REFERENCES

- Bertalan, Gy., Marosi, Gy., Anna, P., Ravadits, I., Csontos, I., and Tóth, A. (2001)
 Role of interface modification in filled and flame-retarded polymer systems.
 <u>Solid State Ionics</u>, 14i-142, 211-215.
- Bunsomsit, K., Magaraphan, R., O'Rear, E.A., and Grady, B.P. (2002) Polypyrrolecoated natural rubber latex by admicellar polymerization. <u>Colloid Polymer</u> <u>Science</u>, 280, 509-516.
- Chan, C.M., Wu, J., Li, J.X., and Cheung, Y.K. (2002) Polypropylene/calcium carbonate nanocomposites. <u>Polymer</u>, 43, 2981-2992.
- Cho, K., Saheb, D.N., Choi, J., and Yang, H. (2002) Real time in situ X-ray diffraction studies on the melting memory effect in the crystallization of βisotactic polypropylene. <u>Polymer</u>, 43, 1407-1416.
- Goldman, A.Y. and Copsey, C.J. (2000) Polypropylene toughened with calcium carbonate mineral filler. <u>Mat Res Innovat</u>, 3, 302-307.
- González, J., Albano, C., Ichazo, M., and Díaz, B. (2002) Effects of coupling agents on mechanical and morphological behavior of the PP/HDPE blend with two different CaCO₃. <u>European Polymer Journal</u>, 38, 2465-5475.

Harwell, J.H. and O'Rear, E.A. (1988) U.S. Patent No. 477096.

- Lai, C.L., Harwell, J.H., and O'Rear, E.A. (1995) Formation of poly(tetrafluoroethylene) thin films on alumina by admicellar polymerization. <u>Langmuir</u>, 11, 905-911.
- Maiti, S.N. and Mahapatro, P.K. (1991) Mechanical properties of i-PP/CaCO₃ composites. Journal of Applied Polymer Science, 42, 3101-3110.
- Martínez-Luévanos, A., Uribe-Salas, A., and López-Valdivieso, A. (1999)
 Mechanism of adsorption of sodium dodecylsulfonate on celestite and calcite. <u>Minerals Engineering</u>, 12, 919-936.
- O'Haver, J.H., Harwell, J.H., O'Rear, E.A., Snodgrass, L.J., and Waddell, W.H. (1994) In situ formation of polystyrene in adsorbed surfactant bilayers on precipitated silica. <u>Langmuir</u>, 10, 2588-2593.

- Osman, M.A. and Suter, U.W. (2002) Surface treatment of calcite with fatty acids: structure and properties of the organic monolayer. <u>Chemical Mater</u>, 14, 4408-4415.
- Pongprayoon, T., Yanumet, N., and O'Rear, E.A. (2002) Admicellar polymerization of styrene on cotton. Journal of Colloid and Interface Science, 249, 227-234.
- Pongprayoon, T., Yanumet, N., and O'Rear, E.A. (2003) <u>Admicellar</u> <u>Polymerization of Styrene on Cotton</u>. Ph.D Dissertation in Petrochemical Technology, The Petroleum and Petrochemical College, Chulalongkorn University.
- Pukánszky, B. and Fekete, E. (1998) Aggregation tendency of particulate fillers: determination and consequences. <u>Polymers & Polymer Composites</u>, 6, 313-322.
- Riley, A.M., Paynter, C.D., McGenity, P.M., and Adams, J.M. (1990) <u>Plastic and</u> <u>Rubber Processing and Applications</u>, 14, 85.
- Rybnikar, F. (1991) Interaction in the system isotactic polypropylene-calcite. Journal of Applied Polymer Science, 42, 2727-2737.
- Sakhalkar, S.S. and Hirt, D.E. (1995) Admicellar polymerization of polystyrene on glass fibers. Langmuir, 11, 3369-3373.
- Silva, A.L.N., Rocha, M.C.G., Moraes, M.A.R., Valente, C.A.R., and Coutinho, F.M.B. (2002) Mechanical and rheological properties of composites based on polyolefin and mineral additives. <u>Polymer Testing</u>, 21, 57-60.
- Sitthitham, B., Yanumet, N., Ellis, J.W., Grady, B.P., and O'Rear, E.A. (2001) Coating of Glass Fiber to Improve Adhesion in Glass Fiber Reinforced <u>Polyethylene</u>. M.S. Thesis in Polymer Science, The Petroleum and Petrochemical College, Chulalongkorn University.
- Somnuk, U., Grady, B.P., O'Rear, E.A., Yanumet, N., and Ellis, J.W. (2003) Adhesion improvement in glass fiber reinforced polyethylene composite via admicellar polymerization. <u>Polymer Composites</u>, 24, 171-179.

- Supaphol, P. and Harnsiri, W. (2003) Effects of calcium carbonate and its purity on crystallization and melting behavior, mechanical properties, and processability of syndiotactic poly(propylene). Journal of Applied Polymer Science, submitted.
- Tabtiang, A. and Venables, R. (2000) The performance of selected unsaturated coatings for calcium carbonate filler in polypropylene. <u>European Polymer</u> <u>Journal</u>, 36, 137-148.
- Thio, Y.S., Argon, A.S., Cohen, R.E., and Weinberg, M. (2002) Toughening of isotactic polypropylene with CaCO₃ particles. <u>Polymer</u>, 43, 3661-3674.
- Tuner-Jones, A., Aixlewood, J.M., and Beckett, D.R. (1964) <u>Makromolecular</u> <u>Chemistry</u>, 75, 134.
- Wei, X., Carswell, A.D.W., Alvarez, W., and Grady, B.P. (2003) X-ray photoelectron spectroscopic studies of hydrophilic surfaces modified via admicellar polymerization. <u>Journal of Colloid and Interface Science</u>, 264, 296-300.
- Wu, J., Harwell, J.H., and O'Rear, E.A. (1987) Two-dimensional reaction solvents: surfactant bilayers in the formation of ultrathin films. <u>Langmuir</u>, 3, 531-537.
- Yuan, W.L., O'Rear, E.A., Cho, G., Funkhouser, G.P., and Glatzhofer, D.T. (2001) Thin polypyrrole films formed on mica and alumina with and without surfactant present: characterization by scanning probe and optical microscopy. <u>Thin Solid Films</u>, 385, 96-108.
- Yuan, W.L., O'Rear, E.A., Grady, B.P., and Glatzhofer, D.T. (2002) Nanometerthick poly(pyrrole) films formed by admicellar polymerization under conditions of depleting adsolubilization. Langmuir, 18, 3343-3351.
- Zhang, Q.X., Yu, Z.Z., Xie X.L., and Mai, Y.W. (2004) Crystallization and impact energy of polypropylene/CaCO₃ nanocomposites with nonionic modifier. <u>Polymer</u>, 45, 5985-5994.
- Zuiderduin, W.C.J., Westzaan, C., Huétink, J., and Gaymans, R.J. (2003) Toughening of polypropylene with calcium carbonate particles. <u>Polymer</u>, 44, 261-275.

APPENDICES

Appendix A Determination of the Point of Zero Charge (PZC) of CaCO₃

Table A1 The electrophoretic mobility of CaCO3 particles in aqueous solution atvarious pH.

Sample	Electrophoretic Mobility (EM), micron-cm/volts-sec						
	pH = 7.94	pH = 8.95	pH = 10.05	pH = 10.93	pH = 12.05	pH = 12.43	
1	2.993	2.453	1.463	0.829	-1.71	-2.53	
2	2.964	2.508	1.469	0.913	-1.64	-2.32	
3	2.986	2.594	1.377	0.926	-1.62	-2.31	
4	2.964	2.414	1.377	0.869	-1.72	-2.69	
5	2.986	2.589	1.35	0.962	-1.67	-2.59	
Mean	2.9786	2.5116	1.4072	0.8998	-1.672	-2.488	

.

٠

Appendix B Determination of the Equilibrium Time for SDS Adsorption on CaCO₃

[SDS]	IFT (mN/m)						
(µM)	1	2	3	Mean			
10	71.93	71.84	71.82	71.86			
50	71.22	71.33	71.27	71.27			
100	70.58	70.62	70.14	70.45			
200	68.39	68.58	67.82	68.26			
400	64.87	64.95	64.85	64.89			
600	62.24	62.24	62.24	62.24			
800	58.35	58.37	58.53	58.42			
1,000	53.93	54.09	53.84	53.95			

 Table B1
 The interfacial tension of standard SDS solutions at pH 8

Figure B1 Calibration curve.

Time	IFT of 1/20 diluted		SDS _{adsorption}
(h)	solution (mN/m)	[5D5] (μΜ)	(µmol/g of CaCO ₃)
	60.62	653.54	69.08
	60.53	658.65	68.06
	60.82	642.17	71.35
3	60.03	687.07	62.42
	60.28	672.86	65.26
	60.22	676.27	64.58
		66.79 ± 3.28	
	59.19	734.82	52.95
	59.77	701.85	59.53
	59.92	693.33	61.24
6	59.86	696.74	60.51
	60.03	687.07	62.44
	59.92	693.33	61.19
	Me	an	59.64 ± 3.41
	57.03	857.61	28.38
F	58.95	748.47	50.14
-	58.85	754.15	49.00
9	58.46	776.32	44.67
	58.86	753.58	49.21
ŀ	58.50	774.05	45.13
ľ	Me	an	44.42 ± 8.18

Table B2 The adsorption of SDS on $CaCO_3$ at various times

Γ	Time	IFT of 1/20 diluted		SDS _{adsorption}
	(h)	solution (mN/m)	[SDS] (µM)	(µmol/g of CaCO ₃)
		57.54	828.62	34.19
		58.00	802.47	39.41
		58.19	791.67	41.57
	12	57.54	828.62	34.14
		57.62	824.07	35.05
		57.69	820.09	35.84
		Me	36.70 ± 3.08	
		58.17	792.80	41.32
	18	58.08	797.92	40.30
		58.20	791.10	41.66
		58.40	779.73	43.72
		58.73	760.97	47.45
		58.39	780.30	43.61
		Me	43.01 ± 2.55	
		58.33	783.71	43.03
	F	57.94	805.88	38.62
	ľ	58.14	794.51	40.88
	24	58.06	799.06	39.95
		58.29	785.98	42.54
		58.17	792.80	41.19
		Me	an	41.03 ± 1.63

 Table B2 (cont.)
 The adsorption of SDS on CaCO3 at various times

Time	IFT of 1/20 diluted		SDS _{adsorption}
(h)	solution (mN/m)	[5D5] (µM)	(µmol/g of CaCO ₃)
	58.18	792.24	41.28
	58.27	787.12	42.29
	58.54	771.77	45.34
30	57.94	805.88	38.62
	57.91	807.58	38.28
	58.03	800.76	39.64
	Me	40.91 ± 2.66	
	57.70	819.52	36.00
	58.06	799.06	40.08
	57.76	816.11	36.68
34	58.34	783.14	43.14
ſ	57.94	805.88	38.62
	57.83	812.13	37.37
-	Me	38.65 ± 2.64	

Table B2 (cont.) The adsorption of SDS on CaCO₃ at various times

. .

Appendix C The Effect of Electrolyte on the Adsorption of SDS on CaCO₃

Table C1The interfacial tension of standard SDS solutions at 0.2 M NaClconcentration and pH 8

[NaCl] = 0.2 M	IFT (mN/m)					
[SDS] (µM)	1	2	3	Mean		
100	62.73	62.81	62.60	62.72		
200	57.63	57.66	58.04	57.78		
400	51.98	51.49	51.81	51.76		
600	46.94	47.36	47.40	47.24		
800	43.23	43.81	44.31	43.79		

Table C2The interfacial tension of standard SDS solutions at 0.3 M NaClconcentration and pH 8

[NaCl] = 0.3 M	IFT (mN/m)				
[SDS] (µM)	1	2	3	Mean	
100	63.64	63.72	63.51	63.63	
200	58.54	58.57	58.95	58.69	
400	52.89	52.40	52.72	52.67	
600	47.85	48.27	48.31	48.15	
· 800	44.14	44.72	45.22	44.70	

[NaCl] = 0.4 M	IFT (mN/m)					
[SDS] (µM)	1	2	3	Mean		
100	64.37	64.45	64.24	64.35		
200	59.27	59.30	59.68	59.42		
400	53.62	53.13	53.45	53.40		
600	48.58	49.00	49.04	48.87		
800	44.87	45.45	45.95	45.42		

Table C3The interfacial tension of standard SDS solutions at 0.4 M NaClconcentration and pH 8

Table C4The interfacial tension of standard SDS solutions at 0.5 M NaClconcentration and pH 8

[NaCl] = 0.5 M	IFT (mN/m)					
[SDS] (µM)	1	2	3	Mean		
100	64.91	64.99	64.78	64.90		
200	59.81	59.84	60.22	59.96		
400	54.16	53.67	53.99	53.94		
600	49.12	49.54	49.58	49.42		
800	45.41	45.99	46.49	45.97		

Figure C1 Calibration curve.

Table C5 The adsorption of SDS on $CaCO_3$ at various NaCl concentrations

[NaCl]	IFT of 1/25 diluted	d [SDS] (μM)	SDS _{adsorption}
(M)	solution (mN/m)	[5D5] (µM)	(µmol/g of CaCO ₃)
	50.78	582.72	54.29
0.2	50.78	582.72	54.29
	50.92	577.58	55.58
	51.42	559.23	60.16
	51.44	558.50	60.34
	51.57	553.73	61.53
	Me	• 57.70 ± 3.33	

[[NaCl]	IFT of 1/25 diluted		SDS _{adsorption}
	(M)	solution (mN/m)	[3D3] (µM)	(µmol/g of CaCO ₃)
		52.28	527.73	68.00
		52.29	527.37	68.09
		52.43	522.23	69.37
	0.3	52.09	534.71	66.26
		52.28	527.73	68.01
		51.71	548.65	62.78
		Me	67.09 ± 2.32	
	0.4	52.52	519.07	70.16
		52.50	519.81	69.97
		52.47	520.91	69.70
		52.15	532.65	66.82
		52.16	532.28	66.91
		52.04	536.69	65.81
		Me	68.23 ± 1.92	
		52.52	518.94	70.15
		52.21	530.32	67.31
		52.68	513.07	71.61
	0.5	52.79	509.03	72.63
		52.55	517.84	70.43
		52.68	513.07	71.62
		Me	70.62 ± 1.85	

Table C5 (cont.) The adsorption of SDS on $CaCO_3$ at various NaCl concentrations

Table D1The interfacial tension of standard SDS solutions at 0.3 NaClconcentration and pH 8

SDS	IFT (mN/m)						
(µM)	1	2	3	4	5	Mean	
0	71.64	71.42	71.84	71.71	71.54	71.63	
10	71.65	71.58	71.24	71.68	71.88	71.61	
40	66.00	66.01	66.45	66.18	65.90	66.11	
70	58.87	60.38	58.71	60.82	61.12	59.98	
100	55.71	55.77	55.56	55.73	55.87	55.73	
200	46.86	46.06	46.87	46.78	46.48	46.61	
400	37.95	38.23	37.45	37.92	37.91	37.89	
600	33.41	33.42	33.62	33.91	33.56	33.58	

Figure D1 Calibration curve.

IFT (mN/m)						[SDS]	SDS _{adsorption}
i	2	3	4	5	Mean	(μM ³)	(µmol/g of CaCO ₃)
66.65	66.39	66.47	64.95	65.55	66.00	36.24	0.64
64.08	63.97	64.58	63.09	63.85	63.91	45.91	1.54
55.45	55.47	56.14	56.74	55.50	55.86	85.81	3.14
49.45	49.71	49.53	50.25	48.97	49.58	141.87	5.58
46.10	46.09	46.71	47.06	47.18	46.63	182.89	8.17
41.82	42.02	42.01	42.38	41.96	42.04	272.10	17.27
32.47	32.70	32.88	32.64	31.94	32.53	590.88	34.08
39.25	39.75	39.68	40.09	40.22	39.80	3293.60*	37.03
40.58	40.48	40.00	40.87	40.69	40.52	6194.44**	37.99
39.77	40.38	39.61	40.32	40.28	40.07	16090.99***	39.07

Table D2 The data of SDS adsorption isotherm (adsorption of SDS on CaCO3 andequilibrium SDS concentration)

.

** calculated from diluted solution (x20)

*** calculated from diluted solution (x50)

	IFT (mN/m)						SDS _{adsorption}
1	2	3	4	5	Mean	(μM)	(µmol/g of CaCO ₃)
70.22	70.37	70.01	70.44	69.89	70.19	24.02	0.16
69.05	68.09	68.92	68.78	67.69	68.51	36.07	0.34
67.11	68.56	69.15	68.56	67.48	68.17	38.12	0.62
66.04	65.66	65.69	64.09	65.60	65.42	53.34	1.46
56.70	57.14	58.78	58.11	56.97	57.54	87.80	3.11
50.67	51.35	51.55	51.59	50.65	51.16	134.10	5.65
49.04	48.30	49.56	48.92	49.13	48.99	159.27	8.39
42.77	43.95	43.54	43.60	43.50	43.47	255.59	17.44
37.63	38.33	38.96	38.57	39.10	38.52	393.80	26.03
33.72	33.56	33.75	33.98	34.32	33.87	579.94	34.15
51.64	51.98	51.82	51.18	51.24	51.51	1299.51*	36.92
45.53	45.46	45.26	45.30	44.78	45.27	2183.80*	38.12
41.22	41.00	41.21	41.32	41.00	41.15	3131.91*	38.57
41.44	42.15	41.95	41.76	41.77	41.81	5910.73**	40.84
40.98	40.46	40.33	39.75	40.89	40.48	16610.51***	33.88

Table D2 (cont.) The data of SDS adsorption isotherm (adsorption of SDS onCaCO3 and equilibrium SDS concentration)

** calculated from diluted solution (x20)

*** calculated from diluted solution (x50)

•

	IFT (mN/m)						SDS _{adsorption}
1	2	3	4	5	Mean	μM)	(µmol/g of
							CaCO ₃)
70.95	70.98	70.97	71.10	70.45	70.89	18.18	0.22
69.94	69.85	69.33	69.90	70.12	69.83	26.79	0.43
69.40	69.76	69.05	68.85	68.94	69.20	31.40	0.68
65.52	66.51	66.23	66.61	65.44	66.06	50.19	1.50
58.25	56.36	57.96	57.42	57.84	57.57	87.64	3.12
52.03	52.45	52.37	51.85	51.78	52.10	124.97	5.75
48.67	49.11	49.44	48.29	49.21	48.94	159.87	8.39
44.26	45.14	45.18	44.97	45.04	44.92	225.15	17.71
38.44	38.42	38.40	38.54	39.10	38.58	391.45	26.04
34.12	34.05	34.40	33.66	33.90	34.03	572.48	34.21
51.49	52.35	51.49	52.33	51.83	51.90	1268.50*	37.26
45.78	45.90	45.16	45.77	45.19	45.56	2128.97*	38.69
40.86	41.47	42.07	41.56	41.94	41.58	3018.01*	39.71
42.32	42.52	42.25	42.32	41.85	42.25	5687.72**	43.08
41.24	41.13	41.36	41.22	41.41	41.27	15492.91***	45.03

Table D2 (cont.) The data of SDS adsorption isotherm (adsorption of SDS on $CaCO_3$ and equilibrium SDS concentration)

** calculated from diluted solution (x20)

*** calculated from diluted solution (x50)

	IFT (mN/m)						SDS _{adsorption}
1	2	3	4	5	Mean	(μM)	(µmol/g of CaCO ₃)
71.05	71.17	70.63	70.48	70.53	70.77	19.18	0.21
70.31	69.95	69.61	68.65	69.62	69.63	28.20	0.42
67.52	68.89	68.46	69.60	68.35	68.56	35.62	0.64
66.56	65.31	65.94	65.81	66.55	66.03	50.34	1.50
56.44	57.35	56.60	56.31	56.97	56.73	91.93	3.08
52.26	52.49	53.01	52.66	52.22	52.53	121.10	5.78
49.51	50.05	50.12	49.89	49.35	49.78	149.31	8.49
44.43	44.16	45.05	45.32	44.81	44.75	228.45	17.69
38.65	38.93	38.70	38.71	38.42	38.68	387.98	26.11
33.87	34.06	33.73	34.32	34.24	34.04	571.63	34.27
52.50	52.42	51.66	52.33	51.79	52.14	1245.90*	37.49
46.34	45.57	45.59	45.71	46.06	45.85	2075.29*	39.20
41.38	41.50	41.83	41.86	41.32	41.58	3017.10*	39.81
40.88	41.42	41.04	40.69	40.83	40.97	6363.11**	36.34
40.27	40.20	40.10	40.05	40.70	40.26	16920.36***	30.78

Table D2 (cont.)The data of SDS adsorption isotherm (adsorption of SDS onCaCO3 and equilibrium SDS concentration)

** calculated from diluted solution (x20)

.

*** calculated from diluted solution (x50)

Figure E1 The FT-IR spectra of extracted polymer.

ŝ,

Appendix F Particle Size Analysis of CaCO₃ Particles

Table F1 Diameter of CaCO3 particles for the various types of surface-treatedCaCO3

Type of surface treated		Diameter (µm)				
CaCO ₃	1	2	3	Mean		
As-received CaCO ₃	1.21	1.18	1.17	1.19 ± 0.02		
Untreated CaCO ₃	1.14	1.2	1.24	1.19 ± 0.05		
Admicellar-treated CaCO ₃ ([SDS] _{equilibrium} = 200 μ M)	1.18	1.23	1.23	1.21 ± 0.03		
Admicellar-treated CaCO ₃ ([SDS] _{equilibrium} = 500 μ M)	1.18	1.2	1.2	1.19 ± 0.01		

	Percentage of weight loss (%)						
No.	As-received	Stearic acid-	Untreated	Admicellar-	Admicellar-		
		coated	CaCO ₃	treated CaCO ₃	treated CaCO ₃		
		CaCO ₃		([SDS] = 200 μM)	([SDS] = 500 µM)		
1	0.8615	5.7231	0.7651	0.7161	0.8395		
2	0.7735	5.6900	0.7722	0.7044	0.7939		
3	0.9805	5.7967	0.6618	0.7056	0.8386		
4	-	4.9298	0.4819	0.6933	0.7034		
5	-	5.8714	0.4444	0.5070	0.6894		
6	-	5.7326	0.4039	0.5538	0.7346		
7	-	6.1520	-	0.7462	0.7096		
Mean	0.8568	5.6991	0.5882	0.6609	0.7584		
S.D.	0.1092	0.3737	0.1652	0.0917	0.0645		

.

 Table G1
 Percentage of weight loss of the various types of surface-treated CaCO3

Appendix G Gravimetric Analysis (Percentage of Weight Loss)

Appendix H Determination of Tensile Properties of CaCO₃-filled iPP Composites

Table H1 The strain at yield values of various types of surface-treated CaCO3-fillediPP composites

r									
		Strain at Yield (%)							
No	As-received	Stearic acid-	Untreated	Admicellar-	Admicellar-				
CaCO ₃		coated	CaCOa	treated CaCO ₃	treated CaCO ₃				
		CaCO ₃	CaCO3	([SDS] = 200 μM)	([SDS] = 500 μM)				
1	4.87	5.11	3.79	5.10	5.06				
2	4.09	5.01	3.91	4.54	4.85				
3	4.54	5.20	3.68	4.42	4.39				
4	4.86	4.03	4.03	4.94	5.03				
5	4.44	5.03	3.93	4.74	4.89				
6	4.31	5.09	3.68	4.90	5.11				
7	4.81	5.01	3.80	4.79	4.79				
8	4.22	4.82	3.80	4.99	4.98				
9	4.74	5.14	3.87	4.75	5.22				
10	4.75	4.48	3.84	4.47	5.11				
Mean	4.56	4.89	3.83	4.76	4.94				
S.D.	0.28	0.36	0.11	0.23	0.24				

	Load at Peak (kN)						
No.	As-received	Stearic acid-	Untreated	Admicellar-	Admicellar-		
	CaCO ₃	coated	CaCO ₃	treated CaCO ₃	treated CaCO ₃		
		CaCO ₃	-	([SDS] = 200 μM)	([SDS] = 500 μM)		
1	1.13	1.12	1.15	1.09	1.08		
2	1.08	1.11	1.14	1.11	1.08		
3	1.12	1.16	1.14	1.11	1.08		
4	1.14	1.10	1.12	1.09	1.08		
5	1.09	1.13	1.13	1.11	1.08		
6	1.09	1.11	1.13	1.11	1.08		
7	1.16	1.14	1.13	1.11	1.09		
8	1.11	1.10	1.13	1.12	1.09		
9	1.11	1.16	1.13	1.10	1.06		
10	1.08	1.16	1.13	1.11	1.07		
Mean	1.11	1.13	1.13	1.10	1.08		
S.D.	0.03	0.02	0.01	0.01	0.01		

•

Table H2 The load at peak values of various types of surface-treated CaCO3-fillediPP composites

		Tensile Strength at Yield (Mpa)							
	As-received	Stearic acid-	Untreated	Admicellar-	Admicellar-				
		coated		treated CaCO ₃	treated CaCO ₃				
	CaCO ₃		([SDS] = 200 µM)	([SDS] = 500 µM)					
1	26.66	26.49	27.03	25.91	25.63				
2	25.55	26.31	27.15	26.20	- 25.65				
3	26.31	27.35	26.85	26.25	25.63				
4	26.76	26.13	26.56	25.98	25.66				
5	25.70	26.78	26.70	26.18	25.59				
6	25.83	26.30	26.65	26.14	25.49				
7	27.46	26.94	26.69	26.22	25.85				
8	26.14	26.02	26.67	26.58	25.91				
9	26.12	27.46	26.70	26.11	25.18				
10	25.46	27.34	26.70	26.14	25.38				
Mean	26.20	26.71	26.77	26.17	25.60				
S.D.	0.62	0.54	0.18	0.18	0.21				

Table H3 The tensile strength at yield values of various types of surface-treatedCaCO3-filled iPP composites

		Strain at Break (%)							
No.	As-received CaCO ₃	Stearic acid- coated CaCO ₃	Untreated CaCO ₃	Admicellar- treated CaCO ₃ ([SDS] = 200 μM)	Admicellar- treated CaCO ₃ ([SDS] = 500 μM)				
1	32.70	62.07	11.76	35.13	22.44				
2	20.44	97.05	15.11	30.32	32.12				
3	13.77	76.35	14.07	27.72	24.31				
4	44.30	38.47	20.36	30.97	32.52				
5	41.40	27.38	19.87	25.22	36.44				
6	15.44	23.58	21.07	24.72	41.53				
7	28.44	30.19	22.17	31.91	37.96				
8	27.70	68.38	20.47	37.76	34.98				
9	31.96	58.09	19.37	22.12	29.45				
10	20.13	24.23	13.49	33.77	28.11				
Mean	27.63	50.58	17.77	29.96	31.99				
S.D.	10.33	25.50	3.75	4.98	6.03				

Table H4 The strain at break values of various types of surface-treated CaCO3-fillediPP composites

.

		Young's Modulus (MPa)							
Ng.	As-received	Stearic acid-	Untreated	Admicellar-	Admicellar-				
CaCO ₃		coated	CaCO ₃	treated CaCO ₃	treated CaCO ₃				
	Cueby	CaCO ₃		([SDS] = 200 μM)	([SDS] = 500 μM)				
1	2194.09	2954.58	3172.33	2362.73	1890.07				
2	2313.84	2491.42	2582.44	2617.62	2314.62				
3	2555.95	2357.38	3282.89	2359.30	2606.06				
4	2343.64	2106.28	3026.39	2961.95	2573.56				
5	2593.16	2351.62	2504.95	3028.16	2346.40				
6	2781.18	2603.58	2475.23	2687.83	2478.54				
7	2410.41	2948.96	2562.80	2409.62	2495.32				
8	2658.33	2887.06	2317.22	2617.48	2316.90				
9	2401.37	2887.06	2907.68	2053.06	2823.69				
10	2597.75	2894.94	3249.27	2599.35	2297.09				
Mean	2484.97	2648.29	2808.12	2569.71	2414.23				
S.D.	180.64	307.70	359.79	291.19	247.88				

Table H5 The Young's modulus values of various types of surface-treated CaCO3filled iPP composites

		Stress at Automatic Break (Mpa)							
No.	As-received	Stearic acid-	Untreated	Admicellar-	Admicellar-				
	CaCO ₂	coated		treated CaCO ₃	treated CaCO ₃				
	CaCO ₃	cuccy	([SDS] = 200 μM)	([SDS] = 500 µM)					
1	20.15	17.57	24.39	20.36	20.42				
2	19.27	18.09	23.06	20.48	20.17				
3	19.60	17.28	23.60	20.72	20.42				
4	20.26	12.34	23.26	20.42	20.12				
5	17.40	15.29	23.41	20.47	20.12				
6	16.88	18.24	22.96	20.52	18.32				
7	21.38	18.94	22.68	19.10	20.43				
8	19.22	16.12	23.23	20.83	17.66				
9	19.54	18.27	22.94	21.07	18.95				
10	19.01	18.46	23.73	19.41	20.11				
Mean	19.27	17.06	23.33	20.34	19.67				
S.D.	1.32	2.00	0.49	0.61	1.00				

Table H6 The stress at automatic break values of various types of surface-treatedCaCO3-filled iPP composites

Appendix I Determination of Flexural Properties of CaCO₃-filled iPP Composites

Table I1 The stress at yield (maximum load) values of various types of surface-treated CaCO3-filled iPP composites

	Stress at Yield (Maximum Load) (Mpa)						
No.	As-received	Stearic acid-	Untreated	Admicellar-	Admicellar-		
		coated		treated CaCO ₃	treated CaCO ₃		
	Caeog	CaCO ₃	Caelog	([SDS] = 200 µM)	([SDS] = 500 μM)		
1	37.27	36.30	39.45	37.64	36.36		
2	36.63	36.56	39.90	37.64	36.24		
3	35.23	34.17	40.27	38.40	36.15		
4	34.92	36.09	40.70	37.39	37.15		
5	35.34	36.78	40.17	37.33	36.76		
6	34.20	35.94	39.71	38.18	36.59		
7	35.20	36.62	38.68	34.82	36.18		
8	35.23	37.86	40.76	36.86	36.62		
9	35.94	36.21	40.46	35.63	37.15		
10	36.39	35.55	40.60	35.37	36.59		
11	36.27	36.30	40.43	35.60	37.39		
12	36.03	36.41	40.73	34.34	36.30		
13	34.97	37.39	42.46	35.97	36.56		
14	35.14	35.37	41.79	35.58	37.21		
15	35.14	36.36	41.28	35.75	35.63		
Mean	35.53	36.26	40.49	36.43	36.59		
S.D.	0.75	0.85	0.92	1.27	0.48		

	Strain at Yield (Maximum Load) (mm/mm)					
No.	As-received CaCO ₃	Stearic acid- coated CaCO ₃	Untreated CaCO ₃	Admicellar- treated CaCO ₃ ([SDS] = 200 μM)	Admicellar- treated CaCO ₃ ([SDS] = 500 μM)	
1	0.34	0.33	0.34	0.32	0.32	
2	0.34	0.3.3	0.34	0.33	0.33	
3	0.34	0.33	0.34	0.32	0.33	
4	0.34	0.34	0.33	0.33	0.33	
5	0.34	0.33	0.33	0.33	0.33	
6	0.34	0.33	0.33	0.32	0.33	
7	0.34	0.33	0.34	0.33	0.33	
8	0.34	0.33	0.34	0.32	0.33	
9	0.33	0.34	0.33	0.33	0.33	
10	0.34	0.33	0.33	0.33	0.33	
11	0.34	0.33	0.34	0.33	0.32	
12	0.34	0.33	0.34	0.34	0.33	
13	0.34	0.33	0.33	0.33	0.33	
14	0.34	0.32	0.32	0.33	0.33	
15	0.32	0.34	0.33	0.32	0.34	
Mean	0.34	0.33	0.33	0.33	0.33	
S.D.	0.01	0.00	0.01	0.01	0.01	

Table I2 The strain at yield (maximum load) values of various types of surface-treated CaCO3-filled iPP composites

	Young's Modulus (Mpa)						
No.	As-received	Stearic acid-	Untreated	Admicellar-	Admicellar-		
	CaCO ₃	CaCO ₃	CaCO ₃	$([SDS] = 200 \ \mu M)$	$([SDS] = 500 \mu\text{M})$		
1	703.66	647.90	750.80	661.78	639.60		
2	621.68	654.36	707.81	661.75	619.12		
3	640.45	580.19	804.80	651.06	600.77		
4	595.92	645.64	701.24	590.06	668.99		
5	631.01	579.93	752.23	627.83	608.08		
6	742.42	631.62	678.83	638.24	682.82		
7	619.86	661.60	756.08	625.78	680.29		
8	618.52	592.30	731.23	668.06	672.16		
9	630.76	694.69	706.68	591.23	576.34		
10	642.82	639.13	755.94	561.11	700.75		
11	646.20	585.68	682.19	695.70	628.88		
12	597.11	645.44	705.66	594.90	530.88		
13	662.41	612.90	725.28	637.84	658.30		
14	627.97	597.20	799.55	731.36	675.02		
15	637.07	673.30	754.85	577.04	662.24		
Mean	641.21	629.46	734.21	634.25	640.28		
S.D.	38.22	36.13	38.22	46.49	46.41		

Table I3 The Young's modulus values of various types of surface-treated CaCO3-filled iPP composites

	Energy to Yield Point (J)						
No.	As-received CaCO ₃	Stearic acid- coated CaCO ₃	Untreated CaCO ₃	Admicellar- treated CaCO ₃ ([SDS] = 200 μM)	Admicellar- treated CaCO ₃ ([SDS] = 500 μM)		
1	1.74	1.67	1.78	1.60	1.60		
2	1.67	1.64	1.83	1.63	1.61		
3	1.65	1.52	1.80	1.65	1.60		
4	1.66	1.66	1.77	1.68	1.66		
5	1.65	1.64	1.74	1.64	1.68		
6	1.59	1.59	1.72	1.66	1.66		
7	1.61	1.60	1.72	1.59	1.66		
8	1.61	1.67	1.78	1.66	1.66		
9	1.66	1.61	1.75	1.58	1.63		
10	1.68	1.55	1.79	1.60	1.65		
11	1.62	1.60	1.76	1.62	1.60		
12	1.69	1.61	1.79	1.60	1.59		
13	1.67	1.68	1.81	1.63	1.64		
14	1.62	1.53	1.79	1.66	1.65		
15	1.57	1.61	1.79	1.60	1.64		
Mean	1.65	1.61	1.77	1.63	1.63		
S.D.	0.04	0.05	0.03	0.03	0.03		

Table I4The energy to yield point values of various types of surface-treatedCaCO3-filled iPP composites

	Toughness (MPa)						
Nə.	As-received	Stearic acid-	Untreated	Admicellar-	Admicellar-		
	CaCO ₃	coaled	CaCO ₃	treated CaCO ₃	treated CaCO ₃		
		CaCO ₃		$([SDS] = 200 \ \mu M)$	$([SDS] = 500 \ \mu M)$		
1	1.04	0.99	1.06	0.96	0.95		
2	1.00	0.98	1.10	0.97	0.96		
3	0.98	0.90	1.07	0.98	0.95		
4	0.98	0.99	1.06	1.00	0.99		
5	0.98	0.98	1.03	0.98	1.01		
6	0.95	0.94	1.03	0.98	0.99		
7	0.96	0.95	1.03	0.95	0.99		
8	0.96	1.00	1.07	0.99	0.99		
9	0.98	0.96	1.04	0.94	0.96		
10	1.00	0.93	1.07	0.95	0.98		
11	0.96	0.95	1.05	0.97	0.95		
12	1.00	0.96	1.07	0.95	0.95		
13	0.99	1.00	1.07	0.97	0.98		
14	0.96	0.91	1.07	0.99	0.98		
15	0.93	0.96	1.06	0.96	0.98		
Mean	0.98	0.96	1.06	0.97	0.97		
۰S.D.	0.03	0.03	0.02	0.02	0.02		

 Table I5
 The toughness values of various types of surface-treated CaCO₃-filled iPP

 composites

Appendix J Determination of Impact Properties of CaCO₃-filled iPP Composites

Table J1 The impact strength values of various types of surface-treated CaCO3-filled iPP composites

	Impact Strength (J/m)						
No.	As-received CaCO ₃	Stearic acid- coated CaCO ₃	Untreated CaCO ₃	Admicellar- treated CaCO ₃ ([SDS] = 200 μM)	Admicellar- treated CaCO ₃ ([SDS] = 500 μM)		
1	31.00	41.00	34.80	32.80	31.10		
2	33.60	39.20	27.60	35.50	40.20		
3	38.10	42.00	30.30	27.40	37.40		
4	37.20	40.00	30.30	33.70	28.40		
5	33.60	39.10	27.50	34.60	35.60		
6	28.30	36.40	33.80	31.90	31.00		
7	38.10	40.00	28.40	36.40	33.70		
8	34.60	40.90	32.00	33.70	37.30		
9	31.90	38.20	25.70	27.40	29.20		
10	31.90	37.30	25.70	28.30	30.10		
11	32.80	39.10	30.20	28.30	38.20		
12	34.60	39.10	32.90	25.70	30.10		
13	29.20	38.20	27.50	31.90	32.80		
14	37.30	45.50	24.80	36.40	32.80		
15	33.70	45.50	35.60	39.10	26.60		
Mean	33.73	40.10	29.81	32.21	32.97		
S.D.	3.04	2.62	3.44	3.99	4.01		

Appendix K Morphology of Fracture Surface of CaCO₃-filled iPP Composites

Figure K1 SEM micrographs of the fractured surface of selected impact test specimens for as-received CaCO₃-filled iPP composites.

Figure K2 SEM micrographs of the fractured surface of selected impact test specimens for untreated CaCO₃-filled iPP composites.

Figure K3 SEM micrographs of the fractured surface of selected impact test specimens for admicellar-treated ([SDS]_{equilibrium} = 200 μ M) CaCO₃-filled iPP composites.

Figure K4 SEM micrographs of the fractured surface of selected impact test specimens for admicellar-treated ([SDS]_{equilibrium} = 500 μ M) CaCO₃-filled iPP composites.

Figure K5 SEM micrographs of the fractured surface of selected impact test specimens for stearic acid-coated CaCO₃-filled iPP composites.

Table K1 The percentage of area values of various types of surface-treated CaCO₃ on iPP matrix of the fractured surface of impact test specimens for 30 wt.% CaCO₃-filled iPP composites

	Percentage of area of CaCO ₃ on iPP matrix (%)						
No.	As-received CaCO ₃	Stearic acid- coated CaCO ₃	Untreated CaCO3	Admicellar- treated CaCO ₃ ([SDS] = 200 μM)	Admicellar- treated CaCO ₃ ([SDS] = 500 μM)		
1	8.51	9.56	7.74	8.93	9.46		
2	8.25	8.97	7.73	8.51	8.34		
3	7.80	9.98	8.42	8.09	9.38		
4	9.00	9.76	7.18	8.34	8.71		
5	8.53	9.78	7.64	8.83	8.59		
6	8.39	9.06	8.78	8.10	9.39		
7	8.47	9.99	7.08	7.78	8.59		
8	7.25	9.40	7.68	9.34	9.20		
Mean	8.28	9.56	7.78	8.49	8.96		
S.D.	0.53	0.39	0.57	0.52	0.45		

•

CURRICULUM VITAE

Name: Mr. Pakpoom Rungruang

Date of Birth: May 30, 1981

Nationality: Thai

University Education:

1999-2002 Bachelor Degree of Science in Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.

Presentation:

 Rungruang, P., Supaphol, P., and Grady, B.P. (2004, December 1-3). Preparation of surface-modified CaCO₃ for isotactic polypropylene by admicellar polymerization technique. Poster presented at <u>International</u> <u>Conference on Smart Materials (SmartMat-'04)</u>, Chiang Mai, Thailand.

.