
CHAPTER II
B A C K G R O U N D  A N D  L IT E R A T U R E  S U R V E Y

2.1 B ackground

2.1.1 Two-Phase Flow
For a vertical pipe with two-phase flow, there are four main regimes, 

as shown in Figure 2.1 and Figure 2.2, occurring successively at ever-increasing gas 
flow rates:
(a) B u b b le  f lo w . There is a continuous liquid phase and the gas phase is dispersed 

as bubbles within the liquid continuum. The bubbles travel with a complex 
motion, causing some of the bubbles to coalesce and generally be of non- 
uniform sizes.

(b) S lu e  f lo w . This flow pattern, in vertical systems, is sometimes referred to as 
plug flow, and occurs when the bubble size becomes comparable to that of the 
channel diameter, and characteristic bullet-shaped bubbles are formed. A bubble 
surrounded by a thin liquid film is often called a Taylor bubble. The liquid 
between the Taylor bubbles often contains a dispersion of smaller bubbles.

(c) C h u m  flo w . At higher gas velocities, the Taylor bubbles in slug flow break 
down into an unstable pattern in which there is a churning or oscillatory motion 
of liquid. This flow occurs more predominantly in wide-bore tubes and may not 
be so important in narrow-bore tubes where the region of churn flow is small.

(d) A n n u lar f lo w . This configuration is characterized by liquid traveling as a film on 
the channel w.alls, with gas flowing through the ‘center. Part of the liquid can 
form as droplets dispersed in the central gas core.

(e) M ist f lo w . The velocity of the continuous gas phase is so high that it reaches as 
far as the tube wall and entrains the liquid in the form of droplets.
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F igure 2.1 Modeling flow pattern transitions for a steady upward gas-liquid flow in 
vertical tubes (Bomea and Dukler, 1980).

F igure 2.2 Two-phase flow regimes in a vertical tube: a) the bubble flow ; b) the 
slug flow; c) the annular flow ; and d) the mist flow. In each case, the gas is shown 
in white, and the liquid is shaded in black (Wilkes, 1999).
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2.1.2 Determination of Flow Regime
A typical situation occurs when the gas and liquid volumetric flow 

rates G  and L are specified, and the pressure gradients, (dp/dz), and void fractions, £, 
[Nicklin, 1961 ] are calculated. Correlations for these last two variables are more 
likely to be successful if we know or recognize a flow regime and develop 
relationships specifically for it. The following approximate demarcations are 
recognized:

1. B u b b le /s lu g f lo w  tran sition . Small bubbles introduced at the base of a column of 
liquid will usually eventually coalesce into slugs. The transition depends very much 
on the size of the bubbles, how they were introduced, the distance from the inlet, and 
on surface tension effects, so there is no simple criterion for the transition.

2. S lu g /an n u lar f lo w  tran sition . In the narrow gap between the gas and the tube wall 
at the base of the slugs, there is a significant downwards flow of liquids, and hence a 
fairly strong relative velocity between gas and liquid at this point. With increasing 
gas flow rates, this results in an instability of the liquid film, which can start bridging 
the whole cross section of the tube. These bridges can in turn be broken up by the gas 
and the flow becomes chaotic.

3. A n n u lar/m ist f lo w  tran sition . The. transition is ill defined because most annular 
flow entrains some droplets.
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2 .1 .2 .1  B ubble F low  P a ttern

Figure 2.3 Bubble flow (Wilkes, 1999).

Gas bubbles and liquid in upward co-current flow are shown in 
Figure 2.3. The mean upward liquid velocity across plane A-A is

นิ 1 =  Q g + a Q i  ( 1)

where Q c  -  volumetric flow-rate of gas, l/min,- Q i = volumetric flow-rate of liquid,
1/min, A = cross-sectional area of a tube, m2 The rise velocity of gas bubbles below 
plane A-A is relative to that of a moving liquid which has a velocity, ผิ/, the mean 
upward liquid velocity that across plane A-A in figure ,2.3. So that velocity of the gas * 
bubbles is:

v g =  พิ/ +  พ b _  Q g + Q l 
A (2)

where Ub is the bubble velocity rising into a stagnant liquid and the total volumetric 
flow rate of gas is

Qg = s A v g (3)
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The void fraction is given by

Qr, Qr.+Q, _ QgVG__ VG ' VL or ร  =  —----- =^-------- (4 )
SA A h QG + Q L + u bA

Ub = bubble rise velocity (m/s) Bubble rise velocity, Ub rising into a stagnant liquid 
was proposed by Peebles and Garber [1953] from the equations in Table 2.1:

Table 2.1 Terminal velocities for bubble

R e g i o n R a n g e  o f  A p p l i c a b i l i t y T e r m i n a l  V e l o c i t y ,  Ub

1 R e h <  2
2 R 2b ( p i -  p g ) g  

9  P l

2 2  <  R e b <  4 .0 2 G r °  214 0 .3 3 ร 0  76 ( £ ) °  R l 28

3 4 .0 2 G f °  214 <  R et, <  3 . 1 0 G r ° 25 - u r
4 3 . 1 0 G 7 0 ' 25 <  R e b «(?)
5 R b >  2 . 3  J —  Y  9 P i

1 .0 0 \ / 5 Rfc

T J1 1 ซ  2  P iU b R b  I n  t h e  a b o v e :  R e t, =  — — — , r  9 P Î  
G l  =

where g = gravitational acceleration constant (m/s2), and Rb = radius of the sphere 
having the same volume as the bubble, and is half the'equivalent diameter, De (m).

Predicting pressure gradients in the upwards vertical direction, 
we may note that the density of the liquid, which occupies a fraction ( 1 -e) [occupied 
by the liquid] of the total volume, is much greater than that of the gas. For relatively 
low liquid velocities, it is likely to be encountered in the bubble flow regime, the 
friction factor term is negligible. Therefore, the pressure gradient consists only the 
hydrostatic effect:

P l g  (1 -  £ )V
dp_
d z { ‘ะ*)
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2 .1 .2 .2  S lu g  F lo w  P a ttern

(a) (b) (c)

Figure 2.4 Two-phase slug flow in a vertical pipe: (a) ascending gas and liquid, (b) 
rising bubble in stagnant liquid; (c) rising bubble in moving liquid (Wilkes, 1999).

Figure 2.4 (a) shows the gas and liquid flow upwards together at 
single volumetric flow rates Q o  and Q i, in a pipe of internal diameter D. An upward 
liquid velocity (พ/) across a plane A-A is ahead of a gas slug. The total upward 
volumetric flow rate of liquid across A-A must be the combined gas and liquid flow 
rate which enters at the bottom. Therefore the mean liquid velocity at plane A-A is 
พ/ = (Q g + Q l)!A, in which A is the cross-sectional area of the pipe.

, Figure 2.4 (b) shows a different situation, in which a single 
bubble is moving steadily upward with a rise velocity พ/, in a stagnant liquid. Davies 
and Taylor (1950) used an approximate analytical solution for the non-viscous liquid 
such as water and light oils, which is

ub = Cy[g~D (6)

where the constant, c, is 0.33, and g is the gravitational acceleration. From the 
experimental data, the constant “c” was experimentally found to be equal to 0.35.
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The slug rises in a stagnant liquid as shown in Figure 2.4 (b), but 
the mean velocity of liquid is the highest velocity at the center of the pipe-near the 
nose of the slug. Nicklin, Wilkes, and Davidson (1962), showed the value of liquid 
velocity of to be about 1.2 time of the mean liquid velocity near the “nose” o  of the 
slug, 1.2 พิ/, when the Reynolds numbers was greater than 8,000.
Hence, the true rise velocity of the slug is:

น, =1 .2  g c + g t  + « , =1.2  Q g± S L  + 0.35 V gP (7)

For the conservation of the gas; this gives:
Q0 =U,Ae (8)

Substituting us in equation (8) into equation (7)

g q
s A

1 .2 '  Q o  + Q l n
V A ,

+ 0.35 or ร  = 1.2{Qa + Q , ) + 0 3 5 ^ D (9)

Equation (9) can be solved for the void fraction when the gas and liquid flow rates 
are known.

Predicting the pressure gradient for slug flow, the wall friction 
of the liquid “piston” between successive gas slugs will be of secondary importance 
and we need to consider the equation (10). So, the single-phase frictional pressure 
gradient for liquid only, flowing at a mean velocity, ผิ,, is a more accurate for the
pressure gradient in slug flow regime. The expression for the pressure gradient for 
the slug flow is:

d p  ' 
d z = ( l - s ) P l ร  +

(  dp   ̂
d z sp

(10)

The single-phase frictional pressure gradient for the liquid only is:
d p  
d z ,

—  2
2  J~F P l UL

(11)
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2 .1 .2 .3  C h u rn  o r  F ro th  F lo w  P a t te r n
The froth flow pattern has been variously called the chum, the 

froth, the wave entrainment, the dispersed plug, and the semi-annular flows. It is 
similar to the slug pattern in that the flow that is pulsating and there are alternate 
slugs of gas and liquid. At the higher flow rates, characteristics of froth flow are the 
bubble wakes, which become more agitated, a large number of small bubbles are tom 
off at the tail, and the whole wake becomes richer in bubbles. The froth pattern 
differs from the regular orderly slug flow pattern in that neither the bubbles of gas 
nor the slug of liquid maintain their identity as they moved up the tube.

The pattern occurs over a modest range of superficial gas 
velocities and apparently only up to a certain critical superficial liquid velocity. It is a 
transition pattern from the regular slug flow to the annular and the mist flow. At any 
given liquid rate, the pattern extends from the point of breakdown of the regular 
liquid slugs and gas bubbles to a gas velocity sufficient to carry the bulk of the liquid 
up the wall of the tube by the surface drag exerted.

The froth flow pattern is not amenable to theoretical analysis 
and has not been the subject of any extensive experimental study.

2 .1 .2 .4  A n n u la r -M is t  F lo w  P a t te r n
The annular-mist flow pattern is widely encountered in the 

flow of gas-liquid mixtures at high gas rates and gas-liquid ratios. The annular-mist 
flow pattern in gas-liquid systems is characterized by an upward moving, continuous, 
and smooth-to-wavy film of liquid on the tube wall and a much more rapidly moving 
central core of gas, containing entrained droplets of liquid in a concentration which 
may vary from low to high. The liquid film mr'y be totally in laminar motion or It 
may be laminar only in the vicinity of the wall, and turbulent close to the gas-liquid 
interface.

Shearer and Nedderman, (1965) divided the annular-mist flow 
pattern into the “small ripple” regime and the “disturbance wave” regime. In the 
small ripple regime, small waves develop on the liquid surface and move at 
velocities of the order of the interface velocities and then lose their identity. At 
higher liquid flow rates, the waves are larger, and they travel at velocities two to five 
times the interfacial velocity. These waves are known as disturbance waves.
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At any given liquid flow-rate, decreasing the gas rate causes 
more of the liquid to be present in the film, the liquid film velocity to decrease, and 
its thickness to increase. At a certain critical gas flow-rate the liquid film velocity 
becomes zero, and below this rate the liquid film thickness increases rapidly, and it 
has a negative velocity near the wall. The liquid film penetrates the gas phase at the 
center, and the froth flow occurs. As the gas rate is increased, turbulence takes place 
in the liquid film, the thickness of the film decreases, waves develop at the interface, 
and increasing number of droplets are tom from the film and entrained in the gas. 
Eventually the continuous film is destroyed and almost all the liquid is transported as 
entrained droplets in the gas phase.

L  G  
Liquid Gas,

Figure 2.5 Vertical annular two-phase flow (Wilkes, 1999).

Consider the simultaneous flow of gas and liquid in a vertical 
tube in Figure 2.5. First, consider just the flow of gas in the inner core. Since the gas 
velocity Vg is typically much higher than that of the liquid, the pressure gradient may 
be approximated as if the gas were flowing with velocity Vg in a pipe of diameter Dg, 
giving:
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' d p ' '  d p '
K d z , tp y d z  ,

2/> P  s vl  _ Ji2 '  d p '  
K ( k ; PgS (12)

g v 'g o

Second, consider the entire flow, obtaining the frictional contribution from the 
viewpoint of the liquid:

' d p '
Kd z j ‘p

( d p ^
\dzjio (13)

For specified gas and liquid flow rates, the derivatives on the 
right-hand sides o f both equations will be determined by calculations. These 
equations can then be solved simultaneously for the two-phase flow pressure gradient 
(dp/dz),p and the void friction £ .

2.2 L iterature Survey

2.2.1 Two-Phase Flow
The study carried out by Davies and Taylor (1950) can be divided 

into two parts. Part I describes measurements of the shape and the rising rate of air 
bubbles of various volumes between 1.5 to 200 cm3 when they rise through 
nitrobenzene or water. Measurements of photographs of bubbles formed in 
nitrobenzene show that the greater part of the upper surface is always spherical. A 
theoretical discussion is based on the assumption that the pressure over the front of 
the bubbles is the same as that in ideal hydrodynamic flow round a sphere. The rise 
velocity, บ, should be related to the radius of curvature, R, in the region of the
vertex,'by the equation บ = (2/3) g  R  ; the agreement between this relationship and
the experimental results is excellent. For geometrically similar bubbles of such large 
diameter that the drag coefficient would be independent of Reynolds number, it 
would be expected that บ would be proportional to the sixth root of the volume, V; 
measurements of eighty-eight bubbles show considerable scatter in the values of 
u /v l/6, although there is no systematic variation in the value of this ratio with the
volume.
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Part II reveals that though the characteristics of a large bubble are 
associated with the observed fact that the hydrodynamic pressure on the front of a 
spherical cap moving through a fluid is nearly the same as that on a complete sphere, 
the mechanics of a rising bubble cannot be completely understood if the observed 
pressure distribution on a spherical cap is understood. Failing this can cause the case 
of a large bubble running up a circular tube filled with water and emptying at the 
bottom, which is capable of being analyzed completely, since the bubble is not then 
followed by a wake. An approximate calculation shows that the rise velocity บ is บ
= 0.46 J g â , where “a” is the radius of the tube. Experiments with a tube diameter 
of 7.9 cm gave values o f บ from 29.1 to 30.6 cm/sec, corresponding with values of 
บ/ ^ fg a  from 0.466 to 0.490.

Govier, Radford, and Dunn (1957) distinguished six different flow 
patterns: bubble, slug, froth or chum, annular and mist each occurring at successively 
higher air rates. Table 2.2 and Figure 2.6 summarize in scale drawings and a 
tabulated form of the results of photographic observations of the flow patterns 
observed at low, medium, and high water rates, and over a range of air rates. Govier 
(1957) also presented pressure gradient data of each flow regimes in Figure 2.7. He 
defined pressure drops regimes I, II, III, and IV by the loci line such that regime I 
extends to gas flow rates defined by the first pressure drop minimum, regime II from 
the first pressure drop minimum to the pressure drop maximum, regime III from the 
pressure drop maximum to the second minimum, and regime IV beyond the second 
minimum. The loci lines in the total pressure gradient curve are related to change in 
the flow patterns as illustrated in figure. These relations enabled to support their 
visual observations of flow pattern changes with the more quantitative detection of 
the pressure gradient minimum and maximum points.

Wallis (1969) has mentioned flow-pattern boundaries for a vertical 
upwards flow of air and water in Figure 2.8, previously presented by numerous 
authors. Hall-Taylor and Hewitt ((1962) presented various regimes or subdivisions of 
the annular flow pattern for a cocurrent upward flow of air and water in Figure 2.9.
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Table 2.2 Flow pattern details for air-water mixture flowing in 1.025 inch I.D 
vertical pipe (see Figure 2.8)

Sk«tch
Identi
fica 
tion

Flow
Pattern

Continuous
Phase

Superficial Velocity
Water, O il, 

VSL Vso 
ft/sec ft/sec

Volume
Fraction

Oil.
Eo

Holdup
Ratio,

H

Slip
Velocity,

ร
ft/sec

A bubb le w ater 0 .1 0 .015 C.08 1.70 0 .08
B bubble water 0 .1 0 .058 0 .17 2.85 0 2 2
c slu g w ater 0 .1 0 .167 0 .32 3 .60 0 .38
D froth neither 0 .1 0 .5 6 2 0 .67 2 .80 0 .5 4
E froth neither 0 .1 1.11 0 .87 1.62 0 .49
F m ist o il 0 .1 2 .94 0 .97 0 8 4 - 0 . 5 8
G m ist o il 0 .1 9 .0 0 .99 0 .7 2 - 3 . 5 3
H bubb le w ater 1 .0 0 .0 1 5 0.01 1 26 0 .26
I bubb le w ater 1 .0 0 .058 0 .035 1.60 0 .6 2
J bubb le w ater 1 0 0 .2 2 0 .1 1 4 1.71 0 .8 0
K slu g w ater 1 .0 0 .49 0 .2 4 1.52 0 .6 9
L froth neither 1 .0 1.61 0.58 1.17 0 .4 0
M froth neither 1 .0 2 .0 0.65 1.10 0 .28
N m ist o il 1 .0 s o 0 .85 0 .9 2 - 0 . 5 2
O m ist o il 1 .0 9 .0 0 .9 0 9 0 .9 0 - 1 . 1 0
P b u b b le w ater 10.0 0.015 0 .0 0 1 4 1.05 0 .5 0
Q bu b b le w ater 1 0 0 0 .058 0 0 0 5 1.10 1.00
R bubb le w ater 10.0 0 .2 2 0 .02 1.10 1.02
ร blibble. w ater 10.0 0 .49 0 .0 4 1.10 1.04
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F L O W  D IR E C T IO N

O P Q R a

I___________ I I I I I I I I I__________ I I 1 I I 1 1 I I_____________ 1 1 I I 1 1 1 บ  

0.1 1.0 10 100
Superficial Gas Velocity, V s g , ft /sec.

Figure 2.6 Flow pattern for air-water mixtures flowing in a 1.025- inch pipe based 
on observations and calculations (Govier, Radford, and Dunn, 1957).
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Figure 2.7 Pressure gradient data for air-water mixtures in a 1.025 inch pipe 
(Govier, Radford, and Dunn, 1957).

Figure 2.8 Flow-pattern boundaries for vertical upflow of air and water at 15 psia in 
a 1 inch diameter tube (Wallis, 1969).
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๐  1 0 ๐  2 ๐ ๐  3 ๐ 0
Water flow rate, lfc>/hr

Figure 2.9 Various “regimes” or subdivisions of the annular flow pattern for 
cocurrent upward flow of air and water in a 1.25 inch diameter pipe at 15 psia (Hall- 
Taylor, and Hewitt, 1962).

Nicklin (1962) studied the properties of long bubbles in vertical tubes.
It has been shown that these bubbles rise relative to the liquid ahead at a velocity * 
exactly equal to the rising velocity of wakeless bubbles of the type studied by 
Dumitrescu and Taylor (1950). For 1-inch tubes, this velocity is closely predicted by 
motion of bubbles in moving liquid streams that have been studied, and the results 
applied to the problem of two-phase slug flow. An expression for the voidage in a 
steady two-phase slug flow has been derived, and this predicted voidage agrees well 
with the experimental results.

Welsh, Ghiaaisaan, and Abdel-Khalik (1999) studied experimentally 
in countercurrent flow limitation (flooding), two-phase flow patterns, and the void
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fraction in countercurrent flow of gas-pseudoplastic liquids in a vertical and inclined 
channel. They found that the gas and liquid superficial velocity ranges in the 
experiments were 0.5-198 and 0.8-34 0๗ ร, respectively. The visually observed two- 
phase flow regimes were the bubbly-slug, the slug, the slug-chum, the chum, and the 
annular flows occurring only at the near-flooding conditions. The flow regime 
transition lines showed significant differences with data representing a Newtonian 
liquid with a viscosity of the same order of magnitude as the polymer solution 
apparent viscosities. The slug flow pattern, characterized by Taylor bubbles, was the 
most dominant flow pattern. The measured void fractions were correlated based on 
the drift flux model, using different correlation parameters for the bubbly/slug, and 
the slug or the slug/chum flow regimes.

Fukano and Furukawa (1998) investigated the effects of liquid 
viscosity on the mean liquid film thicknesses, wave heights, and gas-liquid interfacial 
shear stresses in the vertical-upward co-current annular flow in a 26.0 mm inner 
diameter tube. Water and glycerol solutions were used as working fluids to change 
the kinematic viscosity of liquid from 0.85 X 10'6 to 8.6x 10'6 m2/s. The mean liquid 
film thicknesses and wave heights were determined using the signals of time-varying 
cross-sectionally averaged holdups, which were detected by a constant-current 
method at a distance of about 3.5 m from an air-liquid mixer. The pressure gradients 
were also measured by a U-tube manometer. From their observation of the shape of 
waves of the liquid holdup signals, and the still photographs of gas-liquid interfaces 
it is clear that the interfacial structure is strongly dependent on the liquid viscosity. 
As liquid viscosity increases, the interfacial friction factor decreases when compared 
under the same mean liquid film thickness because the wave height decreases with 
increasing viscosity, but it increases under the same Reynolds numbers of gas phase 
because of density increases with increasing viscosity. In their proposed method the 
only information needed is the superficial gas and liquid velocities if the inner 
diameter of the tube and fluids properties (liquid viscosity, densities of gas and 
liquid) are known.

Wongwises and Kongkiatwanitch (2001) presented new data on the 
gas-liquid interfacial friction factor in an annular two-phase upward co-current flow 
in a vertical circular pipe. Their studies have been performed at relatively high film
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thickness, taking into consideration the effect of the entrained droplets which occur 
from the break up of the disturbance waves. The entrained liquid flow rate was 
measured by using a sampling probe connected with a cyclone separator. The 
entrainment flow rate in the gas core is calculated from an assumption that the 
sampling is carried out in an isokinetic manner. The calculated parameters like 
entrainment volumetric flow rate, entraining droplets velocities and depositing 
droplet velocities have been included in their model was modified from the literature 
to determine the interfacial shear stress. The interfacial friction factor was further 
determined by using the relationship between the interfacial shear stress and 
interfacial friction factor. The changes in the air flow rate and the water film 
thickness have been found to have an effect on the interfacial friction factor.

Helming Arendt Knudsen and Alex Hansen (2001) studied the 
relation between pressure and fractional flow in two-phase flow in porous media. 
They studied average flow properties in porous media using a two-dimensional 
network simulator. It models the dynamics of two-phase immiscible hulk flow where 
film flow can be neglected. The boundary conditions are biperiodic, which provide a 
means of studying steady-state flow where complex bubble dynamics dominate the 
flow picture. In particular, for the case of two phases having equal viscosities, they 
find that the derivative of the fractional flow is related to the global pressure drop. 
Hopefully, after their experimental verification, they got an important equation from 
numerical work. So, this equation can be of use in the measurement of two- phase 
flow properties.
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