## CHAPTER I

## BASIC DEFINITIONS AND THEOREMS

Let R be a commutative ring and M an R -module. A mapping D of R into M is said to be a derivation of R into M if it satisfies the following conditions:
(1) $D(x+y)=D(x)+D(y)$ and
(2) $\mathrm{D}(\mathrm{xy})=\mathrm{xD}(\mathrm{y})+\mathrm{yD}(\mathrm{x})$ for all x and y in R .

Immediate consequence is that for every x in R and for every positive integer n we have $D\left(x^{n}\right)=n x^{n-1} D(x)$. In particular, if $R$ has an identity 1 , then $D(1)=0$. If A is a subset of $R$ such that $D(x)=0$ for every x in A , then we say that D is trivial on A or D is an $A$-derivation of $R$ into $M$. A derivation of $R$ is simply a derivation of $R$ into $R$.

Lemma 1.1 ([10]). Let R be an integral domain and K the quotient field of R . Let D be a derivation of R into K . Then D can be extended, in a unique way, to a derivation D'of K. Furthermore, for $\mathrm{x}, \mathrm{y}$ in R and $\mathrm{y} \neq 0$ we have

$$
\begin{equation*}
\mathrm{D}^{\prime}(\mathrm{x} / \mathrm{y})=(\mathrm{yD}(\mathrm{x})-\mathrm{xD}(\mathrm{y})) / \mathrm{y}^{2} . \tag{1.1}
\end{equation*}
$$

Proof. We first show that (1.1) is well-defined. Let $x, x^{\prime}, y, y^{\prime} \in R$ and both $y$ and $y^{\prime} \neq 0$ be such that $x / y=x^{\prime} / y^{\prime}$. So $x y^{\prime}=x^{\prime} y$ and hence

$$
y^{\prime} D(x)-x^{\prime} D(y)=y D\left(x^{\prime}\right)-x D\left(y^{\prime}\right) .
$$

Dividing the above equaiity by $y y^{\prime}$ and then substitute $x / y=x^{\prime} / y^{\prime}$, we get

$$
(y D(x)-x D(y)) / y^{2}=\left(y^{\prime} D\left(x^{\prime}\right)-x^{\prime} D\left(y^{\prime}\right)\right) / y^{\prime 2} .
$$

To show that $\mathrm{D}^{\prime}$ extends D , note that

$$
D^{\prime}(x)=D^{\prime}((x y) / y)=(y D(x y)-(x y) D(y)) / y^{2}=D(x)
$$

That the mapping $\mathrm{D}^{\prime}$ is a derivation is straightforward. Finally the uniqueness of $\mathrm{D}^{\prime}$ follows from

$$
D(x)=D^{\prime}\left(y\left(x^{\prime} y\right)\right)=y D^{\prime}(x / y)+(x / y) D(y)
$$

which shows that relation (1.1) holds for every derivation $\mathrm{D}^{\prime}$ of K which extends D . \#

Example 1.1. Let $R$ be a commutative ring with identity 1. For each $j=1, \ldots, n$, define $\mathrm{D}_{\mathrm{j}}: \mathrm{R}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right] \rightarrow \mathrm{R}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right]$ as follows: if $\mathrm{f}=\sum \mathrm{a}_{\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{n}}} \mathrm{X}_{1}^{\mathrm{k}_{1}} \ldots \mathrm{X}_{\mathrm{n}}^{\mathrm{k}_{\mathrm{n}}}$ in $\mathrm{R}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right]$, then

$$
D_{j}(f)=\sum a_{k_{1}, \ldots, k_{n}} k_{j} X_{1}^{k_{1}} \cdots X_{j}^{k_{j}-1} \ldots X_{n}^{k_{n}}
$$

It is easily checked that $D_{j}$ is an R-derivation of $R\left[X_{1}, \ldots, X_{n}\right]$ and also trivial on $\mathrm{R}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{j}-1}, \mathrm{X}_{\mathrm{j}+1}, \ldots, \mathrm{X}_{\mathrm{n}}\right]$. Note that these $\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{n}}$ are familiar partial derivations.

Example 1.2. Let R be a commutative ring with identity 1 , and D a derivation of R .
Define $D_{0}: R\left[X_{1}, \ldots, X_{n}\right] \rightarrow R\left[X_{1}, \ldots, X_{n}\right]$ as follows
if $\mathrm{f}=\sum \mathrm{a}_{\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{n}}} \mathrm{X}_{1}^{\mathrm{k}_{1} \ldots \mathrm{X}_{\mathrm{n}} \mathrm{k}_{\mathrm{n}} \quad \text { in } \mathrm{R}\left[\mathrm{X}_{1} \ldots, \mathrm{X}_{\mathrm{n}}\right] \text {, then }}$

$$
D_{0}(f)=\sum D\left(a_{k_{1}, \ldots, k_{n}}\right) X_{1}^{k_{1} \ldots X_{n} k_{n}}
$$

Then $\mathrm{D}_{0}$ is a derivation of $\mathrm{R}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right]$

Lemma 1.2 ([10]). Let F be a field, $\mathrm{K}=\mathrm{F}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ a finitely generated extension field of $F, D$ a derivation of $F$ into $K$, and $\left\{u_{1}, \ldots, u_{n}\right\}$ a set of $n$ elements of $K$. For each $f \in F\left[X_{1}, \ldots, X_{n}\right]$, we define

$$
\mathrm{H}_{\mathrm{f}}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)=\mathrm{D}_{\mathrm{o}}(\mathrm{f})+\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{u}_{\mathrm{i}} \mathrm{D}_{\mathrm{i}}(\mathrm{f})
$$

where the $D_{i}$ and $D_{0}$ are derivations of $F\left[X_{1}, \ldots, X_{n}\right]$ defined by

$$
\begin{aligned}
& D_{i}\left(a X_{1}^{k_{1}} \cdots X_{i}^{k_{i}} \cdots X_{n}^{k_{n}}\right)=a X_{1}^{k_{1}} \cdots k_{i} X_{i}^{k_{i}-1} \cdots X_{n}^{k_{n}} \quad \text { and } \\
& D_{0}\left(a X_{1}^{k_{1}} \cdots X_{n}^{k_{n}}\right)=D(a) X_{1}^{k_{1}} \cdots X_{n}^{k_{n}}, \text { respectively. }
\end{aligned}
$$

Then there is a unique derivation $D^{\prime}$ of $K$ extending $D$ and such that $D^{\prime}\left(x_{i}\right)=u_{i}$ for $\mathrm{i}=1, \ldots, \mathrm{n}$ if and only if $\mathrm{H}_{\mathrm{f}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0 \quad$ for all $\mathrm{f} \in \mathrm{F}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right]$ with $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0$.

Proof. $(\Longrightarrow>)$ Assume that there is a unique derivation $D^{\prime}$ of $K$ extending $D$ and such that $\mathrm{D}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{u}_{\mathrm{i}}$ for $\mathrm{i}=1, \ldots, \mathrm{n}$. Then, by induction, we have that for every polynomial $\mathrm{g} \in \mathrm{F}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right]$,

$$
\begin{equation*}
\mathrm{D}^{\prime}\left(\mathrm{g}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right)=\mathrm{H}_{\mathrm{g}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right), \tag{1.2}
\end{equation*}
$$

since (1.2) is true if $g$ is a monomial. By linearity, (1.2) is true for any polynomial $g$. For $\mathrm{f} \in \mathrm{F}\left[\mathrm{X}_{1},,, \mathrm{X}_{\mathrm{n}}\right]$ such that $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0$, we then have

$$
\mathrm{H}_{\mathrm{f}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{D}^{\prime}\left(\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right)=\mathrm{D}^{\prime}(0)=0
$$

$(<\Longrightarrow)$ Assume that $H_{f}\left(x_{1}, \ldots, x_{n}\right)=0$ for all $f \in F\left[X_{1}, \ldots, X_{n}\right]$ such that $f_{( }\left(x_{1}, \ldots, x_{n}\right)=0$. Sefine $D^{\prime}: F\left[x_{1}, \ldots, x_{n}\right] \rightarrow K$ by

$$
\mathrm{D}^{\prime}\left(\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right)=\mathrm{H}_{\mathrm{f}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \quad \text { for all } \mathrm{f} \text { in } \mathrm{F}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]
$$

We will show that $D^{\prime}$ is well -defined. If $g\left(x_{1}, \ldots, x_{n}\right)=h\left(x_{1}, \ldots, x_{n}\right)$, then $(\mathrm{g}-\mathrm{h})\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0$. So $\mathrm{H}_{\mathrm{g}-\mathrm{h}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0$.

Now $\quad 0=H_{g-h}\left(x_{1}, \ldots, x_{n}\right)=H_{g}\left(x_{1}, \ldots, x_{n}\right)-H_{h}\left(x_{1}, \ldots, x_{n}\right)$.
Therefore $H_{g}\left(x_{1}, \ldots, x_{n}\right)=H_{h}\left(x_{1}, \ldots, x_{n}\right)$. Hence $D^{\prime}$ is well- defined.
Also $D^{\prime}\left(x_{i}\right)=u_{i}$ for $i=1, \ldots, n$.
$D^{\prime}$ is a derivation since the mappings $D_{0}$ and $f \rightarrow u_{i} D_{i}(f) \quad(i=1, \ldots, n)$ are derivations of $\mathrm{F}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ into K . By Lemma 1.1, the derivation D ' can be extended to K . \#

Theorem 1.3 ([10]). Let F be a field and let $\mathrm{K}=\mathrm{F}(\mathrm{x})$ be a simple extension of F . Let D be a derivation of F into K .
(1) If $x$ is transcendental over $F$ and if $u$ is any element of $K$, then there exists one and only one derivation $D^{\prime}$ of $K$ extending $D$, such that $D^{\prime}(x)=u$.
(2) If $x$ is separable and algebraic over $F$, then there exists one and only one derivation $D^{\prime}$ of $K$ extending $D$.

Proof. Referring to Lemma 1.2, (1) is obvious because 0 is the only polynomial $f$ in $F[X]$ such that $f(x)=0$. For (2), observe that every polynomial $g \in F[X]$ such that $\mathrm{g}(\mathrm{x})=0$ is a multiple of the minimal polynomial f of x over F , that is, $g(X)=h(X) f(X)$ for some $h$ in $F[X]$. Since $x$ is separable over $F, D_{1} f(x) \neq 0$. Let $u \in K$ be such that $D_{0} f(x)+u D_{1} f(x)=0$.
Hence $\quad H_{g}(x)=\left(D_{0} g\right)(x)+u\left(D_{1}\right)(x)=0$.
By Lemma 1.2, there is a unique derivation $\mathrm{D}^{\prime}$ of K extending D and such that $\mathrm{D}^{\prime}(\mathrm{x})=\mathrm{u}$.

Corollary 1.4 ([10]). If a feld K is a separable, algebraic extension of a field F then every derivation D of F into K can be extended, in one and only one way, to a derivation of K .

Proof. Let D be a derivation of F into K . Tc show the existence of a derivation of K we shall use Zorn's lemma. Let $\mathrm{I}=\{(\mathrm{G}, \mathrm{E}) \mid \mathrm{G}$ is a field with $\mathrm{F} \subseteq \mathrm{G} \subseteq \mathrm{K}$ and E is a derivation of G into K such that $\mathrm{E}(\mathrm{x})=\mathrm{D}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{F}\}$.

The set $I$ is non-empty since ( $F, D$ ) belongs to I. Define a partial ordering on I as follows : Let $\left(\mathrm{G}_{1}, \mathrm{E}_{1}\right),\left(\mathrm{G}_{2}, \mathrm{E}_{2}\right) \in \mathrm{I}$, $\left(\mathrm{G}_{1}, \mathrm{E}_{1}\right)<\left(\mathrm{G}_{2}, \mathrm{E}_{2}\right)$ if and only if $\mathrm{G}_{1} \subseteq \mathrm{G}_{2}$ and $\mathrm{E}_{2}(\mathrm{a})=\mathrm{E}_{1}(\mathrm{a})$ for all a in $\mathrm{G}_{1}$.

Let $\left\{\left(\mathrm{G}_{\alpha}, \mathrm{E}_{\alpha}\right) \mid \alpha \in \Lambda\right\}$ be a chain in I. Let $\mathrm{N}=\bigcup_{\alpha \in \Lambda} \mathrm{G}_{\alpha}$.
Clearly $\bigcup_{\alpha \in \Lambda} G_{\alpha}$ is a subfield of $K$ containing $F$. Define $E: N \rightarrow K$ as follows: Let $x \in N$. There exists $\alpha \in \Lambda$ such that $x \in G_{\alpha}$. Define $E(x)=E_{\alpha}(x)$.

We shall show that E is well-defined. Suppose that there exists $\beta \in \Lambda$ such that $x \in G_{\beta}$; but $\left(G_{\alpha}, E_{\alpha}\right)<\left(G_{\beta}, E_{\beta}\right)$ or $\left(G_{\beta}, E_{\beta}\right)<\left(G_{\alpha}, E_{\alpha}\right)$. Without loss of generality, we assume that $\left(\mathrm{G}_{\alpha}, \mathrm{E}_{\alpha}\right)<\left(\mathrm{G}_{\beta}, \mathrm{E}_{\beta}\right)$. Hence $\mathrm{E}_{\beta}(\mathrm{x})=\mathrm{E}_{\alpha}(\mathrm{x})$.

Next, we show that E is a derivation, let $\mathrm{x}, \mathrm{y} \in \mathrm{N}$. There exist $\alpha_{1}, \alpha_{2}$ such that $x \in \mathrm{G}_{\alpha_{1}}$ and $\mathrm{y} \in \mathrm{G}_{\alpha_{2}}$. We may assume that $\left(\mathrm{G}_{\alpha_{1}}, \mathrm{E}_{\alpha_{1}}\right)<\left(\mathrm{G}_{\alpha_{2}}, \mathrm{E}_{\alpha_{2}}\right)$.

Thus $\mathrm{x}, \mathrm{y} \in \mathrm{G}_{\alpha_{2}}$. Hence

$$
\begin{aligned}
& \mathrm{E}(\mathrm{x}+\mathrm{y})=\mathrm{E}_{\alpha_{2}}(\mathrm{x}+\mathrm{y})=\mathrm{E}_{\alpha_{2}}(\mathrm{x})+\mathrm{E}_{\alpha_{2}}(\mathrm{y})=\mathrm{E}(\mathrm{x})+\mathrm{E}(\mathrm{y}) \\
& \mathrm{E}(\mathrm{xy})=\mathrm{E}_{\alpha_{2}}(\mathrm{xy})=\mathrm{xE}_{\alpha_{2}}(\mathrm{y})+y \mathrm{E}_{\alpha_{2}}(\mathrm{x})=\mathrm{xE}(\mathrm{y})+\mathrm{yE}(\mathrm{x})
\end{aligned}
$$

It is clear that $(N, E)$ is an upper bound for $\left\{\left(G_{\alpha}, E_{\alpha}\right) \mid \alpha \in \Lambda\right\}$.
By Zorn's lemma, there exists a maximal element ( $\mathrm{F}^{\prime}, \mathrm{D}^{\prime}$ ) in I.
If $F^{\prime} \neq K$, then there exists an element $y$ in $K$ such that $y \notin F^{\prime}$. Therefore $F^{\prime}(y)$ is a simple extension field of $\mathrm{F}^{\prime}$. Note that y is separable and algebraic over $\mathrm{F}^{\prime}$.

By Thsorem 1.3, there exists a derivation $\mathrm{D}^{\prime \prime}$ of $\mathrm{F}^{\prime}(\mathrm{y})$ which extends $\mathrm{D}^{\prime}$. This contradicts the maximality of $\left(F^{\prime}, D^{\prime}\right)$ in I. Hence $F^{\prime}=K$.

To prove the uniqueness, let $\mathrm{D}_{1}, \mathrm{D}_{2}$ be derivations of K that extend D . Let $\mathrm{b} \in \mathrm{K}$. There exists the minimal polynomial $g(X)=X^{m}+a_{m-1} X^{m-1}+\cdots+a_{0}$ over $F$ such that $\mathrm{g}(\mathrm{b})=0$. It is easy to verify that, for $\mathrm{j}=1,2$,

$$
D_{j}(g(b))=\left[m b^{m-1}+a_{m-1}(m-1) b^{m-2+\ldots+a_{1}}\right] D_{j}(b)+\sum_{i=0}^{m-1} D_{j}\left(a_{i}\right) b^{i}
$$

Since $D_{1}$ and $D_{2}$ extend $D,\left[m b^{m-1}+\ldots+a_{1}\right]\left(D_{1}-D_{2}\right)(b)=\left(D_{1}-D_{2}\right)(g(b))=0$.
Since $b$ is separable, $m b^{m-1}+\ldots+a_{1} \neq 0$. Then we get $D_{1}(b)=D_{2}(b)$. \#

Lemma 1.5. Let F be a field of characteristic zero with derivation D . Let K be an algebraic extension field of F . Let $\sigma$ be an F -automorphism of K . Then for every derivation $D^{\prime}$ of $K$ which extends $D, D^{\prime}(\sigma(b))=\sigma\left(D^{\prime}(b)\right)$ for all $b$ in $K$.

Proof. Let $\mathrm{b} \in \mathrm{K}$. Let $\mathrm{f}(\mathrm{X})=\mathrm{X}^{\mathrm{n}}+\sum_{\mathrm{i}=0}^{\mathrm{n}-1} \mathrm{a}_{\mathrm{i}} \mathrm{X}^{\mathrm{i}}$ be the minimal polynomial of b over F . For derivation $\mathrm{D}^{\prime}$ of K which extends D , we have

$$
0=D^{\prime}(f(b))=n b^{n-1} D^{\prime}(b)+\sum_{i=0}^{n-1} D\left(a_{i}\right) b^{i}+\sum_{i=0}^{n-1} i a_{i} b^{i-1} D^{\prime}(b)
$$

and so

$$
\begin{equation*}
=\sigma\left(D^{\prime}(f(b))\right)=\left(n \sigma(b)^{n-1}+\sum_{i=0}^{n-1} i_{i} \sigma(b)^{i-1}\right) \sigma\left(D^{\prime}(b)\right)+\sum_{i=0}^{n-1} D\left(a_{i}\right) \sigma(b)^{i} \tag{1.3}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
0=D(\sigma(f(b)))=\left[n \sigma(b)^{n-1}+\sum_{i=0}^{n-1} i_{i} \sigma(b)^{i-1}\right] D^{\prime}(\sigma(b))+\sum_{i=0}^{n-1} D\left(a_{i}\right) \sigma(b)^{i} \tag{1.4}
\end{equation*}
$$

So (1.3)-(1.4) yields, $\left[n \sigma(b)^{n-1}+\sum_{i=0}^{n-1} i a_{i} \sigma(b)^{i-1}\right]\left[\sigma\left(D^{\prime}(b)\right)-D^{\prime}(\sigma(b))\right]=0$.
If $n \sigma(b)^{n-1}+\sum_{i=0}^{n-1} i a_{i} \sigma(b)^{i-1}=0$, then $\sigma\left(n b^{n-1}+\sum_{i=0}^{n-1} i a_{i} b^{i-1}\right)=0$.
Since $\sigma$ is injective, $\quad n b^{n-1}+A \sum_{i=0}^{n-1} i a_{i} b^{i-1}=0 \quad$ which is impossible
Hence $\quad n \sigma(b)^{n-1}+\sum_{i=0}^{n-1} i_{i} \sigma(b)^{i-1} \neq 0$. Therefore $\sigma\left(D^{\prime}(b)\right)=D^{\prime}(\sigma(b))$. \#

Theorem 1.6 ([6], [11]). Let R be a commutative ring and S a subring of R . Then there exists an R -module $\boldsymbol{\Omega}_{\mathrm{R} / \mathrm{S}}$ and a S-derivation d of R into $\Omega_{\mathrm{R} / \mathrm{S}}$ such that for any S-derivation D of R into an R -module M there exists a unique R-homomorphism $\mathrm{f}: \Omega_{\mathrm{R} / \mathrm{S}} \rightarrow \mathrm{M}$ such that $\mathrm{D}=\mathrm{f} \circ \mathrm{d}$. Moreover, the pair $\left(\Omega_{\mathrm{R} / \mathrm{S}}, \mathrm{d}\right)$ is unique up to isomorphism.

The R -module $\Omega_{\mathrm{R} / \mathrm{S}}$ is called the module of differentials of R over S .
The map $\mathrm{d}: \mathrm{R} \rightarrow \Omega_{\mathrm{R} / \mathrm{S}}$ is called the canonical derivation and is denoted by $\mathrm{d}_{\mathrm{R} / \mathrm{S}}$ if necessary.

Proof. See [6], [11].

Theorem 1.7 ([6]). Let F be a field of characteristic zero and K an extension field of F. Let $u_{1}, \ldots, u_{n}, v$ be elements of $K$, with $u_{1}, \ldots, u_{n}$ nonzero, and let $c_{1}, \ldots, c_{n}$ be elements of F that are linearly independent over $\mathbf{Q}$. Then the element

$$
c_{1} \frac{d u_{1}}{u_{1}}+\cdots+c^{c_{n}} \frac{d u_{n}}{u_{n}}+d y
$$

of $\Omega_{\mathrm{K} / \mathrm{F}}$ is zero if and only if each $\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{n}}, \mathrm{v}$ is algebraic over F .

For the proof of this theorem we need the following facts from [6]:
(1) If $\mathrm{F} \subseteq \mathrm{K} \subseteq \mathrm{L}$ are fields of characteristic zero, the natural K - homomorphism $h: \Omega_{\mathrm{K} / \mathrm{F}} \rightarrow \Omega_{\mathrm{L} / \mathrm{F}}$ is injective, where $\mathrm{h}\left(\mathrm{d}_{\mathrm{K} / \mathrm{F}} \mathrm{a}\right)=\mathrm{d}_{\mathrm{L} / \mathrm{F}} \mathrm{a}$ for all $\mathrm{a} \in \mathrm{K}$.
(2) Let $F \subseteq K$ be fields of characteristic zero. If $\left\{x_{1}, \ldots, x_{n}\right\}$ is a transcendence basis of $K$ over $F$, then $\left\{\mathrm{dx}_{1}, \ldots, \mathrm{dx}_{\mathrm{n}}\right\}$ is a basis for $\Omega_{\mathrm{K} / \mathrm{F}}$ over $K$.

Proof. $(<)$ We first show that if $w \in K$ is a!gebraic over $F$ then $d w=0$ in $\Omega_{K / F}$.
Since $w$ is algebraic over $F$, there exists the minimal polynomial
$f(X)=X^{m}+a_{m-1} X^{m-1}+\cdots+a_{0}$ over $F$ such that $f(w)=0$.
Taking the F - derivation $\mathrm{d}: \mathrm{K} \rightarrow \Omega_{\mathrm{K} / \mathrm{F}}$ to the equation $\mathrm{f}(\mathrm{w})=0$, we get

$$
\left(m w^{m-1}+(m-1) a_{m-1} w^{m-2}+\cdots+a_{1}\right) d w=0
$$

Since $\quad m w^{m-1}+(m-1) a_{m-1} w^{m-2}+\ldots+a_{1} \neq 0, \quad d w=0$.
$(\Longrightarrow)$ Assume that $c_{1} \frac{d u_{1}}{u_{1}}+\cdots+c_{n} \frac{d u_{n}}{u_{n}}+d v=0$ in $\Omega_{K / F}$.
Claim that each $u_{1}, \ldots, u_{n}$ is algebraic over $F$. Suppose that there exists $u_{i}$ which is not algebraic over $F$ for some $i \leq n$, say $u_{1}$. Let $F^{\prime}=F\left(u_{1}, \ldots, u_{n}, v\right)$.

Let $x_{1}, \ldots, x_{m}$ be a transcendence basis for $F^{\prime}$ over $F$, with $x_{1}=u_{1}$.
Thus $F^{\prime}$ is algebraic over $F\left(x_{1}, \ldots, x_{m}\right)$ and $\left[F^{\prime}: F\left(x_{1}, \ldots, x_{m}\right)\right]<\infty$.
Let $G=F\left(x_{2}, \ldots, x_{m}\right)$. Hence $F^{\prime}$ is algebraic over $G\left(u_{1}\right)$. Let $E$ be an extension field of $F^{\prime}$ such that $E$ is Galois over $G\left(u_{1}\right)$ and $\left[E: G\left(u_{1}\right)\right]<\infty$. By the fact (1) above, the natural $\mathrm{F}^{\prime}$ - homomorphism $\Omega_{\mathrm{F}^{\prime} / \mathrm{F}} \rightarrow \Omega_{\mathrm{K} / \mathrm{F}}$ is injective, and so

$$
\mathrm{c}_{1} \frac{\mathrm{du}_{1}}{\mathrm{u}_{1}}+\cdots+\mathrm{c}_{\mathrm{n}} \frac{\mathrm{du}_{n}}{\mathrm{u}_{\mathrm{n}}}+\mathrm{dv}=0 \quad \text { in } \Omega_{\mathrm{F}^{\prime} / \mathrm{F}}
$$

Since $\mathrm{F} \subseteq \mathrm{F}^{\prime} \subseteq \mathrm{E}$, by the fact above, the natural $\mathrm{F}^{\prime}$ - homomorphism $\Omega_{\mathrm{F} / \mathrm{F}} \rightarrow \Omega_{\mathrm{E} / \mathrm{F}}$ is injective. Thus

$$
\begin{equation*}
c_{1} \frac{d u_{1}}{u_{1}}+\cdots+c_{n} \frac{d u_{n}}{u_{n}}+d y=0 \text { in } \Omega_{E / F} \tag{1.5}
\end{equation*}
$$

By Theorem 1.3, let $D$ be a derivation of $G\left(u_{1}\right)$ such that $D\left(u_{1}\right)=1$ and $D(a)=0$ for all $a \in G$.

By Corollary 1.4, D can be extended, in one and only one way, to a derivation of E (using the same notation D for the derivation of E ). By Theorem 1.6, there exists a unique E-homomorphism $\mathrm{g} . \Omega_{\mathrm{E} / \mathrm{F}} \rightarrow \mathrm{E}$ such that $\mathrm{D}=\mathrm{g} \circ \mathrm{d}$. Applying g to equation (1.5), we get

$$
\begin{equation*}
\mathrm{c}_{1} \mathrm{D}\left(\mathrm{u}_{1}\right) / \mathrm{u}_{1}+\cdots+\mathrm{c}_{\mathrm{n}} \mathrm{D}\left(\mathrm{u}_{\mathrm{n}}\right) / \mathrm{u}_{\mathrm{n}}+\mathrm{D}(\mathrm{v})=0 \text { in } \mathrm{E} . \tag{1.6}
\end{equation*}
$$

We apply each $\sigma \in$ Aut $\left(E / G\left(u_{1}\right)\right)$ to equation (1.6) and then sum over all $\sigma$ in Aut $\left(\mathrm{E} / \mathrm{G}\left(\mathrm{u}_{1}\right)\right)$ to get

$$
\begin{equation*}
\mathrm{rc}_{1} \mathrm{D}\left(\mathrm{u}_{1}\right) / \mathrm{u}_{1}+\mathrm{c}_{2} \mathrm{D}\left(\mathrm{Nu}_{2}\right) \cdot\left(\mathrm{Nu}_{2}\right)+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{D}\left(N \mathrm{Nu}_{\mathrm{n}}\right) /\left(\mathrm{Nu}_{\mathrm{n}}\right)+\mathrm{D}(\mathrm{Tv})=0 \tag{1.7}
\end{equation*}
$$

where N and T denote the norm and the trace respectively, and r is a positive integer. For each $\mathrm{i}=2,3, \ldots, \mathrm{n}$, we can write elements distinct from $\mathrm{u}_{1}$ of $\mathrm{G}\left[\mathrm{u}_{1}\right]$, the $\alpha_{\mathrm{ij}} \in \mathbf{Z} \backslash\{0\}$ and the $\alpha_{\mathrm{i}} \in \mathbf{Z}$.

$$
T v=q\left(u_{1}\right)+\sum_{i=1}^{\lambda} \sum_{j=1}^{r_{i}} \frac{b_{i j}\left(u_{1}\right)}{\left(h_{i}\left(u_{1}\right)\right)^{j}}
$$

where $\mathrm{q}\left(\mathrm{u}_{1}\right) \in \mathrm{G}\left[\mathrm{u}_{1}\right]$, the $\mathrm{b}_{\mathrm{ij}}\left(\mathrm{u}_{1}\right) \in \mathrm{G}\left[\mathrm{u}_{1}\right]$, the $\mathrm{h}_{\mathrm{i}}\left(\mathrm{u}_{1}\right)$ are monic irreducible elements in $\mathrm{G}\left[\mathrm{u}_{1}\right]$ with $\operatorname{deg} \mathrm{b}_{\mathrm{ij}}<\operatorname{deg} \mathrm{h}_{\mathrm{i}}$. From (1.7),

$$
\begin{aligned}
& \mathrm{rc}_{1}\left(\frac{1}{u_{1}}\right)+\sum_{i=2}^{n} \mathrm{c}_{\mathrm{i}}\left(\alpha_{\mathrm{i}}\left(\frac{1}{u_{1}}\right)+\alpha_{\mathrm{il}} \frac{\mathrm{D}\left(\mathrm{p}_{\mathrm{il}}\right)}{\mathrm{p}_{i 1}}+\cdots+\alpha_{\mathrm{i}} \beta_{\mathrm{i}} \frac{\mathrm{D}\left(\mathrm{p}_{\mathrm{i} \beta_{\mathrm{i}}}\right)}{\mathrm{p}_{i \beta_{i}}}\right) \\
&+\mathrm{D}\left(\mathrm{q}\left(\mathrm{u}_{1}\right)\right)+\sum_{\mathrm{i}=1}^{\lambda} \sum_{j=1}^{\sum_{1}}\left(\frac{\mathrm{D}\left(\mathrm{~b}_{\mathrm{ij}}\right)}{\mathrm{h}_{\mathrm{i}}}-j b_{\mathrm{ij}} \frac{\mathrm{D}\left(\mathrm{~h}_{\mathrm{i}}\right)}{h_{\mathrm{i}}^{j+1}}\right)=0 .
\end{aligned}
$$

Hence

$$
\begin{align*}
& \left(\mathrm{rc}_{1}+\sum_{i=2}^{n} \mathrm{c}_{\mathrm{i}} \alpha_{\mathrm{i}}\right)\left(\frac{1}{u_{1}}\right)=-\sum_{i=2}^{n} \mathrm{c}_{\mathrm{i}}\left(\alpha_{i 1} \frac{\mathrm{D}\left(\mathrm{p}_{\mathrm{il}}\right)}{\mathrm{p}_{\mathrm{il}}}+\cdots+\alpha_{i \beta_{i}} \frac{\mathrm{D}\left(\mathrm{p}_{i \beta_{i}}\right)}{\mathrm{p}_{i \beta_{i}}}\right)  \tag{1.8}\\
& -D\left(q\left(u_{1}\right)\right)-\sum_{i=1}^{\lambda} \sum_{j=1}^{r_{1}}\left(\frac{D\left(b_{i j}\right)}{h_{i}}-j b_{i j} \frac{D\left(h_{i}\right)}{h_{i}^{j+1}}\right) \text {. }
\end{align*}
$$

We may assume that $h_{i} \neq u_{i}$ for all $\mathrm{i} \leq \lambda$ (for if $h_{i}=u_{1}$, then $\mathrm{b}_{\mathrm{ij}} \in \mathrm{G}$ and hence $\mathrm{D}\left(\mathrm{b}_{\mathrm{ij}}\right)=0$ ). From (1.8), comparing the coefficient of $\left(1 / \mathrm{u}_{1}\right)$,

$$
\mathrm{rc}_{1}+\sum_{\mathrm{i}=2}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}} \alpha_{\mathrm{i}}=0
$$

Thus $c_{1}, \ldots, c_{n}$ are linearly dependent over $\mathbf{Q}$, a contradiction. So we have the claim. Since $u_{1}, \ldots, u_{n}$ are algebraic over $F, d u_{i}=0$ for $i=1, \ldots, n$. Hence $d v=0$.

Claim that v is algebraic over F . Suppose not. By the fact (2), the element dv of $\Omega_{\mathrm{F}(\mathrm{v}) / \mathrm{F}}$ is a basis for $\Omega_{\mathrm{F}(\mathrm{v}) / \mathrm{F}}$ over $\mathrm{F}(\mathrm{v})$. Hence $\mathrm{dv} \neq 0$ in $\Omega_{\mathrm{F}(\mathrm{v}) / \mathrm{F}}$. By the fact (1), the natural $\mathrm{F}(\mathrm{v})$ - homomorphism $\quad \Omega_{\mathrm{F}(\mathrm{v}) / \mathrm{F}} \rightarrow \Omega_{\mathrm{K} / \mathrm{F}}$ is injective, hence $\mathrm{dv} \neq 0$ in $\Omega_{\mathrm{K} / \mathrm{F}}$, which is impossible.

By a differential field we mean a field F together with an indexed family $\left\{\left.D_{i}\right|_{i} \in I\right\}$ of derivations of $F$. For brevity, the term "differential field $F$ " is used exclusively, without further notice, for the differential field ( $F,\left\{D_{i} \mid i \in I\right\}$ ), and the term "the given derivations of $F$ " refers to the set $\left\{D_{i} \mid i \in I\right\}$.

A differential extension field of $F$ is an extension field $K$ of $F$ together with a family of derivations $\left\{\left.D_{i}^{\prime}\right|_{i \in I}\right\}$ of $K$ indexed by the same set such that the restriction of each $D_{i}^{\prime}$ to $F$ is $D_{i}$. With no loss of generality, we use the same symbol $D_{i}$ for the derivation $\mathrm{D}_{\mathrm{i}}^{\prime}$

An element c in F is said to be constant if $\mathrm{D}_{\mathrm{i}}(\mathrm{c})=0$ for all $\mathrm{i} \in \mathrm{I}$. The set of all constants of a differential field F is $\bigcap$ ker $\overline{D_{i}}$, which is a subfield of F , and also $i \in I$ called the subfield of constants.

Theorem 1.8 ([6]). Let F be a differential field of characteristic zero, K a differential extension field of F with the same subfield of constants C. For each $\mathrm{i}=1, \ldots, \mathrm{n}$ and $j=1, \ldots, m$ let $c_{i j} \in C$ and let $v_{i}$ be an element of $K$, $u_{j}$ a nonzero element of $K$. Suppose that for each $\mathrm{i}=1, \ldots, \mathrm{n}$ and each given derivation D of K ,

$$
D\left(v_{i}\right)+\sum_{j=1}^{m} c_{i j} D\left(י_{j}\right) / u_{j} \in \in \mathrm{~F} \text {. }
$$

Then either $\operatorname{tr}$ deg. $F\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{m}}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right) / \mathrm{F} \geq \mathrm{n}$ or the n elements of $\Omega_{\mathrm{K} / \mathrm{F}}$ given by $d v_{i}+\sum_{j=1}^{m} c_{i j} \frac{d u_{j}}{u_{j}}, i=1, \ldots, n$, are linearly dependent over $C$.

Before proving the theorem, we quote two facts from [12] and [11].

1) ([12]). Let $\mathrm{f}: \mathrm{F} \rightarrow \mathrm{K}$ be a homomorphism of commutative rings with identity, D a derivation of $K$ such that there exists a map $D_{F}: F \rightarrow F$ satisfying $f$ o $D_{F}=D$ of. Then there exists a unique map $\mathrm{L}_{\mathrm{D}}: \Omega_{\mathrm{K} / \mathrm{F}} \rightarrow \Omega_{\mathrm{K} / \mathrm{F}}$ such that for all $\mathrm{w}, \mathrm{v} \in \Omega_{\mathrm{K} / \mathrm{F}}$ and all $a \in K$ we have

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{D}}(\mathrm{w}+\mathrm{v})=\mathrm{L}_{\mathrm{D}}(\mathrm{w})+\mathrm{L}_{\mathrm{D}}(\mathrm{v}) \\
& \mathrm{L}_{\mathrm{D}}(\mathrm{aw})=(\mathrm{Da}) \mathrm{w}+\mathrm{a}\left(\mathrm{~L}_{\mathrm{D}} \mathrm{w}\right) \quad \text { and } \\
& \mathrm{L}_{\mathrm{D}}(\mathrm{da}) \quad=\mathrm{d}(\mathrm{Da})
\end{aligned}
$$

2) ([11]). Let F be a field of characteristic zero and L a finitely generated extension of $F$. Then $\operatorname{dim} \Omega_{\mathrm{L} / \mathrm{F}}=\operatorname{tr}$. deg. L/F.

Proof. If $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n}$ are algebraic over $F$, then, by Theorem 1.7, $\mathrm{du}_{\mathrm{j}}=0$ for all $j=1, \ldots, m$ and $d v_{i}=0$ for all $i=1, \ldots, n$. Hence

$$
d_{i}+\sum_{j=1}^{m} c_{i j} \frac{d u_{j}}{u_{j}}=0 \text { for all } i=1, \ldots, n,
$$

and the result is trivially true
Assume that there exists one $u_{j}$ or $v_{i}$ which are not algebraic over $F$ for some $\mathrm{j} \leq \mathrm{m}$ and $\mathrm{i} \leq \mathrm{n}$.
Suppose that $d v_{i}+\sum_{j=1}^{m} c_{i j} \frac{d u_{j}}{u_{j}}, i=1, \ldots, n$, are linearly independent over $C$.
For each given derivation $D$ of $K$ and each $i=1, \ldots, n$ we obtain

$$
\begin{aligned}
L_{D}\left(\mathrm{dv}_{\mathrm{i}}+\sum_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{c}_{\mathrm{i}} \frac{d u_{\mathrm{j}}}{u_{j}}\right) & =\mathrm{d}\left(D v_{\mathrm{i}}\right)+\sum_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{~d}\left(\mathrm{c}_{\mathrm{ij}} \frac{D u_{\mathrm{j}}}{u_{\mathrm{j}}}\right) \\
& =\mathrm{d}\left(D v_{\mathrm{i}}+\sum_{\mathrm{j}=1}^{m} \mathrm{c}_{\mathrm{ij}} \frac{D u_{\mathrm{j}}}{u_{\mathrm{j}}}\right)=0
\end{aligned}
$$

Write $w_{i}=\left(d v_{i}+\sum_{j=1}^{m} c_{i j} \frac{d u_{j}}{u_{j}}\right)$ for $i=1, \ldots, n$.
Claim that $w_{1}, \ldots, w_{n}$ are linearly independent over $K$. Suppose not. There are $a_{1}, \ldots, a_{n}$ in $K$, not all zero, such that $a_{1} w_{1}+\cdots+a_{n} w_{n}=0$. Choose $a_{1}, \ldots, a_{n}$ so that the number of nonzero $a_{i}$ 's is minimal, and that one of them, say $a_{1}$, is 1 . For each derivation D of K we get

$$
0=L_{D}\left(a_{1} w_{1}+\cdots+a_{n} w_{n}\right)=\left(D a_{1}\right) w_{1}+\ldots+\left(D a_{n}\right) w_{n}=\left(D a_{2}\right) w_{2}+\ldots+\left(D a_{n}\right) w_{n}
$$

Since the number of nonzero aj's was minimal, we get $\mathrm{Da}_{2}=\ldots=\mathrm{Da}_{\mathrm{n}}=0$.
Hence each $a_{i} \in C$. Therefore $w_{1}, \ldots, w_{n}$ are linearly dependent over $C$, a contradiction. So we have the claim.

Let $\mathrm{F}^{\prime}=\mathrm{F}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{m}}, \mathrm{v}_{\mathrm{l}}, \ldots, \mathrm{v}_{\mathrm{n}}\right)$. Hence $\mathrm{F} \subseteq \mathrm{F}^{\prime} \subseteq \mathrm{K}$.
Claim that the $n$ elements $d v_{i}+\sum_{j=1}^{m} c_{i j} \frac{d u_{j}}{u_{j}}$ of $\Omega_{F^{\prime} / F}$ are linearly independent over $F^{\prime}$.
Let $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}} \in \mathrm{F}^{\prime}$ be such that

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}\left(d v_{i}+\sum_{j=1}^{m} c_{i j} \frac{d u_{j}}{u_{j}}\right)=0 \quad\left(\text { in } \Omega_{F^{\prime} / F}\right) \tag{1.9}
\end{equation*}
$$

Now consider $\Omega_{\mathrm{K} / \mathrm{F}}$ as $\mathrm{F}^{\prime}$ - module. By Theorem 1.6, there exists $\mathrm{F}^{\prime}$ - homomorphism $\mathrm{g}: \Omega_{\mathrm{F}^{\prime} / \mathrm{F}} \rightarrow \Omega_{\mathrm{K} / \mathrm{F}}$ such that $\mathrm{g}^{\circ} \mathrm{d}_{\mathrm{F}^{\prime} / \mathrm{F}}=\mathrm{d}_{\mathrm{K} / \mathrm{F}}$.

Applying g to equation (1.9), we get

$$
\sum_{i=1}^{n} a_{i}\left(d v_{i}+\sum_{j=1}^{m} c_{i j} \frac{d u_{j}}{u_{j}}\right)=0 \quad\left(\text { in } \Omega_{K / F}\right)
$$

By the linear independence of $w_{i}=d v_{i}+\sum_{j=1}^{m} c_{i j} \frac{d u_{j}}{u_{j}} \quad(i=1, \ldots, n)$, we must have $\mathrm{a}_{\mathrm{i}}=0$ for $\mathrm{i}=1, \ldots, \mathrm{n}$. So we have the claim. By the fact 2) $\operatorname{tr} . \operatorname{deg} . \mathrm{F}^{\prime} / \mathrm{F}=\operatorname{dim} . \Omega_{\mathrm{F}^{\prime} / \mathrm{F}} \geq \mathrm{n}$. \#

Theorem 1.9 ([ 6 ]). Let F be a differential field of characteristic zero, K a differential extension field of $F$ with the same subfield of constants, with $K$ algebraic over $F(t)$ for some given $t \in K$. Suppose that $c_{1}, \ldots, c_{n}$ are constants of $F$ that are lineariy independent sver $\mathbf{Q}$, that $u_{1}, \ldots, u_{n}, v$ are elements of $K$, with $u_{1}, \ldots, u_{n}$ nonzero, and that for each given derivation D of K we have

$$
\sum_{i=1}^{n} c_{i} D\left(u_{i}\right) / u_{i}+D(v) \in F
$$

If for each given derivation $D$ of $K$ we have $D(t) \in F$, then $u_{1}, \ldots, u_{n}$ are algebraic over $F$ and there exists a constant $c$ of $F$ such that $v+c t$ is algebraic over $F$. If for each given derivation $D$ of $K$ we have $D(t) / t \in F$, then $v$ is algebraic over $F$ and there are integers $m_{0}, m_{1}, \ldots, m_{n}$, with $m_{0} \neq 0$, such that each $u_{i} m_{0} m_{i} \quad(i=1, \ldots, n)$ is algebraic over $F$.

Proof. If $t$ is algebraic over $F$, then $K$ is algebraic over $F$. So the result is trivially true. Assume that $t$ is transcendental over $F$. By Theorem 1.7, dt $\neq 0$ in $\Omega_{K / F}$.

Case 1. For each given derivation $D$ of $K, D(t) \in F$.
By Theorem 1.8, $\sum_{i=1}^{n} c_{i} \frac{d u_{i}}{u_{i}}+d v$ and $d t$ are linearly dependent over $C$. There exists $c \in C$ such that $\left(\sum_{i=1}^{n} c_{i} \frac{d u_{i}}{u_{i}}+d v\right)+c d t=0$. Thus $\sum_{i=1}^{n} c_{i} \frac{d u_{i}}{u_{i}}+d(v+c t)=0 . B y$

Theorem 1.7, $\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{n}}, \mathrm{v}+\mathrm{ct}$ are algebraic over F .
Case 2. For each given derivation $D$ of $K, D(t) / t \in F$.
By Theorem 1.8, $\sum_{i=1}^{n} c_{i} \frac{d u_{i}}{u_{i}}+d v$ and $\frac{d t}{t}$ are linearly dependent over $C$. There exist $c \in C$ such that $\left(\sum_{i=1}^{n} c_{i} \frac{d u_{i}}{u_{i}}+d v\right)+c \frac{d t}{t}=0$. We have that $c, c_{1}, \ldots, c_{n}$ are linearly dependent over $\mathbf{Q}$ (for if $\mathrm{c}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}$ are linearly independent over $\mathbf{Q}$, then by Theorem 1.7, $\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{n}}, \mathrm{v}, \mathrm{t}$ are algebraic over F ).
So we can write $c=\left(\sum_{i=1}^{n} m_{i} c_{i}\right) / m_{0}$ for some integer $m_{0}, m_{1}, \ldots, m_{n}$ with $m_{0} \neq 0$. Then

$$
c_{l} \frac{d\left(u_{1}^{m_{0}} t^{m_{1}}\right)}{u_{1}^{m_{0}} t^{m_{l}}}+\cdots+c_{n} \frac{d\left(u_{n}^{m_{0}} t^{m_{n}}\right)}{u_{n}^{m_{0}} t^{m_{n}}}+d\left(m_{0} v\right)=0
$$

By Theorem 1.7, each $u_{i}^{m_{0}} t^{m_{i}}$ is algebraic over $F$ and $v$ is algebraic over $F$. \#

