SURFACE-MODIFIED CALCIUM CARBONATE PARTICLES BY ADMICELLAR POLYMERIZATION TECHNIQUE TO BE USED AS FILLER FOR ISOTACTIC POLYPROPYLENE

Pakpoom Rungruang

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2005 ISBN 974-993-731-7

T777435 86

Thesis Title:	Surface-Modified Calcium Carbonate Particles by Admicellar
	Polymerization Technique to be used as Filler for Isotactic
	Polypropylene
By:	Pakpoom Rungruang
Program:	Polymer Science
Thesis Advisors:	Asst. Prof. Pitt Supaphol
	Assoc. Prof. Brian P. Grady

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantayor Yanunit. College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

60 -----

(Asst. Prof. Pitt Supaphol)

(Assoc. Prof. Brian P. Grady)

Nantaya Janumit.

(Assoc. Prof. Nantaya Yanumet)

..... mit Nithitanakul) (Asst. Pr f. N

ABSTRACT

4672014063: Polymer Science Program

Pakpoom Rungruang: Surface-Modified Calcium Carbonate Particles by Admicellar Polymerization Technique to be used as Filler for Isotactic Polypropylene.

Thesis Advisors: Asst. Prof. Pitt Supaphol and Assoc. Prof. Brian P. Grady 128 pp. ISBN 974-993-731-7

Keywords: Admicellar polymerization/ Composite/ Calcium carbonate/ Isotactic polypropylene

The formation of thin films on solid surfaces has been a subject of intense studies in recent years because of a wide variety of possible applications. Admicellar polymerization was used to produce a thin polypropylene (PP) film on the surface of calcium carbonate (CaCO₃) particles using sodiumdodecylsulfate (SDS) as the surfactant template and sodium peroxodisulfate $(Na_2S_2O_8)$ as the thermal initiator. In the formation of PP, the effects of process conditions (i.e. pH, equilibrium time for adsorption, salt concentration, and surfactant concentration) were studied to obtain optimum conditions for the admicellar polymerization of PP onto CaCO₃ particles. The admicellar-treated CaCO₃ was characterized by Fourier-transformed infrared spectroscopy (FT-IR), particle size analysis, and gravimetric analysis. Nonisothermal crystallization studies indicate that surface treatment of CaCO₃ particles reduced the nucleating ability of the CaCO₃ particles. WAXD results suggested that surface-treated CaCO₃ resulted in the reduction of degree of crystallinity of iPP matrix. The effect of CaCO₃ of various surface characteristics on mechanical properties of CaCO₃-filled isotactic polypropylene (iPP) composites was investigated. Both stearic acid-coated and admicellar-treated CaCO₃ reduced tensile strength at yield, Young's modulus, and flexural strength, while improved strain at yield and impact strength, of the composites. Observation of the fracture surfaces of the composites by scanning electron microscopy (SEM) iPP revealed an improvement in CaCO₃ dispersion as a result of the surface treatment.

บทคัดย่อ

ภาคภูมิ รุ่งเรือง : การศึกษาแคลเซียมคาร์บอเนตที่ถูกปรับสภาพผิวด้วยเทคนิคแอดไม เซลลาร์พอลิเมอร์ไรเซชั่นสำหรับไอโซแทคติกพอลิโพรพิลีน (Surface-Modified Calcium Carbonate Particles by Admicellar Polymerization Technique to be used as Filler for Isotactic Polypropylene) อ. ที่ปรึกษา : ผศ.คร. พิชญ์ ศุภผล และ รศ.คร. ไบรอัน เกร**ดี** 128 หน้า ISBN 974-993-731-7

เนื่องจากการเคลือบผิวค้วยฟิล์มบางบนพื้นผิวของวัสคุสามารถนำไปประยุกต์ใช้ใ**ห้**เกิด ประโยชน์ได้หลายวิธี ดังนั้นในช่วงหลายปีที่ผ่านมาจึงได้มีการศึกษาและพัฒนาเทคนิกการเ**คล**็อบ ผิวด้วยฟิล์มบางของพอลิเมอร์ โดยการทำปฏิกิริยาพอลิเมอร์ไรเซชั่นในชั้นของสารลดแร**งลึง**ผิว ซึ่งกระบวนการนี้เรียกว่า แอคไมเซลลาร์พอลิเมอร์ไรเซชั่น งานวิจัยนี้ได้นำเทคนิคแอคไมเซลลาร์ พอลิเมอร์ไรเซชั่นของโพรพิลีนมอนอเมอร์ในชั้นของสารลคแรงตึงผิวโซเคียมโคเคคซิลซัลเฟต และใช้โซเคียมเปอร์ซัลเฟตเป็นตัวเริ่มปฏิกิริยาด้วยความร้อน ทั้งนี้ได้มีการศึกษาสภาวะต่างๆที่มี ผลต่อกระบวนการ เช่น ค่าพีเอชของสารละลาย เวลาที่การดูคซับบนพื้นผิวเกิคสมคุล ความเ**ข้มข้**น ของเกลือ และ ความเข้มข้นของสารลดแรงตึงผิวที่ใช้ เพื่อให้ได้สภาวะที่เหมาะสมที่สุดในการ เคลือบผิวด้วยเทกนิกแอดไมเซลลาร์พอลิเมอร์ไรเซชั่นของโพรพิลีนมอนอเมอร์บนพื้นผิวของ แคลเซียมการ์บอเนต หลังจากนั้นฟูริเออร์ทรานสฟอร์มอินฟราเรคสเปกโทรสโกปี การวิเคราะห์ ้งนาคงองอนุภาค และ การวิเคราะห์หาเปอร์เซ็นต์น้ำหนักที่หายไป จะถูกใช้ในการศึกษาการ ้เคลือบผิวของพอลิโพรพิลีนฟิล์มบนพื้นผิวของแคลเซียมคาร์บอเนต จากการศึกษาการตกผลึก ์แบบอุณหภูมิไม่คงที่พบว่า การเคลือบผิวแคลเซียมคาร์บอเนตทำให้ความสามารถในการก่**อผ**ลึก ้งองแคลเซียมการ์บอเนตและปริมาณการเกิดผลึกงองไอโซแทคติกพอลิโพรพิลีนลคลง แคล**เซ**ียม คาร์บอเนตที่เกลือบผิวค้วยกรคสเตรียริก และ ด้วยเทคนิคแอคไมเซลลาร์พอลิเมอร์ไรเซชุั่นจะถูก นำไปผสมกับไอโซแทคติกพอลิโพรพิลีน แล้วนำไปศึกษาสมบัติเชิงกลของวัสคเชิงประกอบ ้เปรียบเทียบกับแกลเซียมการ์บอเนตที่ไม่ได้เกลือบผิว จากการศึกษาพบว่า เมื่อเกลือบผิวด้วยกรุดส เตรียริก และ ด้วยเทคนิคแอดไมเซลลาร์พอลิเมอร์ไรเซชั่น มีผลทำให้วัสดุเชิงประกอบมีควา**มท**น ้ต่อแรงคึง ยังมอคุลัส และ ความทนต่อแรงหักงอลคลง แต่ทำให้ความทนต่อแรงกระแทกเพิ่มขึ้น เมื่อใช้กล้องสแกนนิ่งอิเล็กตรอนไมโครสโคปศึกษาการกระจายตัวของแคลเซียมคาร์บอเนตพบว่า แกลเซียมการ์บอเนตที่เกลือบผิวด้วยกรคสเตรียริก และ ด้วยเทกนิกแอคไมเซลลาร์พอลิเมอร์ไร เซชั่นมีการกระจายตัวได้ดีในไอโซแทคติกพอลิโพรพิลีน

ACKNOWLEDGEMENTS

The author would like to gratefully thank the Petroleum and Petrochemical College, Chulalongkorn University where the author has gained the invaluable knowledge in polymer Science program and the author greatly appreciates all professors who have tendered knowledge to him at this college.

The author would like to express his sincere appreciation to his Thai advisor, Asst. Prof. Pitt Supaphol who not only provided financial support throughout this research work, but also gave intensive suggestion, invaluable guidance, and constructive advice.

The author would like to gratefully acknowledge his U.S. advisor, Assoc. Prof. Brian P. Grady, for his guidance and encouragement during the course of this work. The author would like to sincerely thank all the staff of the Petroleum and Petrochemical College, Chulalongkorn University for their assistance and in helping the author to use the research facilities.

This thesis work is partially funded by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

Furthermore, the author wishes to extend appreciation to HMC Polymers Co., Ltd. (Thailand) and Calcium Products Co., Ltd. for supporting of the raw materials used throughout this work.

In addition, the author feels fortunate to have spent the years with a collection of graduate students who not only made the experience bearable, but also quite pleasant. Consequently, the author simply says thanks to the entire college members and all my good friends at the Petroleum and Petrochemical College for their helpfulness, cheerfulness, encouragement, and entertainment.

Last but not least, extreme appreciation is to the author family for their love, understanding, and continuous encouragement during the author studies and accomplishes this thesis work.

TABLE OF CONTENTS

		PAGE
-	Title Page	i
1	Abstract (in English)	iii
1	Abstract (in Thai)	iv
1	cknowledgements	v
7	Table of Contents	vi
Ι	ist of Tables	viii
Ι	ist of Figures	x
СНАР	TER	
I	INTRODUCTION	1
I	I LITERATURE SURVEY	7
I	II EXPERIMENTAL	18
I	V SURFACE-MODIFIED CALCIUM CARBONATE	7
	PARTICLES BY ADMICELLAR POLYMERIZATIO	N
	TECHNIQUE TO BE USED AS FILLER FOR	
	ISOTACTIC POLYPROPYLENE	31
	4.1 Abstract	31
	4.2 Introduction	32
	4.3 Experimental	33
	4.4 Results and Discussion	38
	4.5 Conclusions	48
	4.6 Acknowledgements	49
	4.7 References	50

.

CHAPTER			PAGE
N	CONCLUS	IONS	88
	REFERENC	CES	90
	APPENDIC	ES	93
÷	Appendix A	Determination of the Point of Zero	
		Charge (PZC) of CaCO ₃	93
	Appendix B	Determination of the Equilibrium Time	
		for SDS Adsorption on CaCO ₃	94
ġ.,	Appendix C	The Effect of Electrolyte on the	
		Adsorption of SDS on CaCO ₃	98
	Appendix D	Determination of the Adsorption	
		Isotherm of SDS on CaCO ₃	102
	Appendix E	Characterization of the Extracted	
		Polymer by FT-IR Technique	107
	Appendix F	Particle Size Analysis of CaCO3 Particles	108
	Appendix G	Gravimetric Analysis (Percentage of	
		Weight Loss)	109
	Appendix H	Determination of Tensile Properties of	
		CaCO ₃ -filled iPP Composites	110
	Appendix I	Determination of Flexural Properties of	
		CaCO ₃ -filled iPP Composites	116
	Appendix J	Determination of Impact Properties of	
		CaCO ₃ -filled iPP Composites	121
	Appendix K	Morphology of Fracture Surface of	
		CaCO ₃ -filled iPP Composites	122

CURRICULUM VITAE

128

LIST OF TABLES

TABLE

PAGE

		CHAPTER IV	
	4.1	Summary of propylene pressure drop values for the blank	
		system and the admicellar polymerization system	57
	4.2	Assignment of characteristic peaks from FT-IR spectrum of	
		solid residue	60
	4.3	Summary of percentage of weight loss values for the	
		various types of surface-treated CaCO3	62
	4.4	Summary of non-isothermal crystallization characteristics	
		observed for all of the samples studied	66
	4.5	Summary of subsequent melting characteristics observed	
		for all of the samples studied	69
	4.6	The K_{β} values of 2 wt.% as-received, untreated, and	
		admicellar-treated CaCO ₃ -filled iPP composites	72
	4.7	Summary of WAXD degree of crystallinity for all of the	
		samples studied	73
	4.8	Summary of tensile strength at yield values of the various	
		types of surface-treated CaCO3-filled iPP composites	74
	4.9	Summary of strain at yield values of the various types of	
		surface-treated CaCO ₃ -filled iPP composites	75
•	4.10	Summary of Young's modulus values of the various types	
		of surface-treated CaCO ₃ -filled iPP composites	76
	4.11	Summary of flexural strength values of the various types of	
		surface-treated CaCO ₃ -filled iPP composites	80
	4.12	Summary of impact strength values of the various types of	
		surface-treated CaCO ₃ -filled iPP composites	82

4.13 Summary of percentage of area values of the various types of surface-treated CaCO₃ on iPP matrix of the fractured surface of impact test specimens for 30 wt.% CaCO₃-filled i-PP composites

4

85

.

PAGE

LIST OF FIGURES

FIGURE

CHAPTER I

1.1	Schematic of four steps admicellar polymerization process	3
1.2	Typical adsorption isotherm of surfactants on solid surfaces	4
1.3	The phenomena of solubilization and adsolubilization	5

CHAPTER III

3.1	Calcium carbonate (CALOFIL1000)	18
3.2	Chemical structure of sodium dodecyl sulfate (SDS)	19
3.3	Zeta potential meter 3.0	20
3.4	KRÜSS DSA10 Mk2 drop shape analysis system	20
3.5	High pressure Parr reactor	21
3.6	Collin ZK25 self-wiping, co-rotating twin-screw extruder	21
3.7	ARBURG Allrounder [®] 270M injection molding machine	22
3.8	Instron 4260 universal testing machine	22
3.9	Zwick 5113 pendulum impact tester	23
3.10	JEOL JSM-5200 scanning electron microscope	23
3.11	Thermo Nicolet Nexus 670 FT-IR spectrometer	24
3.12	Malvern MastersizerX particle size analyzer	24
3.13	Perkin-Elmer Series 7 differential scanning calorimeter	25
3.14	Rigaku Rint2000 diffractometer	25

CHAPTER IV

4.1	Schematic of four steps admicellar polymerization process	52
4.2	The electrophoretic mobility of CaCO ₃ particles in aqueous	
	solution at various pH	53
4.3	The equilibrium time for SDS adsorption on CaCO ₃	54

4.4	The effect of electrolyte on the amount of SDS adsorption	
	on CaCO ₃	55
4.5	The adsorption isotherm of SDS on CaCO3 pH 8 and a salt	
	concentration of 0.3 M	56
4.6a	The FT-IR spectra of atactic polypropylene, solid residue,	
	and pure SDS	58
4.6b	The FT-IR spectrum of initiator (Na ₂ S ₂ O ₈)	59
4.7	The particle size results of the various types of surface-	
	treated CaCO ₃	61
4.8	The percentage of weight loss of the various types of	
	surface-treated CaCO ₃	63
4.9a	The non-isothermal crystallization exotherms for neat iPP	
	and 2 wt.% CaCO ₃ filled iPP samples with various types of	
	surface treatment of CaCO3: (1) as-received, (2) stearic	
	acid-coated, (3) untreated, (4) admicellar-treated	
	([SDS] _{equilibrium} = 200 μ M), and (5) admicellar-treated	
	([SDS] _{equilibrium} = 500 μ M)	64
4.9b	The non-isothermal crystallization exotherms for neat iPP	
	and 30 wt.% CaCO ₃ filled iPP samples with various types	
	of surface treatment of CaCO ₃ : (1) as-received, (2) stearic	
	acid-coated, (3) untreated, (4) admicellar-treated	
	([SDS] _{equilibrium} = 200 μ M), and (5) admicellar-treated	
	$([SDS]_{equilibrium} = 500 \ \mu M)$	65

65

.

- 4.10a The subsequent melting endotherms for neat iPP and 2 wt.% CaCO₃ filled iPP samples with various types of surface treatment of CaCO₃: (1) as-received, (2) stearic acid-coated, (3) untreated, (4) admicellar-treated ([SDS]_{equilibrium} = 200 μM), and (5) admicellar-treated ([SDS]_{equilibrium} = 500 μM)
- 4.10b The subsequent melting endotherms for neat iPP and 30 wt.% CaCO₃ filled iPP samples with various types of surface treatment of CaCO₃: (1) as-received, (2) stearic acid-coated, (3) untreated, (4) admicellar-treated ([SDS]_{equilibrium} = 200 μM), and (5) admicellar-treated ([SDS]_{equilibrium} = 500 μM)
- 4.11a The WAXD patterns for neat iPP and 2 wt.% CaCO₃ filled iPP samples with various types of surface treatment of CaCO₃: (1) as-received, (2) stearic acid-coated, (3) untreated, (4) admicellar-treated ([SDS]_{equilibrium} = 200 μM), and (5) admicellar-treated ([SDS]_{equilibrium} = 500 μM)
- 4.11b The WAXD patterns for neat iPP and 30 wt.% CaCO₃ filled iPP samples with various types of surface treatment of CaCO₃: (1) as-received, (2) stearic acid-coated, (3) untreated, (4) admicellar-treated ([SDS]_{equilibrium} = 200 μM), and (5) admicellar-treated ([SDS]_{equilibrium} = 500 μM)
- 4.12 The tensile strength at yield of the various types of surfacetreated CaCO₃-filled iPP composites
- 4.13 The strain at yield of the various types of surface-treated CaCO₃-filled iPP composites
- 4.14 The Young's modulus of the various types of surfacetreated CaCO₃-filled iPP composites79

67

68

70

71

77

78

4.15	The flexural strength of the various types of surface-treated	
	CaCO ₃ -filled iPP composites	81
4.16	The impact strength of the various types of surface-treated	
	CaCO ₃ -filled iPP composites	83
4.17	The SEM micrographs of the fractured surface of selected	
	impact test specimens for iPP filled with 30 wt.%: (a) as-	
	received, (b) untreated, (c) admicellar-treated ([SDS] _{equilibrium}	
	= 200 μ M), (d) admicellar-treated ([SDS] _{equilibrium} = 500 μ M),	
	and (e) stearic acid-coated CaCO3 particles	84
4.18	The percentage of area of CaCO ₃ on iPP matrix of the	
	fractured surface of impact test specimens for the various	
	types of surface-treated CaCO3-filled iPP composites	86
4.19	The SEM micrographs of the tensile test specimens sectioned	
	along the direction of deformation for iPP filled with	
	30 wt.%: (a) as-received, (b) untreated, (c) admicellar-treated	
	$([SDS]_{equilibrium} = 200 \ \mu M),$ (d) admicellar-treated	
	([SDS] _{equilibrium} = 500 μ M), and (e) stearic acid-coated CaCO ₃	
	particles	87

xiii