CHAPTER III

STRUCTURE THEOREMS

3.1 A Structure Theorem for Elementary Functions

In 1979 R.H. Risch [8] gave a so-called structure theorem for elementary functions which shows all possible algebraic relationships among a set of elementary functions, which will be described in this section.

Let F be a differential field. Here the expression " $K_{1}=F\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is an elementary extension of $\mathrm{F}^{\prime \prime}$ means that the tower of fields $\mathrm{F}=\mathrm{F}_{0} \subset \mathrm{~F}_{1} \subset \cdots \subset \mathrm{~F}_{\mathrm{n}}=\mathrm{K}_{1}$ with for each $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}-1}\left(\mathrm{t}_{\mathrm{i}}\right)$ and t_{i} satisfies one of the conditions for elementary extension of F .

Let $E=\left\{i \mid t_{i}=\exp \left(a_{i}\right), a_{i} \in \bar{r}_{i-1}, 1 \leq i \leq n\right\}$ and

$$
\mathrm{L}=\left\{\mathrm{i} \mid \mathrm{t}_{\mathrm{i}}=\log \left(\mathrm{a}_{\mathrm{i}}\right), \mathrm{a}_{\mathrm{i}} \in \mathrm{~F}_{\mathrm{i}-1}, \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right\} .
$$

Theorem 3.1.1([8]). Let F be a differential field of characteristic zero, K an elementary exiension of F with the same subfield of constants C. Let $K_{1}=F\left(t_{1}, \ldots, t_{n}\right)$ be an elementary extension of F and $\mathrm{K}=\mathrm{K}_{1}(\mathrm{t})$ for some t in K .
(1) If $t=\log (v)$ is algebraic over K_{1} where v is in K_{1}, then there are $\left\{c_{i} \in C \mid i \in L\right\}$, $\left\{d_{i} \in C \mid i \in E\right\}$ and f in the algebraic closure of F in K such that

$$
\mathrm{t}+\sum_{\mathrm{i} \in \mathrm{~L}} \mathrm{c}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}+\sum_{\mathrm{i} \in \mathrm{E}} \mathrm{~d}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}}=\mathrm{f},
$$

where $t_{i}=\exp \left(a_{i}\right)$ for $i \in E$.
(2) If $t=\exp (v)$ is algebraic over K_{1} where v is in K_{1}, then there are $\left\{n_{i} \in \mathbf{Z} \mid i \in L\right\}$, $\left\{m_{i} \in \mathbf{Z} \mid i \in E\right\}, n \in \mathbf{Z} \backslash\{0\}$ and g in the algebraic closure of F in K such that

$$
t^{n}\left(\prod_{i \in L} a_{i}^{n_{i}}\right)\left(\prod_{i \in E} t_{i}^{m_{i}}\right)=g
$$

where $t_{i}=\log \left(a_{i}\right)$ for $i \in L$.

Proof. The proof is analogous to the proof of Lemma S.1.4 in Chapter V.

3.2 A Structure Theorem for Exponential and Primitive Functions

This section describes M. Rothstein and B.D. Caviness's generalization of a structure theorem of Risch [8]/in the case that the ground field is the field of constants.

Let F be a differential field and K a differential extension field of F . An element x in K is called a primitive over F if $\mathrm{D}(\mathrm{x}) \in \mathrm{F}$ for each given derivation D of K.

Let $t \in K$ be primitive ovor F, t is a simple logaritim over F if there exist $\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{m}}$ in F such that for some constant c in $\mathrm{K}, \mathrm{t}+\mathrm{c} \in \mathrm{F}\left(\log \left(\mathrm{u}_{1}\right), \ldots, \log \left(\mathrm{u}_{\mathrm{m}}\right)\right)$. We say that t is nonsimple if it is not a simple logarithm over F.

We call K a generalized log-explicit extension of F if there exists a finite tower of fields $\mathrm{F}=\mathrm{F}_{0} \subset \mathrm{~F}_{1} \subset \cdots \subset \mathrm{~F}_{\mathrm{n}}=\mathrm{K}$ such that for each $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}-1}\left(\mathrm{t}_{\mathrm{i}}\right)$ and one of the following holds:
(i) t_{i} is algebraic over $\mathrm{F}_{\mathrm{i}-1}$,
(ii) $\mathrm{t}_{\mathrm{i}}=\exp (\mathrm{u})$ for some u in $\mathrm{F}_{\mathrm{i}-1}$,
(iii) $\mathrm{t}_{\mathrm{i}}=\log (\mathrm{u})$ for some nonzero u in $\mathrm{F}_{\mathrm{i}-1}$,
(iv) t_{i} is primitive and nonsimple over $\mathrm{F}_{\mathrm{i}-1}$.

Remark. The differential extension field K of F equipped with cases (i) - (iii) is an elementary extension of F .

Here the expression " $\mathrm{K}=\mathrm{C}\left(\mathrm{t}_{\mathrm{l}}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$ is a generalized \log - explicit extension field of C, where C is the field of constants of $K^{\prime \prime}$ means that K is a differential field and the tower of fields $\mathrm{C}=\mathrm{K}_{0} \subset \mathrm{~K}_{1} \subset \cdots \subset \mathrm{~K}_{\mathrm{n}}=\mathrm{K}$ with for each $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$, $\mathrm{K}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}-\mathrm{l}}\left(\mathrm{t}_{\mathrm{i}}\right)$ and t_{i} satisfying one of the conditions of generalized log-explicit extension field.

Let $L=\left\{i \mid t_{i}=\log \left(a_{i}\right), a_{i} \in K_{i-1}, 1 \leq i \leq n\right\}$,

$$
E=\left\{i \mid t_{i}=\exp \left(a_{i}\right), a_{i} \in K_{i-1}, 1 \leq i \leq n\right\} .
$$

Rothstein and Caviness's structure theorem for exponential and primitive functions is as follows:

Theorem 3.2.1 ([9$]$). Let $K=C\left(t_{1}, \ldots, t_{n}\right)$ be a generalized log-explicit extension field of C, where C is the subfield of constants of K having characteristic zero. If $u \neq 0$ and v are members of K such that $D(u) / u=D(v)$ for each given derivation D of K, then there exist rational numbers $\mathrm{r}_{\mathrm{j}}, \mathrm{s}_{\mathrm{j}}$ for all $\mathrm{i} \in \mathrm{L}, \mathrm{j} \in \mathrm{E}$ and a constant $\mathrm{c} \in \mathrm{C}$ such that

$$
v=c+\sum_{i \in L} r_{i} t_{i}+\sum_{j \in E} s_{j} a_{j},
$$

where $\mathrm{t}_{\mathrm{j}}=\exp \left(\mathrm{a}_{\mathrm{j}}\right)$ for $\mathrm{j} \in \mathrm{E}$.

Proof. The proof is by induction on m, the number of primitive and nonsimple among $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}$. For $\mathrm{m}=0$, then $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}} \in \mathrm{C}$ and hence $\mathrm{K}=\mathrm{C}$. So $\mathrm{v} \in \mathrm{C}$. Let $m \geq 1$. Assume that the theorem is true for all smaller values of m. Among the $m t_{i} ' s$ that are primitive and nonsimple with respect to $\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{i}-1}\right)$ and let t_{M} be the one with the largest subscript. For notational simplicity, let $\mathrm{F}=\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{M}-1}\right)$ if $\mathrm{M}>1$ or $\mathrm{F}=\mathrm{C}$ if $M=1$ and $t=t_{M}$. There are $u_{1}, \ldots, u_{p}, v_{1}, \ldots, v_{p} \in K$, with u_{1}, \ldots, u_{p} nonzero such
that
(i) $\mathrm{D}\left(\mathrm{u}_{\mathrm{i}}\right) / \mathrm{u}_{\mathrm{i}}=\mathrm{D}\left(\mathrm{v}_{\mathrm{i}}\right)$ for $\mathrm{i}=1, \ldots, \mathrm{p}$ and all derivations D of K ,
(ii) precisely one member of each pair $\left(u_{i}, v_{i}\right)$ is algebraic over $F\left(t, u_{1}, \ldots, u_{i-1}, v_{1}, \ldots, v_{i-1}\right)$ if $\mathrm{i}>1$ or algebraic over $\mathrm{F}(\mathrm{t})$ if $\mathrm{i}=1$,
(iii) one member of each pair $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right)$ will be t_{j} for some $\mathrm{M}+\mathrm{l} \leq \mathrm{j} \leq \mathrm{n}$,
(iv) K is algebraic over $\mathrm{F}\left(\mathrm{t}, \mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{p}}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{p}}\right)$.

Note that $D(t) \in F$,

$$
\begin{aligned}
& D\left(u_{i}\right) / u_{i}-D\left(v_{i}\right)=0 \in F, \text { for } i=1, \ldots, p, \\
& D(u) / u-D(v)=0 \in F,
\end{aligned}
$$

and that tr.deg. $\mathrm{F}\left(\mathrm{t}, \mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{p}}, \mathrm{u}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{p}}, \mathrm{v}\right) / \mathrm{F}<\mathrm{p}+2$. Then by Theorem 1.8, the elements $d t, d u_{1} / u_{1}-d v_{1}, \ldots, d u_{p} / u_{p}-d v_{p}$, and $d u / u-d v$ of $\Omega_{K / F}$ are linearly dependent over C.

In fact $d u / u-d v$ depends linearly on $d t$ and the $d u_{i} / u_{i}-d v_{i}$. We can therefore find corstants $\gamma_{1}, \ldots, \gamma_{p}, \gamma$ such that

$$
\begin{equation*}
\mathrm{d} u / \mathrm{u}-\mathrm{d} v+\sum_{\mathrm{i}=1}^{\mathrm{p}} \gamma_{\mathrm{i}}\left(\mathrm{du}_{\mathrm{i}} / \mathrm{u}_{\mathrm{i}}-\mathrm{dv} \mathrm{v}_{\mathrm{i}}\right)+\gamma \mathrm{dt}=0 . \tag{3.1}
\end{equation*}
$$

Let $\mathrm{c}_{\mathrm{O}}=1, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{q}}$ be a basis for the vector space over \mathbf{O} spanned by $\left\{\gamma_{\mathrm{O}}=1, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{\mathrm{p}}\right\}$ and write $\gamma_{\mathrm{i}}=\sum_{\mathrm{j}=0}^{\mathrm{q}} \mathrm{n}_{\mathrm{ij}} \mathrm{c}_{\mathrm{j}}$ with each $\mathrm{n}_{\mathrm{ij}} \in \mathbf{Q}$.
Replacing each c_{j} by $\mathrm{c}_{\mathrm{j}} /$ least common denominator of $\left\{\mathrm{n}_{\mathrm{ij}} \mid \mathrm{i}=0,1, \ldots, \mathrm{p}, \mathrm{j}=0,1, \ldots, \mathrm{q}\right\}$, if necessary, we can assume $n_{i j} \in \mathbf{Z}$. This means, in particular,

$$
1=\gamma_{\mathrm{O}}=\sum_{j=0}^{q} n_{\mathrm{Oj}} c_{j}=n_{\mathrm{OO}} c_{0} ; \text { that is } n_{\mathrm{O} 1}=n_{02}=\ldots=n_{\mathrm{Oq}}=0
$$

We can write (3.1) as

$$
y_{j}=n_{\mathrm{oj}} \mathrm{v}+n_{1 j} v_{1}+\cdots+n_{\mathrm{pj}} \mathrm{v}_{\mathrm{p}},
$$

and we have that $D\left(z_{j}\right) / z_{j}=D\left(y_{j}\right)$ for all derivations D of K and

$$
\sum_{j=0}^{q} c_{j} d z_{j} / z_{j}-d\left(\sum_{j=0}^{q} c_{j} y_{j}-\gamma t\right)=0
$$

Since $c_{0}, c_{1}, \ldots, c_{q}$ are linearly independent over \mathbf{Q}, we have, by Theorem 1.7, that each z_{j} and $w=\sum_{j=0}^{q} c_{j} y_{j}-\gamma t$ are algebraic over F.
First of all γ must be zero. To see this, note that $\sum_{j=0}^{q} c_{j}\left(D\left(z_{j}\right) / z_{j}-D\left(y_{j}\right)\right)=0$ and kence $\gamma \mathrm{D}(\mathrm{t})=\sum_{\mathrm{j}=0}^{\mathrm{q}} \mathrm{c}_{\mathrm{j}} \mathrm{D}\left(\mathrm{z}_{\mathrm{j}}\right) / z_{\mathrm{j}}-\mathrm{D}(\mathrm{w})$ for all derivations D of $\mathrm{K} . \mathrm{z}_{\mathrm{O}}, \ldots, \mathrm{z}_{\mathrm{q}}$ and w are algebraic over F, so taking σ an element of the Galois group of $F^{\prime}=F\left(z_{0}, z_{1}, \ldots, z_{q}, w\right)$ over F and summing over all σ and dividing by $\left[F^{\prime}\right.$. $\left.F\right]$ gives

$$
\gamma \mathrm{D}(\mathrm{t})=\sum_{\mathrm{j}=0}^{\mathrm{q}} \frac{\mathrm{c}_{\mathrm{j}}}{\left[\mathrm{~F}^{\prime}: \mathrm{F}\right]} \frac{\mathrm{D}\left(\mathrm{~N}\left(\mathrm{z}_{\mathrm{j}}\right)\right)}{\mathrm{N}\left(\mathrm{z}_{\mathrm{j}}\right)}+\mathrm{D}\left(\frac{\mathrm{~T}(\mathrm{w})}{\left[\mathrm{F}^{\prime}: \mathrm{F}\right]}\right)
$$

where T and N denote trace and norm respectively.

If $\gamma \neq 0$, then t would be simple logarithm over F , contrary to the hypotheses.

In particular, we can conclude that $\sum_{j=0}^{q} c_{j} y_{j}=w$ is algebraic over F.
Now, let $K^{\prime}=F\left(z_{0}, \ldots, z_{q}, w, y_{1}, \ldots, y_{q}\right) \subset K . F\left(z_{0}, \ldots, z_{q}, w\right)$ is an algebraic extension of F and K^{\prime} is an extension of $F\left(z_{0}, \ldots, z_{q}, w\right)$.
Furthermore $y_{o}=w-\sum_{j=0}^{q} c_{j} y_{j} \in K^{\prime}$ and $D\left(z_{0}\right) / z_{0}=D\left(y_{o}\right)$ for all derivations D of K. K^{\prime} has one less primitive and nonsimple than K so by the induction hypothesis, we have

$$
\begin{equation*}
y_{0}=c+\sum_{i \in L^{\prime}} r_{i} t_{i}+\sum_{i \in E^{\prime}} s_{i} a_{i}+\sum_{i=1}^{q} \overline{r_{i}} y_{i} \tag{3.2}
\end{equation*}
$$

where $E^{\prime}=\left\{i \mid t_{i}=\exp \left(a_{i}\right), a_{i} \in F_{i-1}\right.$ and $\left.t_{i} \in F\right\}$,

$$
L^{\prime}=\left\{i \mid t_{i}=\log \left(a_{i}\right), a_{i} \in F_{i-1} \text { and } t_{i} \in F\right\}
$$

and $\mathrm{r}_{\mathrm{i}}, \mathrm{s}_{\mathrm{i}}, \overline{\mathrm{r}_{\mathrm{i}}}$ are rational numbers.
Now recall

Substitute the expressions (3.3) in (3.2) and note that each v_{i} either equals some t_{i} with $i \in L$ or equals some a_{i} where $t_{i}=\exp \left(a_{i}\right), i \in E$, to obtain

$$
v=c+\sum_{i \in L} \hat{r}_{i} t_{i}+\sum_{i \in E} \hat{s}_{i} a_{i}
$$

where $\hat{\mathrm{r}}_{\mathrm{i}}$ and $\hat{\mathrm{s}}_{\mathrm{i}}$ are rational numbers.
This completes the procf.

