 เมตร/วินาที, กวามเร็วน้ำเหนือผิว; *j*water, ระหว่าง 0~0.121 เมตร/วินาที และความเร็วสารละลายกลีเซอรอลเหนือผิว, *j*solution, ระหว่าง 0~0.1053 เมตร/วินาที ผลของกวามหนืดของของเหลวต่อขอบเขตการไหล และผลต่างความดันในการไหล ในแนวคิ่งได้ถูดทดสอบ

เมื่อความหนืดของของเหลวเพิ่มขึ้น ขอบเขตการ ใหลแบบฟองอากาส แบบฟองอากาส-กระสุน และแบบกระสุน ในสารละลายกลีเซอรอลจะย้ายไปทางขวาสัมพัทธ์กับขอบเขตของน้ำ บริสุทธิ์ แต่สำหรับขอบเขตแบบปั่น แบบวงแหวน และแบบละออง มีขอบเขตที่เกือบเหมือนกัน เมื่อค่าเร โนด์ของอากาส (Re_{air}) เพิ่มขึ้น ผลต่างความดันจะลดลงในขอบเขตการ ไหลแบบ ฟองอากาส แบบกระสุน และแบบกระสุน-ปั่น แต่ในการ ไหลแบบวงแหวนและละออง ผลต่าง ความดันจะเพิ่มขึ้น เมื่อค่าเร โนด์ของอากาสเพิ่มขึ้น สุดท้ายนี้ผลต่างความดันที่ได้จากการทดลอง ได้ถูกเปรียบเทียบและสอดกล้องด้วยดีกับก่าผลต่างความดันในทางทฤษฏี

ACKNOWLEDGEMENTS

This thesis can not be successful without the participation and support from the following individuals and organizations to whom the author would like to thank.

First of all, I gratefully acknowledge Associate Prof. Anuvat Sirivat for accepting me in his division, let me have to learn a lot of fruitful things, and also stand beside for several enlighten suggestions, discussions, and problem solving throughout my thesis works. I would like to express my deepest appreciation and thank to Assistant Prof. Kitipat Siemanond, and Prof. James O. Wilkes for all of their special guidance and assistance while I was conducting my research.

Thanks are also expressed to the faculty members and staffs of the Petroleum and Petrochemical College for their precious assistance. I am grateful for the partial scholarship and partial funding of the thesis work provided by the Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

I would like to give my thankfulness to Assistant Prof. Pomthong Malakul and Assistant Prof. Boonyarach Kitiyanan who are my thesis committee for their well-intentioned suggestions and comments is greatly acknowledged. And also, unforgettable thanks are forwarded to my friends at PPC, Dr. Khine Yi Mya and friends from Myanmar. Their encouragement helped me accomplish my thesis without any stress.

I also forward my special acknowledgement to faculty members of Department of Petroleum Engineering, Yangon Technological University, Myanmar for their encouragement and assistance.

Finally, I would like to express deep appreciation to my father, mother, and my family for their support, love, encouragement, and understanding.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	x

CHAPTER

.

I	INTRODUCTION	1
II	BACKGROUND AND LITERATURE SURVEY	3
	2.1 Background	3
	2.1.1 Two-Phase Flow	3
	2.1.2 Determination of Flow Regime	5
	2.1.2.1 Bubble Flow Pattern	6
	2.1.2.2 Slug Flow Pattern	8
	2.1.2.3 Churn or Froth Flow Pattern	10
	2.1.2.4 Annular-Mist Flow Pattern	10
	2.2 Literature Survey	12
Ш	EXPERIMENTAL	20
	3.1 Materials Preparation	20
	3.2 Experimental Apparatus	20
	3.2.1 Design and Experimental Setup of Two-Phase Flow	20
	3.3 Methodology	24
	3.3.1 Parameters	24

CHAPTE	2R	PAGE
	3.3.1.1 Controlled parameters of two-phase flow	24
	3.3.1.2 Variable parameters of two-phase flow	24
	3.3.1.3 Measured parameters of two-phase flow	24
	3.3.2 Experimental Procedures	25
	3.3.2.1 Determination of kinematic viscosities	
	by viscometer	25
	3.3.2.2 Calculations of kinematic viscosities of	
	pure water and 50 vol% glycerol	26
	3.3.2.3 Determination of Flow Pattern Map	27
	3.3.2.4 Determination of Pressure Drops	
	in the Main Column	27
	3.3.3 Data Analysis	28
IV	VERTICAL TWO-PHASE FLOW REGIMES AND	
	PRESSURE GRADIENT: EFFECT OF VIACOSITY	29
	4.1 Abstract	29
	4.2 Introduction	31
	4.3 Experimental Apparatus	32
	4.4 Results and Discussion	33
	4.5 Conclusions	42
	4.6 Acknowledgements	43
è.	4.7 References •	43
V	CONCLUSIONS	63
	REFERENCES	65

2

•

2

•

162

.

viii

APPENDICES		68
Appendix A	Two-phase Flow	68
Appendix B	Critical Reynolds numbers of Air in Two-Phase	
	Flow	107
Appendix C	Comparison between Theory and Experimental	
	Data for Pressure Gradient	113
Appendix D	Photos of Different Flow Regimes	152
Appendix E	Experimental Setup	160

•

.

CURRICULUM VITAE

LIST OF TABLES

TABL	LE PA	
	CHAPTER II	
2.1	Terminal velocities for Bubbles	7
2.2	Flow pattern details for air-water mixture flowing in 1.025	
	inch I.D vertical pipe	14
	CHAPTER III	
3.1	Variable parameters of two-phase flow	25
	CHAPTER IV	

4.1 Physical properties of liquids used in the experiment 45

.

•

LIST OF FIGURES

FIGURE

.

PAGE

CHAPTER II

2.1	Modeling flow pattern transitions for steady upward gas-	
	liquid flow in vertical tube	4
2.2	Two-phase flow regimes in a vertical tube	4
2.3	Bubble flow	6
2.4	Two-phase slug flow in a vertical pipe	8
2.5	Vertical annular two-phase flow	11
2.6	Flow pattern for air-water mixtures flowing in a 1.025-	
	inch based on observations and calculations.	15
2.7	Pressure gradient data for air-water mixtures in a 1.025	
	inch pipe	16
2.8	Flow-pattern boundaries for vertical upflow of air and	
	water at 15 psia in a 1 inch diameter tube.	16
2.9	Various "regimes" or subdivisions of the annular flow	
	pattern for cocurrent upward flow of air and water in a	
	1.25 inch diameter pipe at 15 psia.	17

CHAPTER III

3.1	Photograph for two-phase flow experiment setup with		
	compressor developed in this study.	4	22
3.2	Schematic diagram of the experimental setup		23
3.3	Schematic diagram of the viscometer		25

CHAPTER IV

4.1	Schematic diagram of the experimental setup	46
4.2	Different flow regimes for air-water mixture and air-50	
	vo% glycerol solution mixture.	47

FIGURE

- 4.3 a) Flow pattern regimes for air-pure water mixture, b)Flow pattern regimes for air-50 vol% glycerol solution mixture.
- 4.4 Pressure gradient vs. air Reynolds number of pure water and 50 vol% glycerol solution a) Re_{water} = 0, Re_{solution} = 0;
 b) Re_{water} = 293, Re_{solution} = 307; c) Re_{water} = 427, Re_{solution} = 435; d) Re_{water} = 56, Re_{solution} = 500; e) Re_{water} = 1628.
- 4.5 Comparison between theory and experimental pressure gradient vs. air Reynolds number of pure water and 50 vol% glycerol solution a) Re_{water} = 0, b) Re_{solution} = 0, c) Re_{water} = 293, d) Re_{solution} = 307, e) Re_{water} = 427, f) Re_{solution} = 435, g) Re_{water} = 560, h) Re_{solution} = 50, i) Re_{water} = 1628.
- 4.6 Bubble size diameter in a) air-pure water mixture, b) airpure water mixture, c) air-50 vol% glycerol solution mixture, d) air-50 vol% glycerol solution mixture, e) air-50 vol% glycerol solution mixture.
- 4.7 Comparison between the theory and the measured pressure gradient for air-pure water mixture a) bubble flow regime,b) slug flow regime, c) annular and mist flow regime.
- 4.8 Comparison between the theory and the measured pressure gradient for air-50 vol% glycerol solution mixture a) bubble flow regime, b) slug flow regime, c) annular and mist flow regime.

PAGE

49

57

59

61