CHAPTER IV

EXTENSIONS OF LIOUVILLE'S THEOREM

4.1 Statements of the Main Theorems

Definition 4.1.1. Let F be a differential field with derivation D and subfield of constants C. Let A and B be finite indexing sets and let

$$
\begin{aligned}
& \mathcal{E}=\left\{G_{\alpha}\left(\exp R_{\alpha}(Y)\right) \mid \alpha \in A\right\}, \\
& \mathcal{L}=\left\{H_{\beta}\left(\log S_{\beta}(Y)\right) \mid \beta \in B\right\},
\end{aligned}
$$

be sets of expressions where:
(1) $G_{\alpha}, R_{\alpha}, H_{\beta}, S_{\beta}$ are in $C(Y)$ for all $\alpha \in A, \beta \in B$,
(2) for all $\beta \in B$, if $H_{\beta}(Y)=P_{\beta}(Y) / Q_{\beta}(Y)$ with P_{β}, Q_{β} in $C[Y]$ and $Q_{\beta} \neq 0$, then $\operatorname{deg} P_{\beta} \leq \operatorname{deg} Q_{\beta}$.

We say that a differential extension K of F is an Ei-extension of F if there exists a finite tower of fields $\mathrm{F}=\mathrm{F}_{0} \subset \mathrm{~F}_{1} \subset \cdots \subset \mathrm{~F}_{\mathrm{n}}=\mathrm{K}$ such that for each $\mathrm{i}=1, \ldots, \mathrm{n}$, $F_{i}=F_{i-1}\left(t_{i}\right)$ and one of the following hoids:
(i) t_{i} is algebraic over $\mathrm{F}_{\mathrm{i}-1}$
(ii) $\mathrm{t}_{\mathrm{i}}=\exp (\mathrm{u})$ for some u in $\mathrm{F}_{\mathrm{i}-1}$,
(iii) $\mathrm{t}_{\mathrm{i}}=\log (\mathrm{u})$ for some nonzero u in $\mathrm{F}_{\mathrm{i}-1}$,
(iv) for some $\alpha \in \mathrm{A}$, there are u and nonzero v in $\mathrm{F}_{\mathrm{i}-1}$ such that
$\mathrm{D}\left(\mathrm{t}_{\mathrm{i}}\right)=\mathrm{D}(\mathrm{u}) \mathrm{G}_{\alpha}(\mathrm{v})$ where $\mathrm{v}=\exp \mathrm{R}_{\alpha}(\mathrm{u})$,
(for brevity, $\left.t_{i}=\int G_{\alpha}\left(\exp R_{\alpha}(u)\right) D(u)\right)$,
(v) for some $\beta \in B$, there are u, v in F_{i-1} such that
$D\left(t_{i}\right)=D(u) H_{\beta}(v)$ where $v=\log S_{\beta}(u)$ and $S_{\beta}(u) \neq 0$,
(for brevity, $\mathrm{t}_{\mathrm{i}}=\int \mathrm{H}_{\beta}\left(\log \mathrm{S}_{\beta}(\mathrm{u})\right.$)D(u)),
(vi) for some $\alpha \in \mathrm{A}$, there are nonzero u, v in $\mathrm{F}_{\mathrm{i}-1}$ such that
$D\left(\mathrm{t}_{\mathrm{i}}\right)=(\mathrm{D}(\mathrm{u}) / \mathrm{u}) \mathrm{G}_{\alpha}(\mathrm{v})$ where $\mathrm{v}=\exp _{\alpha}(\mathrm{u})$, (for brevity, $\left.\mathrm{t}_{\mathrm{i}}=\int \mathrm{G}_{\alpha}\left(\exp \mathrm{R}_{\alpha}(\mathrm{u})\right) \mathrm{D}(\mathrm{u}) / \mathrm{u}\right)$,
(vii) for some $\beta \in B$, there are nonzero u and v in F_{i-1} such that $D\left(\mathrm{t}_{\mathrm{i}}\right)=(\mathrm{D}(\mathrm{u}) / \mathrm{u}) \mathrm{H}_{\beta}(\mathrm{v})$ where $\mathrm{v}=\log \mathrm{S}_{\beta}(\mathrm{u})$ and $\mathrm{S}_{\beta}(\mathrm{u}) \neq 0$, (for brevity, $\mathrm{t}_{\mathrm{i}}=\int \mathrm{H}_{\beta}\left(\log \mathrm{S}_{\beta}(\mathrm{u})\right.$)D(u)/u).

Remark. The differential extension K of F equipped with cases (i)-(v) is an ع\&- elementary extension of F .

Example. Let \mathbf{C} be the field of complex numbers and let $\mathrm{F}=\mathbf{C}(\mathrm{x})$ be the set of rational functions with coefficients in \mathbf{C}. Then \mathbf{F} is a differential field under the usual derivation $\mathrm{D}=\mathrm{d} / \mathrm{dx}$.

Let $\quad \mathrm{G}(\mathrm{Y})=\mathrm{Y}, \mathrm{R}(\mathrm{Y})=\mathrm{Y}, \mathrm{H}(\mathrm{Y})=1 /(\mathrm{Y}+2), \mathrm{S}(\mathrm{Y})=\mathrm{Y}+1$.
Let $\varepsilon=\{G(\exp R(Y))\}=\{\exp Y\}$ and

$$
\mathcal{L}=\{\mathrm{H}(\log \mathrm{~S}(\mathrm{Y}))\}=\{1 /(\log (\mathrm{Y}+1)+2)\} .
$$

Hence $K=F\left(\exp (x), \log (x+1), \int(D(x) / x) \exp (x), \int(D(x) / x)(1 /(\log (x+1)+2))\right)$ is an Ei-extension of F , since

$$
\mathrm{F}=\mathrm{F}_{\mathrm{o}} \subset \mathrm{~F}_{1}=\mathrm{F}_{\mathrm{o}}\left(\mathrm{t}_{1}\right) \subseteq \mathrm{F}_{2}=\mathrm{F}_{1}\left(\mathrm{t}_{2}\right) \subset \mathrm{F}_{3}=\mathrm{F}_{2}\left(\mathrm{t}_{3}\right) \subset \mathrm{F}_{4}=\mathrm{F}_{3}\left(\mathrm{t}_{4}\right)=\mathrm{K}
$$

where $t_{1}=\exp (x), t_{2}=\log (x+1)$,

$$
t_{3}=\int(D(x) / x) \exp (x) \text { or } D\left(t_{3}\right)=(D(x) / x) \exp (x)
$$

and

$$
t_{4}=j(D(x) / x)(1 /(\log (x+1)+2)) \text { or } D\left(t_{4}\right)=(D(x) / x)(1 /(\log (x+1)+2)) .
$$

Our first main theorem reads:

Theorem 4.1.2. Let F be a differential field of characteristic zero with derivation D and an algebraically closed subfield of constants C . Let $\gamma \in \mathrm{F}$. Assume that there exist an Ei- extension K of F whose subfield of constants is C and $y \in K$ such that $\mathrm{D}(\mathrm{y})=\gamma$. Then there exist
(1) $b_{i} \in C, v_{0} \in F$ and $v_{i} \in F \backslash\{0\}$ for all $i \in J$,
(2) $\mathrm{c}_{\mathrm{i} \alpha}, \mathrm{d}_{\mathrm{i} \alpha} \in \mathrm{C}$, nonzero elements $\mathrm{w}_{\mathrm{i} \alpha}, \mathrm{x}_{\mathrm{i} \alpha}$ algebraic ovè F for all $\mathrm{i} \in \mathrm{I}_{\alpha}$, $\alpha \in \mathrm{A}$,
(3) $e_{i} \beta, f_{i} \beta \in C$, nonzero elements $y_{i} \beta, z_{i}$ algebraic over F for all $i \in J_{\beta}, \beta \in B$, such that

$$
\begin{aligned}
\gamma= & D\left(v_{0}\right)+\sum_{i \in J} b_{i} D\left(v_{i}\right) / v_{i} \\
& +\sum_{\alpha \in A} \sum_{i \in I_{\alpha}}\left[c_{i \alpha} D\left(w_{i \alpha}\right)+d_{i \alpha} D\left(w_{i \alpha}\right) / w_{i \alpha}\right] G_{\alpha}\left(x_{i \alpha}\right) \\
& +\sum_{\beta \in B} \sum_{i \in J_{\beta}}\left[e_{i \beta} D\left(y_{i \beta}\right)+f_{i \beta} D\left(y_{i \beta}\right) / y_{i \beta}\right] H_{\beta}\left(z_{i \beta}\right)
\end{aligned}
$$

where A, B, J, I_{α} and J_{β} are all finite indexing sets,

$$
\begin{aligned}
& x_{i \alpha}=\exp R_{\alpha}\left(w_{i \alpha}\right) \quad \text { for all } i \in I_{\alpha}, \alpha \in A, \text { and } \\
& z_{i \beta}=\log S_{\beta}\left(y_{i} \beta\right) \text { and } S_{\beta}\left(y_{i \beta}\right) \neq 0 \text { for all } i \in J_{\beta}, \beta \in B .
\end{aligned}
$$

Definition 4.1.3. Let F be a differential field with derivation D and the subfield of constants C. We say that a differential extension K of F is a Gamma extension of F if there exists a finite tower of fields $F=F_{0} \subset F_{1} \subset \cdots \subset F_{n}=K$ such that for each $\mathrm{i}, \mathrm{l} \leq \mathrm{i} \leq \mathrm{n}, \mathrm{F}_{1}=\mathrm{F}_{\mathrm{i}-1}\left(\mathrm{t}_{\mathrm{i}}\right)$ anci one oí the following holds:
(i) t_{i} is algebraic over $\mathrm{F}_{\mathrm{i}-1}$
(ii) $\mathrm{t}_{\mathrm{i}}=\exp (\mathrm{u})$ for some u in $\mathrm{F}_{\mathrm{i}-1}$,
(iii) $\mathrm{t}_{\mathrm{i}}=\log (\mathrm{u})$ for some nonzero u in $\mathrm{F}_{\mathrm{i}-1}$,
(iv) there are $\mathrm{G} \in \mathrm{C}(\mathrm{Y})$, u and nonzero v in $\mathrm{F}_{\mathrm{i}-1}, \mathrm{r} \in \mathrm{Q}$ with $-\mathrm{l} \leq \mathrm{r} \leq 1$ such that $D\left(t_{i}\right)=D\left(u^{r}\right) G(v)$ where $v=\exp (u)$.

Remarks.

(1) The differenitial extension K of F equipped with cases (i)-(iii) is an elementary extension of F .
(2) In case (iv), if $r=1$ then such Gamma extension is also an Ei - extension.

The definition of Gamma extension contains the Gamma function which is defined as follows: Let \mathbf{C} be the field of complex numbers. Then $\mathbf{C}(x)$ is a differential field with the usual derivation $D=d / d x$.

The Gamma function is defined by

$$
\Gamma(x)=\int \exp (-x) D\left(x^{r}\right) \text { where } r \in \mathbf{Q}, 0<r \leq 1
$$

Our second main theorem reads:
Theorem 4.1.4. Let F be a differential field of characteristic zero with derivation D and an algebraically closed subfield of constants C. Let $\gamma \in F$. Assume that there exist a Gamma extension K of F whose subfield of constants is C and $y \in K$ such that $\mathrm{D}(\mathrm{y})=\gamma$. Then there exist
(1) $b_{i} \in C, v_{o}$ algebraic over F and nonzero elements v_{i} algebraic over F for all $i \in I$,
(2) $c_{i} \in C, r_{i} \in Q$ with $-1 \leq r_{i} \leq 1$, nonzero elements w_{i}, x_{i} algebraic over F and $G_{i} \in C(Y)$ for all $i \in J$,
such that

$$
\gamma=D\left(v_{o}\right)+\sum_{i \in I} b_{i} D\left(v_{i}\right) / v_{i}+\sum_{i \in J} c_{i} D\left(w_{i}^{r_{i}}\right) G_{i}\left(x_{i}\right),
$$

where I, J are finite indexing sets, $D\left(x_{i}\right) / x_{i}=D\left(w_{i}\right)$ for all $i \in J$.

4.2 Preliminary Lemmas

We first state some results that are used in the proofs of the last two lemmas in this section.

Lemma 4.2.1 ([13,pp. 221-223]). Let F be a field and n an integer ≥ 2. Let $\mathrm{a} \in \mathrm{F}$, $a \neq 0$. Assume that for all prime numbers p such that $p \mid n$ we have $a \notin F^{P}$, and if $\left.4\right|_{n}$ then $a \notin-4 F^{4}$. Then $X^{n}-a$ is irreducible in $F[X]$.

Lemma 4.2.2 ([14, pp. 163-164]). Let D be a unique factorization domain with quotient field F and f a primitive polynomial of positive degree in $\mathrm{D}[\mathrm{X}]$. Then f is irreducible in $\mathrm{D}[\mathrm{X}]$ if and only if f is irreducible in $\mathrm{F}[\mathrm{X}]$.

Lemma 4.2.3 ([7]). Let F be a field containing the algebraic closure of the rationals and let X and Y be indeterminates. Let $\mathrm{A}(\mathrm{Y})$ and $\mathrm{B}(\mathrm{Y}) \neq 0$ be relatively prime elements of $F[Y]$. Furthermore, assume A / B is not an $n^{\text {th }}$ power in $F(Y)$ for any positive integer $n \geq 2$. Then the polynomial $B(Y) X^{m}-A(Y)$ is irreducible in $F(X)[Y]$ for any positive integer m.

Proof. Let $m \in Z^{+}$. By Lemma 4.2.1, $B X^{m}-A=B\left(X^{m}-(A / B)\right)$ is irreducible in $\mathrm{F}(\mathrm{Y})[\mathrm{X}]$. By Lemma 4.2.2, $\mathrm{BX}^{\mathrm{m}}-\mathrm{A}$ is irreducible in $\mathrm{F}[\mathrm{Y}][\mathrm{X}]$ and so irreducible in $\mathrm{F}[\mathrm{X}][\mathrm{Y}]$. Again by Lemma 4.2.2, $\mathrm{BX}^{m}-\mathrm{A}$ is irreducible in $\mathrm{F}(\mathrm{X})[\mathrm{Y}]$. \#

Lemma 4.2.4 ([7]). Let F be a field, X and Y indeterminates, and $A(Y)$ and $B(Y)$ relatively prime elements of $\mathrm{F}[\mathrm{Y}]$. If a and b are elements of F with $\mathrm{a} \neq 0$, then $A(Y)-(a X+b) B(Y)$ is irreducible in $F(X)[Y]$.

Proof. This again follnws from two applications of Lemma 4.2.2 and the fact that $a X+b-A(Y) / B(Y)$ is irreducible in $F(Y)[X]$.

4.3 Ei-Extension

Before proving the nain lcmma, it will be convenient to define the following term:

If f and g are pclynomials over a field F, and $g \neq 0$, then there exist unique polynomials $q(X)=a_{0}+a_{1} X+\ldots+a_{n} X^{n}$ and $r(X)$ over F such that $\mathrm{f}(\mathrm{X}) / \mathrm{g}(\mathrm{X})=\mathrm{q}(\mathrm{X})+\mathrm{r}(\mathrm{X}) / \mathrm{g}(\mathrm{X})$, where $\mathrm{r}(\mathrm{X})=0$ or $\operatorname{deg} \mathrm{r}(\mathrm{X})<\operatorname{deg} \mathrm{g}(\mathrm{X})$. Call the unique element a_{0} the head of f / g.

Lemma 4.3.1. Let F be a differential field of characteristic zero with derivation D and C its algebraically closed subfield of constants. Let A and B be finite indexing sets and assume that $G_{\alpha}, R_{\alpha}, H_{\beta}, S_{\beta}$ are in $C(Y)$ for all $\alpha \in A, \beta \in B$. Let t be transcendental over F such that $D(t)=D(u) t$ for some u in F. Let E be a finite algebraic differential extension of $F(t)$ with extended derivation D. Assume that the subfield of constants of E is C . Let $\gamma \in \mathrm{F}$. Assume that there exist
(1) $b_{i} \in C, v_{0} \in E, v_{i} \in E \backslash\{0\}$ for all $i \in J$,
(2) $\mathrm{c}_{\mathrm{i} \alpha}, \mathrm{d}_{\mathrm{i} \alpha} \in \mathrm{C}, \mathrm{w}_{\mathrm{i} \alpha}, \mathrm{x}_{\mathrm{i} \alpha} \in \mathrm{E} \backslash\{0\}$ for all $\mathrm{i} \in \mathrm{I}_{\alpha}, \alpha \in \mathrm{A}$,
(3) $\mathrm{e}_{\mathrm{i} \beta}, \mathrm{f}_{\mathrm{i} \beta} \in \mathrm{C}, \mathrm{y}_{\mathrm{i}} \beta, \mathrm{z}_{i} \beta \in \mathrm{E} \backslash\{0\}$ for all $i \in \mathrm{~J}_{\beta}, \beta \in \mathrm{B}$,.
such that

$$
\begin{aligned}
\gamma= & D\left(v_{0}\right)+\sum_{i \in J} b_{i} D\left(v_{i}\right) / v_{i} \\
& +\sum_{\alpha \in A} \sum_{i \in I_{\alpha}}\left[c_{i \alpha} D\left(w_{i \alpha}\right)+d_{i \alpha} D\left(w_{i \alpha}\right) / w_{i \alpha}\right] G_{\alpha}\left(x_{i \alpha}\right) \\
& +\sum_{\hat{\rho} \in B} \sum_{i \in J_{\beta}}\left[\mathrm{e}_{i} \beta \mathrm{D}\left(\mathrm{y}_{\mathrm{i}} \beta\right)+\mathrm{f}_{i \beta} \mathrm{D}\left(\mathrm{y}_{i} \beta\right) / \mathrm{y}_{\mathrm{i} \beta}\right] \mathrm{H}_{\beta}\left(\mathrm{z}_{\mathrm{i}} \beta\right),
\end{aligned}
$$

where $\mathrm{J}, \mathrm{I}_{\alpha}$ and J_{β} are all finite indexing sets,

$$
\begin{aligned}
& x_{i \alpha}=\exp R_{\alpha}\left(w_{i \alpha}\right) \quad \text { for all } i \in I_{\alpha}, \alpha \in A, \text { and } \\
& z_{i \beta}=\log S_{\beta}\left(y_{i} \beta\right) \text { and } S_{\beta}\left(y_{i} \beta\right) \neq 0 \text { for ail } i \in J_{\beta}, \beta \in B .
\end{aligned}
$$

Then there exist
(1) $\bar{b}_{i} \in C, \bar{v}_{0} \in F, \bar{v}_{i} \in F^{\prime}\{\{0\}$ for all $i \in \bar{J}$,
(2) $\bar{c}_{i \alpha}, \bar{d}_{i \alpha} \in C$, nonzero elements $\bar{w}_{i \alpha}, \bar{x}_{i \alpha}$ algebraic over F for all $\mathrm{i} \in \overline{\mathrm{I}}_{\alpha}, \alpha \in \overline{\mathrm{A}}$,
(3) $\overline{\mathrm{e}}_{\mathrm{i} \beta}, \overline{\mathrm{f}}_{\mathrm{i} \beta} \in \mathrm{C}$, nonzero elements $\bar{y}_{i \beta}, \overline{\mathrm{z}}_{\mathrm{i} \beta}$ algebraic over F for all $\mathrm{i} \in \overline{\mathrm{J}}_{\beta}, \beta \in \overline{\mathrm{B}}$,
such that

$$
\begin{aligned}
\gamma= & D\left(\bar{v}_{0}\right)+\sum_{i \in \overline{\mathrm{~J}}} \overline{\mathrm{~b}}_{\mathrm{i}} \mathrm{D}\left(\overline{\mathrm{v}}_{\mathrm{i}}\right) / \overline{\mathrm{v}}_{\mathrm{i}} \\
& +\sum_{\alpha \in \overline{\mathrm{A}}} \sum_{i \in \overline{\mathrm{I}}_{\alpha}}\left[\overline{\mathrm{c}}_{i \alpha} \mathrm{D}\left(\overline{\mathrm{w}}_{i \alpha}\right)+\overline{\mathrm{d}}_{i \alpha} \mathrm{D}\left(\overline{\mathrm{w}}_{i \alpha}\right) / \bar{w}_{i \alpha}\right] \mathrm{G}_{\alpha}\left(\overline{\mathrm{x}}_{i \alpha}\right) \\
& +\sum_{\beta \in \overline{\mathrm{B}}} \sum_{i \in \bar{J}_{\beta}}\left[\overline{\mathrm{e}}_{\mathrm{i} \beta} \mathrm{D}\left(\overline{\mathrm{y}}_{i \beta}\right)+\overline{\mathrm{f}}_{\mathrm{i} \beta} \mathrm{D}\left(\overline{\mathrm{y}}_{i \beta}\right) / \overline{\mathrm{y}}_{i \beta}\right] \mathrm{H}_{\beta}\left(\overline{\mathrm{z}}_{i \beta}\right)
\end{aligned}
$$

where $\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{J}}, \overline{\mathrm{I}}_{\alpha}$ and $\overline{\mathrm{J}}_{\beta}$ are all finite indexing sets,

$$
\begin{aligned}
& \bar{x}_{i \alpha}=\exp R_{\alpha}\left(\bar{w}_{i \alpha}\right) \text { for all } i \in \overline{\mathrm{I}}_{\alpha}, \alpha \in \overline{\mathrm{A}} \text { and } \\
& \bar{z}_{i \beta}=\log S_{\beta}\left(\bar{y}_{i \beta}\right) \text { and } S_{\beta}\left(\bar{y}_{i \beta}\right) \neq 0 \text { for all } i \in \overline{\mathrm{~J}}_{\beta}, \beta \in \overline{\mathrm{B}}
\end{aligned}
$$

Proof. Part I. Assume F is algebraically closed.
Step 1. We may assume that for all α in $A, R_{\alpha} \notin C$; for if $R_{\alpha_{0}} \in C$ for some $\alpha_{0} \in A$, then for each $i \in I_{\alpha_{0}}, G_{\alpha_{0}}\left(x_{i \alpha_{0}}\right) \in C$.
Thius $\sum_{i \in \in_{\alpha_{0}}}\left(c_{i \alpha_{0}} \mathrm{D}\left(\mathrm{w}_{\mathrm{i} \mu_{0}}\right)+\mathrm{d}_{\mathrm{i} \alpha_{0}} \mathrm{D}\left(\mathrm{w}_{\mathrm{i} \alpha_{0}}\right)!\mathrm{w}_{\mathrm{i} \alpha_{0}}\right) \mathrm{G}_{\alpha_{0}}\left(\mathrm{x}_{\mathrm{i} \alpha_{0}}\right)$ is of formı
$D\left(v_{0}\right)+\sum b_{i} D\left(v_{i}\right) / v_{i}$ which can be included into the first two terms of γ.
Step 2. For each $\alpha \in A, i \in I_{\alpha}$ we have $D\left(x_{i \alpha}\right)=D\left(R_{\alpha}\left(w_{i \alpha}\right)\right) x_{i \alpha}$, then by Theorem 1.9 we have that $R_{\alpha}\left(w_{i \alpha}\right) \in F$ and there exist rational integers $r_{i \alpha}$ and $p_{i \alpha}$ in F such that $x_{i \alpha}=p_{i \alpha} t^{r_{i \alpha}}$. Since $R_{\alpha}\left(w_{i \alpha}\right) \in F$ and F is algebraically closed, $w_{i \alpha} \in F$.

Step 3. For each $\beta \in B, i \in J \beta$, we have $D\left(z_{i} \beta\right)=D\left(S_{\beta}\left(y_{i} \beta\right)\right) / S_{\beta}\left(y_{i \beta}\right)$.
We may assume that for all β in $B, S_{\beta}(Y)$ is not an $m^{\text {th }}$ power in $C(Y)$ for any positive integer m. If some $S_{\beta}(Y)=\left(\bar{S}_{\beta}(Y)\right)^{m}$ then
$D\left(z_{i} \beta\right)=D\left(S_{\beta}\left(y_{i} \beta\right)\right) / S_{\beta}\left(y_{i} \beta\right)=m D\left(\bar{S}_{\beta}\left(y_{i} \beta\right)\right) / \bar{S}_{\beta}\left(y_{i} \beta\right)$. For this case we could
replace $S_{\beta}(Y)$ by $\bar{S}_{\beta}(Y)$. By Theorem 1.9, we have that $z_{i} \beta \in F$ and there exist rational integers $s_{i} \beta$ and $q_{i} \beta$ in F such that $S_{\beta}\left(y_{i} \beta\right)=q_{i} \beta t^{s_{i} \beta}$.

Note that we can arrange so that $\mathrm{r}_{\mathrm{i} \alpha}$ and $\mathrm{s}_{\mathrm{i}} \beta$ are actually integers. To see this, let $\mathrm{r}_{\mathrm{i} \alpha}=\mathrm{g}_{\mathrm{i} \alpha} / \mathrm{m}$ and $\mathrm{s}_{\mathrm{i} \beta}=\mathrm{k}_{\mathrm{i} \beta} / \mathrm{m}$, where $\mathrm{g}_{\mathrm{i} \alpha}, \mathrm{k}_{\mathrm{i} \beta}$ and m are integers.

Let $\bar{t}=t^{1 / m}$. Hence $D(\bar{t})=D(u / m) \bar{t}$ and $F \subset F(\bar{t}) \subset E(\bar{t})$. If we replace E by $E(\bar{t})$ and t by \bar{t}, we still have fields of the appropriate form and furthermore, $\mathrm{x}_{\mathrm{i} \alpha}=\mathrm{p}_{\mathrm{i} \alpha}(\overline{\mathrm{t}})^{\mathrm{g}_{i \alpha}}$, and $\mathrm{S}_{\beta}\left(\mathrm{y}_{\mathrm{i}} \beta\right)=\mathrm{q}_{\mathrm{i}}(\overline{\mathrm{t}})^{\mathrm{k}_{\mathrm{i}}}$, where $\mathrm{g}_{i \alpha}$ and $\mathrm{k}_{\mathrm{i} \beta}$ are integers. We shall use the old notation but from now on assume that $r_{i \alpha}$ and $s_{i} \beta$ are integers.

Step 4. Let K be an extension of E such that K is Galois over $F(t)$ and let σ be an element of the Galois group of K over $F(t)$. Then

$$
\begin{aligned}
\gamma=\sigma(\gamma)= & \mathrm{D}\left(\sigma \mathrm{v}_{0}\right)+\sum_{i \in \mathrm{~J}} \mathrm{~b}_{\mathrm{i}} \mathrm{D}\left(\sigma \mathrm{v}_{\mathrm{i}}\right) /\left(\sigma \mathrm{v}_{\mathrm{i}}\right) \\
& +\sum_{\alpha \in \mathrm{A}} \sum_{i \in \mathrm{I}_{\alpha}}\left[\mathrm{c}_{i \alpha} \mathrm{D}\left(\mathrm{w}_{\mathrm{i} \alpha}\right)+\mathrm{d}_{\mathrm{i} \alpha} \mathrm{D}\left(\mathrm{w}_{\mathrm{i} \alpha}\right) / \mathrm{w}_{\mathrm{i} \alpha}\right] \mathrm{G}\left(\mathrm{x}_{\mathrm{i} \alpha}\right) \\
& +\sum_{\beta \in \mathrm{B}} \sum_{\mathrm{i} \in \mathrm{~J}_{\beta}}\left[\mathrm{e}_{\mathrm{i} \beta} \mathrm{D}\left(\sigma \mathrm{y}_{\mathrm{i} \beta}\right)+\mathrm{f}_{\mathrm{i} \beta} \mathrm{D}\left(\sigma \mathrm{y}_{\mathrm{i} \beta}\right) /\left(\sigma \mathrm{y}_{\mathrm{i}} \beta\right)\right]_{\mathrm{H}} \mathrm{H}_{\beta}\left(\mathrm{z}_{\mathrm{i}} \beta\right) .
\end{aligned}
$$

Summing over all σ yields, for some M in \mathbf{Z},

$$
\begin{equation*}
\mathrm{M} \gamma=\mathrm{D}\left(\mathrm{Tv}_{0}\right)+\sum_{\mathrm{i} \in \mathrm{~J}} \mathrm{~b}_{\mathrm{i}} \mathrm{D}\left(\mathrm{Nv} v_{\mathrm{i}}\right) /\left(\mathrm{Nv} v_{\mathrm{i}}\right)+\mathrm{M} \varepsilon_{1}+\varepsilon_{2} \tag{4.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \varepsilon_{1}=\sum_{\alpha \in A} \sum_{i \in I_{\alpha}}\left[c_{i \alpha} D\left(w_{i \alpha}\right)+d_{i \alpha} D\left(w_{i \alpha}\right) / w_{i \alpha}\right] G\left(x_{i \alpha}\right), \\
& \varepsilon_{2}=\sum_{\beta \in B} \sum_{i \in J_{\beta}}\left[e_{i \beta} D\left(\mathrm{Ty}_{i} \beta\right)+f_{i \beta} D\left(N y_{i} \beta\right) /\left(N y_{i} \beta\right)\right] H_{\beta}\left(z_{i} \beta\right),
\end{aligned}
$$

and T and N denote the trace and norm respectively. We now consider the head of the right hand side of (4.1).

Step 5. Write $\mathrm{Tv}_{\mathrm{O}}=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{h}_{\mathrm{i}} \mathrm{t}^{\mathrm{i}}+\Sigma \Sigma\left(\mathrm{a}_{\mathrm{ij}} /\left(\mathrm{t}-\mathrm{t}_{\mathrm{i}}\right) \mathrm{j}\right)$,
where $h_{i}, a_{i j}$ and t_{i} are in F. Hence the head of $D\left(T_{0}\right)$ is $D\left(h_{0}\right)$.
Step 6. For each $i \in J$ write $~ N v_{i}=k_{i} \prod_{j=1}^{\alpha_{i}}\left(t-\mu_{i}\right)^{n_{i j}}$
where the $\alpha_{i} \in Z^{+}$,the $k_{i} \in F \backslash\{0\}$, the $\mu_{i} \in F$ and the $n_{i j} \in \mathbf{Z}$.
Therefore the head of $\sum_{i \in J} b_{i} D\left(N v_{i}\right) /\left(N v_{i}\right)$ is $\sum_{i \in J} b_{i} D\left(k_{i}\right) / k_{i}+\sum_{i \in J} \sum_{j=1}^{\alpha_{i}} b_{i} n_{i j} D(\mu)$.
Step 7. We find the head of ε_{1}
For each $i \in I_{\alpha}, \alpha \in A$, recall $x_{i \alpha} \in p_{i \alpha} t^{r_{i \alpha}}$. If $r_{i \alpha}=0$, then $x_{i \alpha} \in F$ and hence $G_{\alpha}\left(x_{i \alpha}\right) \in F$. Assume that $/ r_{i \alpha} \neq 0$. Let $d_{\alpha 0}$ be the head of $G_{\alpha}(Y)$. Hence $d_{\alpha 0} \in C$. So the head of $G_{\alpha}\left(x_{i \alpha}\right)$ is $d_{\alpha 0}$

Therefore the head of ε_{1} is

$$
\begin{aligned}
& \sum_{\mathrm{r}_{\mathrm{i} \alpha}=0}\left[\mathrm{c}_{\mathrm{i} \alpha} \mathrm{D}\left(\mathrm{w}_{\mathrm{i} \alpha}\right)+\mathrm{d}_{\mathrm{i} \mathrm{\alpha}} \mathrm{D}\left(\mathrm{w}_{\mathrm{i} \alpha}\right) / \mathrm{w}_{\mathrm{i} \alpha}\right] \mathrm{G}_{\alpha}\left(\mathrm{x}_{\mathrm{i} \alpha}\right) \\
& +\sum_{\mathrm{r}_{\mathrm{i} \alpha} \neq 0} \mathrm{~d}_{\mathrm{c} 0}\left[\mathrm{c}_{\mathrm{i} \alpha} \mathrm{D}\left(\mathrm{w}_{\mathrm{i} \alpha}\right)+\mathrm{d}_{\mathrm{i} \alpha} \mathrm{D}\left(\mathrm{w}_{\mathrm{i} \alpha}\right) / \mathrm{w}_{\mathrm{i} \alpha}\right] .
\end{aligned}
$$

Step 8. We find the head of ε_{2}. For each $i \in J_{\beta}, \beta \in B$, recall $S_{\beta}\left(y_{i} \beta\right)=q_{i} \beta t^{s_{i \beta}}$
Case 8.1. If $s_{i} \beta=0$, then $S_{\beta}\left(y_{i} \beta\right) \in F$. Since F is algebraically closed and $y_{i} \beta$ is algebraic over $F, y_{i \beta} \in F$ Thus $T_{y} \beta=M y_{i \beta}$ and $N y_{i} \beta=y_{i \beta}^{M}$

So $D\left(T y_{i} \beta\right)=M D\left(y_{i} \beta\right)$ and $D\left(N y_{i} \beta\right) / N y_{i} \beta=M D\left(y_{i} \beta / y_{i} \beta\right.$.
Case 8.2. Assume that $\mathrm{s}_{\mathrm{i}} \beta \neq 0$. Calculate the trace and norm of the $\mathrm{y}_{\mathrm{i}} \beta$. Write $\mathrm{S}_{\beta}(\mathrm{Y})=\mathrm{A}_{\beta}(\mathrm{Y}) / \mathrm{B}_{\beta}(\mathrm{Y})$ where $\mathrm{A}_{\beta}, \mathrm{B}_{\beta} \in \mathrm{C}[\mathrm{Y}], \mathrm{B}_{\beta} \neq 0$ and A_{β} and B_{β} are relatively prime in $C[Y]$. Each $y_{i} \beta$ satisfies $q_{i} \beta^{t^{s_{i}}} B_{\beta}(Y)-A_{\beta}(Y)=0$.
By Lemma 4.2.3, $\mathrm{q}_{\mathrm{i} \beta} \mathrm{t}^{\mathrm{s}_{\mathrm{i}} \beta} \mathrm{B}_{\beta}(\mathrm{Y})-\mathrm{A}_{\beta}(\mathrm{Y})$ is irreducible civi $\mathrm{F}(\mathrm{t})$. So the trace and norm can be read of from its coefficients. The coefficients of $\mathrm{q}_{\mathrm{i}} \mathrm{b}^{\mathrm{s}_{\mathrm{i} \hat{\gamma}}} \mathrm{B}_{\beta}(\mathrm{Y})-\mathrm{A}_{\beta}(\mathrm{Y})$
are all of the form $\delta_{i \beta} q_{i \beta} t^{\mathrm{s}_{\mathrm{i}} \beta}+\varepsilon_{i \beta}$ where $\delta_{i \beta}, \varepsilon_{i \beta} \in \mathrm{C}$.
Dividing by the leading coefficient, we get

$$
\begin{aligned}
& \mathrm{Ty}_{i} \beta=\mathrm{m}_{i \beta}\left(\frac{\delta_{i \beta} q_{i \beta} t^{s_{i} \beta}+\varepsilon_{i \beta}}{\mu_{i \beta} q_{i \beta} t^{s_{i \beta}}+v_{i \beta}}\right), \quad \text { and } \\
& N y_{i \beta}=\left(\frac{\omega_{i \beta} q_{i} \beta t^{s_{i} \beta}+\zeta_{i \beta}}{\mu_{i \beta} q_{i \beta} t^{s_{i} \beta}+v_{i \beta}}\right)^{m_{i \beta}},
\end{aligned}
$$

where $m_{i \beta} \in Z^{+}, \delta_{i \beta}, \mu_{i \beta}, \omega_{i \beta}, \varepsilon_{i \beta}, \nu_{i \beta}, \zeta_{i \beta} \in C$. Hence

$$
D\left(T y_{i \beta}\right)=\frac{m_{i \beta}\left(\delta_{i \beta} v_{i \beta}-\varepsilon_{i \beta} \mu_{i \beta}\right)\left(D\left(q_{i \beta}\right)+q_{i \beta} s_{i \beta} D(u)\right) t^{s_{i \beta}}}{\left(\mu_{i \beta} q_{i \beta} t^{s_{i} \beta}+v_{i \beta}\right)^{2}}
$$

and

$$
\frac{D\left(N y_{i \beta}\right)}{N y_{i \beta}}=\frac{m_{i \beta}\left(\omega_{i \beta} v_{i \beta}-\zeta_{i \beta} \mu_{i \beta}\right)\left(D\left(q_{i \beta}\right)+q_{i \beta} s_{i \beta} D(u)\right) t^{s_{i \beta}}}{\left(\omega_{\left.i \beta q_{i} \beta t^{s_{i}}+\zeta_{i \beta}\right)}\right)\left(u_{\left.i \beta q_{i} \beta t^{s_{i \beta}}+v_{i \beta}\right)} ~\right.}
$$

Thus the head of $D\left(T_{y} \beta\right)$ is 0 and the head of $\frac{D\left(N y_{i} \beta\right)}{N y_{i} \beta}$ is $\bar{m}_{i \beta} D\left(z_{i \beta}\right)$ where $\bar{m}_{i} \beta \in \mathbf{Z}$.

Hence $\quad \sum_{s_{i \beta} \neq 0} f_{i} \bar{m}_{i \beta} D\left(z_{i} \beta\right) H_{\beta}\left(z_{i} \beta\right)$ is of form $D\left(\hat{v}_{0}\right)+\sum \hat{b}_{i} D\left(\hat{v}_{i}\right) / \hat{v}_{i}$ where $\hat{\mathrm{v}}_{0} \in \mathrm{~F}$ and $\hat{\mathrm{v}}_{\mathrm{i}} \in \mathrm{F} \backslash\{0\}, \hat{\mathrm{b}}_{\mathrm{i}} \in \mathrm{C}$.

Therefore the head of ε_{2} is

$$
M \sum_{s_{i} \beta=0}\left[e_{i \beta} D\left(y_{i} \beta\right)+f_{i} B\left(y_{i} \beta\right) / y_{i} \beta\right] H_{\beta}\left(z_{i} \beta\right)+D\left(\hat{v}_{0}\right)+\sum \hat{b}_{i} D\left(\hat{v}_{i}\right) / \hat{v}_{i} .
$$

Step 9. We conclude that the head of the right hand side of (4.1) is

$$
\begin{aligned}
& D\left(\bar{v}_{0}\right)+\sum \bar{b}_{i} D\left(\bar{v}_{i}\right) / \bar{v}_{i} \\
& +M \sum \sum\left[c_{i \alpha} D\left(w_{i \alpha}\right)+d_{i \alpha} D\left(w_{i \alpha}\right) / w_{i \alpha}\right] G_{\alpha}\left(w_{i \alpha}\right) \\
& +M \Sigma \Sigma\left[e_{i \beta} D\left(y_{i \beta}\right)+f_{i \beta} D\left(y_{i \beta}\right) / y_{i \beta}\right] H_{\beta}\left(z_{i \beta}\right)
\end{aligned}
$$

where $\overline{\mathrm{v}}_{0} \in \mathrm{~F}, \overline{\mathrm{v}}_{\mathrm{i}} \in \mathrm{F} \backslash\{0\}, \overline{\mathrm{b}}_{\mathrm{i}} \in \mathrm{C}$.
Then comparing the head of (4.1) and dividing by M, we get the correct sum of γ.

Part II. Assume that F is not algebraically closed.
Let $\overline{\mathrm{F}}$ be an algebraic closure of F .
Let $S=\left\{v_{0}\right\} \cup\left\{v_{i} \mid i \in J\right\} \cup\left\{w_{i \alpha} \nmid i \in I_{\alpha}, \alpha \in A\right\} \cup\left\{x_{i \alpha} \mid i \in I_{\alpha}, \alpha \in A\right\} \cup$

$$
\left\{y_{i} \beta \mid i \in J_{\beta}, \beta \in B\right\} \cup\left\{z_{i \beta} \mid i \in J_{\beta}, \beta \in B\right\} .
$$

Hence $\overline{\mathrm{F}}(\mathrm{t}, \mathrm{S})$ is algebraic over $\overline{\mathrm{F}}(\mathrm{t})$.
Now $\overline{\mathrm{F}}(\mathrm{t}, \mathrm{S}), \overline{\mathrm{F}}(\mathrm{t}), \overline{\mathrm{F}}$ and F have the same subfield of constants C . (See Appcndix A for details). By Part I there exist
(1) $\bar{b}_{i} \in C, \bar{v}_{0} \in \vec{F}, \bar{v}_{i} \in \bar{F} \backslash\{0\}$ for all $i \in \bar{J}$,
(2) $\overline{\mathrm{c}}_{i \alpha}, \overline{\mathrm{~d}}_{1 \alpha} \in \mathrm{C}, \bar{w}_{1 \alpha}, \bar{x}_{i \alpha} \in \overline{\mathrm{~F}} \backslash\{0\}$, for all $\mathrm{i} \in \overline{\mathrm{I}}_{\alpha}, \alpha \in \overline{\mathrm{A}}$, (3) $\overline{\mathrm{e}}_{\mathrm{i} \beta}, \overline{\mathrm{f}}_{\mathrm{i} \beta} \in \mathrm{C}, \overline{\mathrm{y}}_{\mathrm{i} \beta}, \overline{\mathrm{z}}_{\mathrm{i} \beta} \in \overline{\mathrm{F}} \backslash\{0\}$, for all $\mathrm{i} \in \overline{\mathrm{J}}_{\beta}, \beta \in \overline{\mathrm{B}}$,
such that

$$
\begin{align*}
& \gamma=D\left(\bar{v}_{0}\right)+\sum_{i \in \bar{J}} \overline{\mathrm{~b}}_{i} \mathrm{D}\left(\overline{\mathrm{v}}_{\mathrm{i}}\right) / \bar{v}_{i} \tag{4.2}\\
& +\sum_{\alpha \in \overline{\mathrm{A}}} \sum_{i \in \overline{\mathrm{I}}_{\alpha}}\left[\overline{\mathrm{c}}_{i \alpha} \mathrm{D}\left(\bar{w}_{i \alpha}\right)+\overline{\mathrm{d}}_{i \alpha} \mathrm{D}\left(\bar{w}_{i \alpha}\right) / \bar{w}_{i \alpha}\right] \mathrm{G}_{\alpha}\left(\overline{\mathrm{x}}_{i \alpha}\right) \\
& +\sum_{\beta \in \overline{\mathrm{B}}} \sum_{i \in \bar{J}_{\beta}}\left[\overline{\mathrm{e}}_{i \beta} \mathrm{D}\left(\overline{\mathrm{y}}_{i \beta}\right)+\overline{\mathrm{f}}_{i \beta} \mathrm{D}\left(\overline{\mathrm{y}}_{i \beta}\right) / \bar{y}_{i \beta}\right] \mathrm{H}_{\beta}\left(\bar{z}_{i \beta}\right),
\end{align*}
$$

where $\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{J}}, \overline{\mathrm{I}}_{\alpha}$ and $\overline{\mathrm{J}}_{\beta}$ are all finite indexing sets,

$$
\begin{aligned}
& \bar{x}_{i \alpha}=\exp R_{\alpha}\left(\bar{w}_{i \alpha}\right) \text { for all } i \in \bar{I}_{\alpha}, \alpha \in \bar{A} \text { and } \\
& \bar{z}_{i \beta}=\log S_{\beta}\left(\bar{y}_{i \beta}\right) \text { and } S_{\beta}\left(\bar{y}_{i \beta}\right) \neq 0 \text { for all } i \in \bar{J}_{\beta}, \beta \in \bar{B} .
\end{aligned}
$$

Let K be a finite Galois extension of F containing
$\left\{\overline{\mathrm{v}}_{0}\right\} \cup\left\{\overline{\mathrm{v}}_{\mathrm{i}} \mid \mathrm{i} \in \overline{\mathrm{J}}\right\} \cup\left\{\overline{\mathrm{w}}_{\mathrm{i} \alpha}, \overline{\mathrm{x}}_{\mathrm{i} \alpha} \mid \mathrm{i} \in \overline{\mathrm{I}}_{\alpha, \alpha}, \overline{\mathrm{A}}\right\} \cup\left\{\overline{\mathrm{y}}_{\mathrm{i} \beta}, \overline{\mathrm{z}}_{\mathrm{i} \beta} \mid \mathrm{i} \in \overline{\mathrm{J}}_{\beta}, \beta \in \overline{\mathrm{B}}\right\}$
Applying σ an element of the Galois group of K over F in (4.2) and then summing over all σ, we get, for some M in \mathbf{Z},

$$
\begin{aligned}
\mathrm{M} \gamma= & \mathrm{D}\left(\mathrm{~T} \overline{\mathrm{v}}_{0}\right)+\sum_{i \in \bar{J}_{\mathrm{J}}} \overline{\mathrm{~b}}_{\mathrm{i}} \mathrm{D}\left(\mathrm{~N} \bar{v}_{\mathrm{i}}\right) /\left(\mathrm{N} \bar{v}_{\mathrm{i}}\right) \\
& +\sum_{\sigma} \sum_{\alpha \in \overline{\mathrm{A}}} \sum_{i \in \overline{\mathrm{~J}}_{\alpha}}\left[\overline{\mathrm{c}}_{i \alpha} \mathrm{D}\left(\sigma \bar{w}_{i \alpha}\right)+\mathrm{d}_{i \alpha} \mathrm{D}\left(\sigma \bar{w}_{i \alpha}\right) /\left(\sigma \bar{w}_{i \alpha}\right)\right] \mathrm{G}_{\alpha}\left(\sigma \overline{\mathrm{x}}_{i \alpha}\right) \\
& +\sum_{\sigma} \sum_{\beta \in \overline{\mathrm{B}}} \sum_{i \in \bar{J}_{\beta}}\left[\overline{\mathrm{e}}_{i \beta} \mathrm{D}\left(\sigma \overline{\mathrm{y}}_{i \beta}\right)+\overline{\mathrm{f}}_{i \beta} \mathrm{D}\left(\sigma \bar{y}_{i \beta}\right) /\left(\sigma \bar{y}_{i \beta}\right)\right] \mathrm{H}_{\beta}\left(\sigma \overline{\mathrm{z}}_{\mathrm{i} \beta}\right),
\end{aligned}
$$

where T and N denote the trace and norm respectively.
Note that $\mathrm{D}\left(\sigma \overline{\mathrm{x}}_{i \alpha}\right)=\mathrm{D}\left(\mathrm{R}_{\alpha}\left(\sigma \bar{w}_{i \alpha}\right)\right) /\left(\sigma \bar{x}_{i \alpha}\right)$ for all $\mathrm{i} \in \overline{\mathrm{I}}_{\alpha}, \alpha \in \overline{\mathrm{A}}$ and $D\left(\sigma \bar{z}_{i \beta}\right)=D\left(S_{\beta}\left(\sigma \bar{y}_{i \beta}\right)\right) /\left(S_{\beta}\left(\sigma \bar{y}_{i \beta}\right)\right.$ and $S_{\beta}\left(\sigma \bar{y}_{i \beta}\right) \neq 0$ for all $i \in \bar{J}_{\beta}, \beta \in \bar{B}$. Since T_{0} and $\mathrm{N} \overline{\mathrm{v}}_{\mathrm{i}}$ aie in F , this yields the final conclusion of the lemma. \#

Lemma 4.3.2. Let F be a differential field of characteristic zero with derivation D and C being its algebraically closed subfield of constants. Let A and B be finite indexing sets and assume that
(1) $G_{\alpha}, R_{\alpha}, H_{\beta}, S_{\beta}$ are in $C(Y)$ for all $\alpha \in A, \beta \in B$,
(2) for all $\beta \in B$, if $H_{\beta}(Y)=P_{\beta}(Y) / Q_{\beta}(Y)$ with P_{β}, Q_{β} in $C[Y]$ and $Q_{\beta} \neq 0$, then $\operatorname{deg} P_{\beta} \leq \operatorname{deg} Q_{\beta}$.

Let t be transcendental over F satisfying one of the following conditions:
(i) $D(t)=D(u) / u$ for some nonzero u in F,
(ii) $\mathrm{D}(\mathrm{t})=\mathrm{D}(\mathrm{u}) \mathrm{G}_{\alpha}(\mathrm{v})$ for some α in A and some u, v in $\mathrm{F}, \mathrm{v} \neq 0$ such that $\mathrm{v}=\exp \mathrm{R}_{\alpha}(\mathrm{u})$,
(iii) $D(t)=D(u) H_{\beta}(v)$ for some β in B and some u, v in F such that $\mathrm{v}=\log \mathrm{S}_{\beta}(\mathrm{u})$ and $\mathrm{S}_{\beta}(\mathrm{u}) \neq 0$,
(iv) $\mathrm{D}(\mathrm{t})=(\mathrm{D}(\mathrm{u}) / \mathrm{u}) \mathrm{G}_{\alpha}(\mathrm{v})$ for some α in A and some u, v in $\mathrm{F} \backslash\{0\}$ such that $\mathrm{v}=\exp \mathrm{R}_{\alpha}(\mathrm{u})$,
(v) $D(t)=(D(u) / u) H_{\beta}(v)$ for some β in B and some u, v in $F, u \neq 0$ such that $\mathrm{v}=\log \mathrm{S}_{\beta}(\mathrm{u})$ and $\mathrm{S}_{\beta}(\mathrm{u}) \neq 0$.

Let E be a finite algebraic differential extension of $F(t)$ with extended derivation D.
Assume that the subfield of constants of E is C . Let $\gamma \in \mathrm{F}$. Assume that there exist
(1) $b_{i} \in C, v_{0} \in E, v_{i} \in E \backslash\{0\}$ for all $i \in J$,
(2) $\mathrm{c}_{\mathrm{i} \alpha}, \mathrm{d}_{\mathrm{i} \alpha} \in \mathrm{C}, \mathrm{w}_{\mathrm{i} \alpha}, \mathrm{x}_{\mathrm{i} \alpha} \in \mathrm{E}\{0\}$ for all $\mathrm{i} \in \mathrm{I}_{\alpha}, \alpha \in \mathrm{A}$,
(3) $e_{i \beta}, f_{i} \beta \in C, y_{i \beta}, z_{i \beta} \in E \backslash\{0\}$ for all $i \in J_{\beta}, \beta \in B$,
such that

$$
\begin{aligned}
\gamma= & \mathrm{D}\left(\mathrm{v}_{\mathrm{o}}\right)+\sum_{i \in J} \mathrm{~b}_{\mathrm{i}} \mathrm{D}\left(\mathrm{v}_{\mathrm{i}}\right) / \mathrm{v}_{\mathrm{i}} \\
& +\sum_{\alpha \in \mathrm{A}} \sum_{i \in \mathrm{I}_{\alpha}}\left[\mathrm{c}_{i \alpha} \mathrm{D}\left(w_{i \alpha}\right)+\mathrm{d}_{i \alpha} \mathrm{D}\left(w_{i \alpha}\right) / w_{i \alpha}\right] \mathrm{G}_{\alpha}\left(\mathrm{x}_{i \alpha}\right) \\
& +\sum_{\beta \in B} \sum_{i \in J_{\beta}}\left[\mathrm{e}_{i \beta} \mathrm{D}\left(\mathrm{y}_{\mathrm{i} \beta}\right)+\mathrm{f}_{i \beta} \mathrm{D}\left(\mathrm{y}_{\mathrm{i}} \beta\right) / \mathrm{y}_{\mathrm{i} \beta}\right] \mathrm{H}_{\beta}\left(\mathrm{z}_{\mathrm{i}} \beta\right)
\end{aligned}
$$

where $\mathrm{J}, \mathrm{I}_{\alpha}$ and J_{β} are all finite indexing sets,

$$
\begin{aligned}
& x_{i \alpha}=\exp R_{\alpha}\left(w_{i \alpha}\right) \quad \text { for all } i \in I_{\alpha}, \alpha \in A, \text { and } \\
& x_{i \beta}=\log S_{\beta}\left(y_{i \beta}\right) \text { and } S_{\beta}\left(y_{i \beta}\right) \neq 0 \text { for all } i \in J_{\beta}, \beta \in B .
\end{aligned}
$$

Then there exist
(1) $\bar{b}_{i} \in \mathrm{C}, \overline{\mathrm{v}}_{0} \in \mathrm{~F}, \overline{\mathrm{v}}_{\mathrm{i}} \in \mathrm{F} \backslash\{0\}$ for all $\mathrm{i} \in \overline{\mathrm{J}}$,
(2) $\overline{\mathrm{c}}_{\mathrm{i} \alpha}, \overline{\mathrm{d}}_{\mathrm{i} \alpha} \in \mathrm{C}$, nonzero elements $\overline{\mathrm{w}}_{i \alpha}, \overline{\mathrm{x}}_{\mathrm{i} \alpha}$ algebraic over F for all $\mathrm{i} \in \overline{\mathrm{I}}_{\alpha, \alpha} \in \overline{\mathrm{A}}$,
(3) $\overline{\mathrm{e}}_{\mathrm{i} \beta}, \overline{\mathrm{f}}_{\mathrm{i} \beta} \in \mathrm{C}$, nonzero elements $\bar{y}_{i \beta}, \overline{\mathrm{z}}_{\mathrm{i} \beta}$ algebraic over F for all $\mathrm{i} \in \overline{\mathrm{J}}_{\beta, \beta} \beta \in \overline{\mathrm{B}}$,
such that

$$
\begin{aligned}
& \gamma=\mathrm{D}\left(\overline{\mathrm{v}}_{0}\right)+\sum_{\mathrm{i} \in \overline{\mathrm{~J}}} \overline{\mathrm{~b}}_{\mathrm{i}} \mathrm{D}\left(\overline{\mathrm{v}}_{\mathrm{i}}\right) / \overline{\mathrm{v}}_{\mathrm{i}} \\
& +\sum_{\alpha \in \bar{A}} \sum_{i \in \bar{I}_{\alpha}}\left[\bar{c}_{i \alpha} \mathrm{D}\left(\bar{w}_{i \alpha}\right)+\overline{\mathrm{d}}_{i \alpha} \mathrm{D}\left(\bar{w}_{i \alpha}\right) / \bar{w}_{i \alpha}\right] \mathrm{G}_{\alpha}\left(\overline{\mathrm{x}}_{i \alpha}\right) \\
& +\sum_{\beta \in \bar{B}} \sum_{i \in \bar{J}_{\beta}}\left[\bar{e}_{i \beta} D\left(\bar{y}_{i \beta}\right)+\bar{f}_{i \beta} D\left(\bar{y}_{i \beta}\right) / \bar{y}_{i \beta}\right] H_{\beta}\left(\bar{z}_{i \beta}\right),
\end{aligned}
$$

where $\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{J}}, \overline{\mathrm{I}}_{\alpha}$ and $\overline{\mathrm{J}}_{\beta}$ are all finite indexing sets,

$$
\begin{aligned}
& \bar{x}_{i \alpha}=\exp R_{\alpha}\left(\bar{w}_{i \alpha}\right) \text { for all } i \in I_{\alpha}, \alpha \in \bar{A} \text { and } \\
& \bar{z}_{i \beta}=\log S_{\beta}\left(\bar{y}_{i \beta}\right) \text { and } S_{\beta}\left(\bar{y}_{i \beta}\right) \neq 0 \text { for all } i \in \bar{J}_{\beta}, \beta \in \bar{B} .
\end{aligned}
$$

Proof. Part I. Assume F is algebraically closed.

Step 1. We may assume that $\mathrm{R}_{\alpha} \notin \mathrm{C}$ for all $\alpha \in A$, by the same reasoning as in Lemma 4.3.1.

Step 2. For each $\alpha \in A, i \in I_{\alpha}$, we have that $D\left(x_{i \alpha}\right)=D\left(R_{\alpha}\left(w_{i \alpha}\right)\right) x_{i \alpha}$, then by Theorem 1.9, we get $\mathrm{x}_{\mathrm{i} \alpha} \in \mathrm{F}$ and there exist $\lambda_{i \alpha} \in \mathrm{C}, \mathrm{p}_{\mathrm{i} \alpha} \in \mathrm{F}$ such that $R_{\alpha}\left(w_{i \alpha}\right)=\lambda_{i \alpha} t+p_{i \alpha}$

Step 3. For each $\beta \in B, i \in J_{\beta}$, we have that $D\left(z_{i} \beta\right)=D\left(S_{\beta}\left(y_{i} \beta\right)\right) / S_{\beta}\left(y_{i} \beta\right)$, then by Theorem 1.9, we get $S_{\beta}\left(y_{i} \beta\right) \in F$ and there exist $\bar{\lambda}_{i \beta} \in C, q_{i \beta} \in F$ such that $z_{i \beta}=\bar{\lambda}_{i \beta} t+q_{i} \beta$. Since $S_{\beta}\left(y_{i} \beta\right) \in F$ and F is algebraically ciosed, $y_{i \beta} \in F$.

Step 4. Let K be an extension field of E such that K is Galois over $F(t)$ and let σ be an element of the Galois group of K over $F(t)$. Then

$$
\begin{aligned}
\gamma=\sigma(\gamma)= & D\left(\sigma v_{0}\right)+\sum_{i \in J} b_{i} D\left(\sigma v_{i}\right) /\left(\sigma v_{i}\right) \\
& +\sum_{\alpha \in A} \sum_{i \in I_{\alpha}}\left[c_{i \alpha} D\left(\sigma w_{i \alpha}\right)+d_{i \alpha} D\left(\sigma w_{i \alpha}\right) /\left(\sigma w_{i \alpha}\right)\right] G_{\alpha}\left(x_{i \alpha}\right) \\
& +\sum_{\beta \in B} \sum_{i \in J_{\beta}}\left[e_{i \beta} D\left(y_{i} \beta\right)+f_{i \beta} D\left(y_{i} \beta\right) / y_{i} \beta\right] H_{\beta}\left(z_{i \beta}\right)
\end{aligned}
$$

Summing over all σ yields, for some M in \mathbf{Z},

$$
\begin{equation*}
\mathrm{M} \gamma=\mathrm{D}\left(\mathrm{Tv}_{0}\right)+\sum_{i \in \mathrm{~J}} \mathrm{~b}_{\mathrm{i}} \mathrm{D}\left(\mathrm{~N} v_{\mathrm{i}}\right) /\left(\mathrm{Nv} v_{i}\right)+\varepsilon_{1}+\mathrm{M} \varepsilon_{2} \tag{4.3}
\end{equation*}
$$

where $\varepsilon_{1}=\sum_{\alpha \in \mathrm{A}} \sum_{\mathrm{i} \in \mathrm{I}_{\alpha}}\left[\mathrm{c}_{\mathrm{i} \alpha} \mathrm{D}\left(\mathrm{T} w_{i \alpha}\right)+\mathrm{d}_{\mathrm{i} \alpha} \mathrm{D}\left(\mathrm{Nw}_{\mathrm{i} \alpha}\right) /\left(\mathrm{Nw}_{\mathrm{i} \alpha}\right)\right] \mathrm{G}_{\alpha}\left(\mathrm{x}_{\mathrm{i} \alpha}\right)$,

$$
\varepsilon_{2}=\sum_{\beta \in B} \sum_{i \in J_{\beta}}\left[e_{i \beta} D\left(y_{i} \beta\right)+f_{i} D\left(y_{i} \beta\right) / y_{i} \beta\right] H_{\beta}\left(z_{i} \beta\right),
$$

and T and N denote the trace and norm respectively.
Step 5. Consider $\sum_{i \in J} b_{i} D\left(N v_{i}\right) /\left(N v_{i}\right)$.
Write $\mathrm{Nv}_{\mathrm{i}}=\mathrm{k}_{\mathrm{i}} \prod_{\mathrm{j}=1}^{\alpha_{\mathrm{i}}}\left(\mathrm{t}-\mu_{\mathrm{j}}\right)^{\overline{\mathrm{a}}_{\mathrm{ij}}}$ where the $\mathrm{n}_{\mathrm{ij}} \in \mathbf{Z}$, the $\mathrm{k}_{\mathrm{i}} \in \mathrm{F} \backslash\{0\}$, the $\mu_{\mathrm{j}} \in \mathrm{F}$ and the $\alpha_{i} \in Z^{+}$.

So $\sum_{i \in J} b_{i} D\left(N v_{i}\right) /\left(N v_{i}\right)=\sum_{i \in J} b_{i} D\left(k_{i}\right) / k_{i}+$ an element in $F(t) \backslash F[t]$.

Step 6. Next, consider ε_{1}.
Recall $R_{\alpha}\left(w_{i \alpha}\right)=\lambda_{i \alpha} t+p_{i \alpha}$ for all $i \in I_{\alpha}, \alpha \in A$.
Case 6.1. Assume that $\lambda_{i \alpha}=0$.
For these $\alpha, \mathrm{i}, \mathrm{R}_{\alpha}\left(\mathrm{w}_{\mathrm{i} \alpha}\right) \in \mathrm{F}$ and thus $\mathrm{w}_{\mathrm{i} \alpha} \in \mathrm{F}$.

So $T w_{i \alpha}=M w_{i \alpha}$ and $N w_{i \alpha}=w_{i \alpha}^{M}$
Hence $\mathrm{D}\left(\mathrm{T} \mathrm{w}_{\mathrm{i} \alpha}\right)=\mathrm{MD}\left(\mathrm{w}_{\mathrm{i} \alpha}\right)$ and $\mathrm{D}\left(\mathrm{Nw}_{\mathrm{i} \alpha}\right) /\left(\mathrm{N} \mathrm{w}_{\mathrm{i} \alpha}\right)=\mathrm{MD}\left(\mathrm{w}_{\mathrm{i} \alpha}\right) / \mathrm{w}_{\mathrm{i} \alpha}$.
Case 6.2. Assume that $\lambda_{i \alpha} \neq 0$.
Write $\mathrm{R}_{\alpha}(\mathrm{Y})=\mathrm{A}_{\alpha}(\mathrm{Y}) / \mathrm{B}_{\alpha}(\mathrm{Y})$ where A_{α} and B_{α} are relatively prime in $\mathrm{C}[\mathrm{Y}]$ and $B_{\alpha} \neq 0$. Each $w_{i \alpha}$ satisfies $A_{\alpha}(Y)-\left(\lambda_{i \alpha} t+p_{i \alpha}\right) B_{\alpha}(Y)=0$. By Lemma 4.2.4, $A_{\alpha}(Y)-\left(\lambda_{i \alpha} t+p_{i \alpha}\right) B_{\alpha}(Y)$ is irreducible over $F(t)$. So the trace and norm can be read of its coefficients. Therefore

$$
T w_{i \alpha}=m_{i \alpha}\left(\frac{\delta_{i \alpha}\left(\lambda_{i \alpha} \mathrm{t}+\mathrm{p}_{\mathrm{i} \alpha}\right)+\varepsilon_{\mathrm{i} \alpha}}{\mu_{\mathrm{i} \alpha}\left(\lambda_{\mathrm{i} \alpha} \mathrm{t}+\mathrm{p}_{\mathrm{i} \alpha}\right)+\mathrm{v}_{\mathrm{i} \alpha}}\right)
$$

and

$$
N w_{i \alpha}=\left(\frac{\zeta_{i \alpha}\left(\lambda_{i \alpha} t+p_{i \alpha}\right)+\eta_{i \alpha}}{\mu_{i \alpha}\left(\lambda_{i \alpha} t+p_{i \alpha}\right)+v_{i \alpha}}\right)^{m_{i \alpha}},
$$

where $\delta_{i \alpha}, \varepsilon_{i \alpha}, \zeta_{i \alpha}, \eta_{i \alpha}, \mu_{i \alpha}, v_{i \alpha} \in C$ and $m_{i \alpha} \in Z^{+}$.

Therefore $\quad D\left(T w_{i \alpha}\right)=m_{i \alpha} \frac{\left(v_{i \alpha} \varepsilon_{i \alpha}-\varepsilon_{i \alpha} \mu_{i \alpha}\right)\left(\lambda_{i \alpha} D(t)-D\left(p_{i \alpha}\right)\right)}{\left(\mu_{i \alpha}\left(\lambda_{1 \alpha} t+p_{i \alpha}\right)+v_{i \alpha}\right)^{2}}$ and

$$
\frac{\mathrm{D}\left(\mathrm{Nw}_{\mathrm{i} \alpha}\right)}{\left(\mathrm{Nw}_{\mathrm{i} \alpha}\right)}=\mathrm{m}_{\mathrm{i} \alpha} \lambda_{\mathrm{i} \alpha} \mathrm{D}(\mathrm{t})\left[\frac{\zeta_{i \alpha}}{\zeta_{i \alpha}\left(\lambda_{i \alpha} \mathrm{t}+\mathrm{p}_{\mathrm{i} \alpha}\right)+\eta_{i \alpha}}-\frac{\mu_{\mathrm{i} \alpha}}{\mu_{i \alpha}\left(\lambda_{i \alpha}+p_{i \alpha}\right)+v_{i \alpha}}\right]
$$

The head of $\mathrm{D}\left(\mathrm{N} w_{i \alpha}\right) /\left(N w_{i \alpha}\right)$ is 0 .
Now, consider $\mathrm{D}\left(\mathrm{Tw}_{i \alpha}\right)$.
If $\mu_{i \alpha} \neq 0$, then the head of $\mathrm{D}\left(\mathrm{Tw}_{\mathrm{i} \alpha}\right)$ is 0 . Assume that $\mu_{\mathrm{i} \alpha}=0$.
Hence $D\left(T w_{i \alpha}\right)=\left(\frac{m_{i \alpha} \delta_{i \alpha}}{v_{i \alpha}}\right)\left(\frac{D\left(x_{i \alpha}\right)}{x_{i \alpha}}\right)$, and so

$$
\begin{aligned}
\sum_{\substack{\alpha \in A \\
\lambda_{i \alpha} \neq 0, \mu_{i \alpha}=0}} \sum_{i \in I_{\alpha}} c_{i \alpha} D\left(T w_{i \alpha}\right) G_{\alpha}\left(x_{i \alpha}\right) & =\sum_{\substack{\alpha \in A \\
\lambda_{i \alpha} \neq 0, \mu_{i \alpha}=0}} \sum_{i \in I_{\alpha}}\left(\frac{c_{i \alpha} m_{i \alpha} \delta_{i \alpha}}{v_{i \alpha}}\right)\left(\frac{D\left(x_{i \alpha}\right)}{x_{i \alpha}}\right) G_{\alpha}\left(x_{i \alpha}\right) \\
& =D\left(\bar{w}_{0}\right)+\sum_{i \in \bar{J}} \bar{c}_{i} D\left(\bar{w}_{i}\right) / \bar{w}_{i},
\end{aligned}
$$

where $\overline{\mathrm{c}}_{\mathrm{i}} \in \mathrm{C}$, the $\overline{\mathrm{w}}_{\mathrm{i}}$ are in F and $\overline{\mathrm{J}}$ is the finite indexing set. This last equality follows from the fact that $\frac{G_{\alpha}\left(x_{i \alpha}\right)}{x_{i \alpha}}$ is a rational function of $x_{i \alpha}$ with constant coefficients.

$$
\left.\begin{array}{rl}
\text { Therefore } \varepsilon_{1}= & \sum_{\alpha \in \mathrm{A}} \sum_{i \in I_{\alpha}}\left[c_{i \alpha} \mathrm{D}\left(\mathrm{~T} w_{i \alpha}\right)+d_{i \alpha} \mathrm{D}\left(N w_{i \alpha}\right) /\left(N w_{i \alpha}\right)\right] \mathrm{G}_{\alpha}\left(\mathrm{x}_{i \alpha}\right) \\
= & \mathrm{M} \sum_{\substack{\alpha \in \mathrm{A} \\
\lambda_{i \alpha} \in I_{\alpha}}}\left[\mathrm{c}_{i \alpha} \mathrm{D}\left(\mathrm{w}_{i \alpha}\right)+\mathrm{d}_{i \alpha} \mathrm{D}\left(\mathrm{w}_{i \alpha}\right) / w_{i \alpha}\right] \mathrm{G}_{\alpha}\left(\mathrm{x}_{i \alpha}\right) \\
& +\mathrm{D}\left(\bar{w}_{0}\right)+\sum_{i \in \overline{\mathrm{~J}}} \bar{c}_{\mathrm{i}} \mathrm{D}\left(\bar{w}_{\mathrm{i}}\right) / \bar{w}_{i}
\end{array}\right) \text { an element in } \mathrm{F}(\mathrm{t}) \backslash \mathrm{F}[\mathrm{t}] .
$$

Step 7. Finally, consider ε_{2}. For each $i \in J \beta, \beta \in B$, recall $z_{i \beta}=\bar{\lambda}_{i \beta} t+q_{i \beta}$ Case 7.1. Assume $\bar{\lambda}_{i \beta}=0$

Hence $z_{i} \beta \in F$ and so $H_{\beta}\left(z_{i} \beta\right) \in F$.
Clearly, $\sum_{\substack{ \\\beta \in B i \in J \\ \bar{\lambda}_{i \beta}=0}}\left(e_{i \beta} D\left(y_{i} \beta\right)+f_{i} \beta\left(y_{i} \beta\right) / y_{i} \beta\right) H_{\beta}\left(z_{i} \beta\right) \in F$.
Case 7.2. Assume that $\quad \bar{\lambda}_{i \beta} \neq 0$.
Since $\operatorname{deg}\left(\right.$ numerator of $\left.\mathrm{H}_{\beta}\right) \leq \operatorname{deg}$ (denominator of H_{β}),

$$
H_{\beta}(Y)=\sum_{i=1}^{n_{\beta}} \sum_{j=1}^{r_{i}}\left(\frac{a_{i j}}{\left(Y-\alpha_{i}\right)^{j}}\right)+q_{\beta},
$$

where $n_{\beta}, r_{i} \in Z^{+}$, and $a_{i j}, \alpha_{i}, q_{\beta} \in C$.

$$
\text { Hence } \begin{aligned}
& \sum_{\substack{\beta \in B \\
\bar{\lambda}_{i} \in J_{\beta}}}\left(e_{i} \beta D\left(y_{i} \beta\right)+f_{i}{ }^{2} D\left(y_{i} \beta\right) / y_{i} \beta\right) H_{\beta}\left(z_{i} \beta\right) \\
= & \sum_{\substack{\beta \in B i \in J_{\beta} \\
\bar{\lambda}_{i \beta} \neq 0}}\left(e_{i \beta} D\left(y_{i} \beta\right)+f_{i} \beta D\left(y_{i} \beta\right) / y_{i} \beta\right) q_{\beta}+\text { an element in } F(t) \backslash F[t] .
\end{aligned}
$$

Step 8. From (4.3) we conclude that

$$
\begin{align*}
& \mathrm{M} \gamma=\mathrm{D}\left(\mathrm{Tv}_{\mathrm{o}}\right)+\sum_{\mathrm{i} \in \mathrm{~J}} \mathrm{~b}_{\mathrm{i}} \mathrm{D}\left(\mathrm{k}_{\mathrm{i}}\right) / \mathrm{k}_{\mathrm{i}} \tag{4.4}\\
& +\mathrm{M} \sum_{\substack{\alpha \in \mathrm{A} \\
\lambda_{i \alpha}=\mathrm{I}}} \sum_{\alpha}\left[\mathrm{c}_{\mathrm{i} \alpha} \mathrm{D}\left(\mathrm{w}_{\mathrm{i} \alpha}\right)+\mathrm{d}_{\mathrm{i} \alpha} \mathrm{D}\left(\mathrm{w}_{\mathrm{i} \alpha}\right) / \mathrm{w}_{\mathrm{i} \alpha}\right] \mathrm{G}_{\alpha}\left(\mathrm{x}_{\mathrm{i} \alpha}\right) \\
& +\mathrm{D}\left(\overline{\mathrm{w}}_{0}\right)+\sum_{\mathrm{i} \in \overline{\mathrm{~J}}} \bar{c}_{\mathrm{i}} \mathrm{D}\left(\bar{w}_{\mathrm{i}}\right) / \bar{w}_{\mathrm{i}} \\
& \therefore \mathrm{M} \sum_{\beta \in \mathrm{P}} \sum_{i \in J_{\beta}}\left(\mathrm{e}_{\mathrm{i}} \mathrm{D} \mathrm{D}\left(\mathrm{y}_{\mathrm{i} \beta}\right)+\mathrm{f}_{i} \mathrm{D}\left(\mathrm{y}_{\mathrm{i} \beta}\right) / \mathrm{y}_{\mathrm{i}} \beta\right) \mathrm{H}_{\beta}\left(\mathrm{z}_{i} \beta\right) \\
& +M \sum_{\substack{\beta \in B i \in J \\
\bar{\lambda}_{i \beta} \neq 0}}\left(e_{i \beta} D\left(y_{i} \beta\right)+f_{i \beta} D\left(y_{i} \beta\right) / y_{i} \beta\right) q_{\beta} \\
& + \text { an element in } F(t) \backslash F[t]
\end{align*}
$$

Step 9. Now consider $\mathrm{D}\left(\mathrm{Tv}_{\mathrm{o}}\right)$.
Write $T v_{0}=\sum_{j=0}^{n} \bar{v}_{j} t j+$ an element in $F(t) \mid F[t]$, where $n \in Z^{+}$and the $\bar{v}_{j} \in F$. So
(4.5) $D\left(T v_{0}\right)=D\left(\bar{v}_{n}\right) t^{n}+\sum_{j=1}^{n}\left(j \bar{v}_{j} D(t)+D\left(\bar{v}_{j-1}\right)\right) t^{j-1}+$ an element in $F(t) \backslash F[t]$.

Claim that $\mathrm{n} \leq 1$. Suppose that $\mathrm{n}>1$, hence $\overline{\mathrm{v}}_{\mathrm{n}} \neq 0$. Replacing (4.5) in (4.4), we have that the right hand side of (4.4) would contain an expression of the form t^{i} with $\mathrm{i} \geq 1$. Comparing terms of degree n and $\mathrm{n}-1$ in (4.4), $\mathrm{D}\left(\overline{\mathrm{v}}_{\mathrm{n}}\right)=0$ and $\left(\mathrm{n} \overline{\mathrm{v}}_{\mathrm{n}} \mathrm{D}(\mathrm{t})+\mathrm{D}\left(\overline{\mathrm{v}}_{\mathrm{n}-1}\right)\right)=0$, Since $\mathrm{D}\left(\overline{\mathrm{v}}_{\mathrm{n}}\right)=0, \overline{\mathrm{v}}_{\mathrm{n}} \in \mathrm{C}$.
Thus $D\left(n \bar{v}_{n t}+\bar{v}_{n-1}\right)=n \bar{v}_{\mathrm{n}} \mathrm{D}(\mathrm{t})+\mathrm{D}\left(\overline{\mathrm{v}}_{\mathrm{n}-1}\right)=0$.
So $n \bar{v}_{\mathrm{n}} \mathrm{t}+\overline{\mathrm{v}}_{\mathrm{n}-1} \in \mathrm{C}$. Thus t is algebraic over F , a contradiction. So we have the claim.
From (4.5), we get $D\left(T_{0}\right)=\bar{D}\left(\overline{v_{1}}\right) t+\left(\overline{v_{1} D(t)}+D\left(\bar{v}_{0}\right)\right)+$ an element in $F(t) \backslash F[t]$.
Clearly, $\bar{v}_{1} \in C$. Hence $D\left(T_{0}\right)=v_{1} D(t)+D\left(\bar{v}_{0}\right)+$ an element in $F(t) \backslash F[t]$.

Step 10. Replacing $\mathrm{D}\left(\mathrm{Tv}_{\mathrm{o}}\right)$ in (4.4) and comparing the head, we get

$$
\begin{aligned}
& M \gamma=\bar{v}_{1} D(t)+D\left(v_{0}+w_{0}\right)+\sum_{i \in \bar{J}} \bar{c}_{i} D\left(\bar{w}_{i}\right) / \bar{w}_{i}+\sum_{i \in J} b_{i} D\left(k_{i}\right) / k_{i} \\
&+M \sum_{\alpha \in A} \sum_{i \in I_{\alpha}}\left[c_{i \alpha} D\left(w_{i \alpha}\right)+d_{i \alpha} D\left(w_{i \alpha}\right) / w_{i \alpha}\right] G_{\alpha}\left(x_{i \alpha}\right) \\
&+M \sum_{\beta \in B i \in J_{\beta}}\left(e_{i \beta} D\left(y_{i \beta}\right)+f_{i \beta} D\left(y_{i \beta}\right) / y_{i \beta}\right) H_{\beta}\left(z_{i} \beta\right) . \\
& \bar{\lambda}_{i \beta}=0 \\
&+M \sum_{\beta \in B i \in J_{\beta}}\left(e_{i \beta} D\left(y_{i \beta}\right)+f_{i \beta} D\left(y_{i \beta}\right) / y_{i} \beta\right) q_{\beta} \\
& \bar{\lambda}_{i \beta} \neq 0
\end{aligned}
$$

Dividing by M, we obtain the correct sum of γ.

Part II. To remove the assumption that F is algebraically closed, we proceed as in the proof of Part II of Lemma 4.3.1. \#

Proof of Theorem 4.1.2. Let $m=t r$. deg. K / F. The proof is by induction on m . If $m=0$, then K is algebraic over F. Let E be an extension of K such that E is Galois over F and let σ be an element of the Galois group of E over F . Thus

$$
\gamma=\sigma(\gamma)=\mathrm{D}(\sigma y)
$$

Summing over all σ yields, for some M in \mathbf{Z},

$$
\mathrm{M} \gamma=\mathrm{D}(\mathrm{Ty})
$$

where T denote the trace.
Hence $\gamma=\mathrm{D}(\mathrm{Ty} / \mathrm{M})$ and $\mathrm{Ty} / \mathrm{M} \in \mathrm{F}$. Therefore the theorem is true in this case. Assume that $\mathrm{m}>0$. Suppose that the theorem is true for any Ei- extension L of a field F^{\prime} such that tr.deg.LiF $<m$. Since tr deg. $K / F=m$, we can choose a transcendence basis $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{m}}$ of K over F such that

$$
\mathrm{F}=\mathrm{F}_{\mathrm{O}} \subset \mathrm{~F}\left(\mathrm{t}_{1}\right)=\mathrm{F}_{1} \subset \ldots \subset \mathrm{~F}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{m}}\right)=\mathrm{F}_{\mathrm{m}} \subset \mathrm{~K}
$$

and each t_{i} satisfies one of the following six conditions:
(1) $\mathrm{t}_{\mathrm{i}}=\exp (\mathrm{u})$ for some $\mathrm{u} \in \overline{\mathrm{F}}_{\mathrm{i}-1} \cap \mathrm{~K}$, ($\overline{\mathrm{F}}_{\mathrm{i}-1}$ denote the algebraic closure of $\left.\mathrm{F}_{\mathrm{i}-1}\right)$,
(2) $\mathrm{t}_{\mathrm{i}}=\log (\mathrm{u})$ for some nonzero $\mathrm{u} \in \overline{\mathrm{F}}_{\mathrm{i}-1} \cap \mathrm{~K}$,
(3) for some $\alpha \in A$, there are u and nonzero v in $\bar{F}_{i-1} \cap \mathrm{~K}$ such that $D\left(\mathrm{t}_{\mathrm{i}}\right)=\mathrm{D}(\mathrm{u}) \mathrm{G}_{\alpha}(\mathrm{v})$ where $\mathrm{v}=\exp \mathrm{R}_{\alpha}(\mathrm{u})$,
(4) for some $\beta \in B$, there are u, v in $\bar{F}_{i-1} \cap K$ such that $\mathrm{D}\left(\mathrm{t}_{\mathrm{i}}\right)=\mathrm{D}(\mathrm{u}) \mathrm{H}_{\beta}(\mathrm{v})$ where $\mathrm{v}=\log \mathrm{S}_{\beta}(\mathrm{u})$ and $\mathrm{S}_{\beta}(\mathrm{u}) \neq 0$,
(5) for some $\alpha \in A$, there are nonzero u, v in $\bar{F}_{i-1} \cap K$ such that $D\left(t_{i}\right)=(D(u) / u) G_{\alpha}(v)$ where $v=\exp R_{\alpha}(u)$,
(6) for some $\beta \in B$, there are nonzero u, v in $\overline{\mathrm{F}}_{\mathrm{i}-1} \cap \mathrm{~K}$ such that $D\left(t_{i}\right)=(D(u) / u) H_{\beta}(v)$ where $v=\log S_{\beta}(u)$ and $S_{\beta}(u) \neq 0$.

Note that K is also an $\mathrm{Ei}-$ extension of F_{1} and $\mathrm{tr} . \mathrm{deg} . \mathrm{K} / \mathrm{F}_{1}=\mathrm{m}-\mathrm{l}<\mathrm{m}$.

By induction hypothesis, there exist
(1) $b_{i} \in C, v_{0} \in F_{1}$ and $v_{i} \in F_{1} \backslash\{0\}$ for all $i \in J$,
(2) $\mathrm{c}_{i \alpha}, \mathrm{~d}_{\mathrm{i} \alpha} \in \mathrm{C}$, nonzero elements $\mathrm{w}_{\mathrm{i} \alpha}, \mathrm{x}_{\mathrm{i} \alpha}$ algebraic over F_{1} for all $\mathrm{i} \in \mathrm{I}_{\alpha}, \alpha \in \mathrm{A}$, (3) $e_{i} \beta, f_{i} \beta \in C$, nonzero elements $y_{i} \beta, z_{i} \beta$ algebraic over F_{1} for all $i \in J_{\beta}, \beta \in B$, such that

$$
\begin{aligned}
\gamma= & D\left(v_{0}\right)+\sum_{i \in J} b_{i} D\left(v_{i}\right) / v_{i} \\
& +\sum_{\alpha \in A} \sum_{i \in I_{\alpha}}\left(c_{i \alpha} D\left(w_{i \alpha}\right)+d_{i \alpha} D\left(w_{i \alpha}\right) / w_{i \alpha}\right) G_{\alpha}\left(x_{i \alpha}\right) \\
& \left.+\sum_{\beta \in B i \in I_{\beta}} \sum_{\left(e_{i \beta} D\left(y_{i \beta}\right)\right.}+f_{i \beta} D\left(y_{i \beta}\right) / y_{i \beta}\right) H_{\beta}\left(z_{i \beta}\right),
\end{aligned}
$$

where A, B, J, I_{α} and J_{β} are all finite indexing sets,

$$
\begin{aligned}
& x_{i \alpha}=\exp R_{\alpha}\left(w_{i \alpha}\right) \text { for all } i \in I_{\alpha}, \alpha \in A, \text { and } \\
& z_{i \beta}=\log S_{\beta}\left(y_{i \beta}\right) \text { and } S_{\beta}\left(y_{i} \beta\right) \neq 0 \text { for all } i \in J_{\beta}, \beta \in B .
\end{aligned}
$$

By Lemma 4.3.1 and 4.3.2, we get the correct sum of γ.

Theorem 4.1.2 is false without the condition (2) in the definition of Ei- extension as seen in the following example.

Example. Let \mathbf{C} be the field of complex numbers and let $\mathrm{F}=\mathbf{C}(\mathrm{x}, \log (\mathrm{x}))$ with the usual derivation $\mathrm{D}=\mathrm{d} / \mathrm{dx}$. Let $\mathcal{E}=\varnothing$ and $\mathcal{L}=\{\log \mathrm{Y}(\mathrm{Y}-1)\}$.

In this case the index set B is a singleton, $\mathrm{H}(\mathrm{Y})=\mathrm{Y}$ and $\mathrm{S}(\mathrm{Y})=\mathrm{Y}(\mathrm{Y}-1)$.
This is excluded by condition (2) since deg (numerator of H) $>\mathrm{deg}$ (denominator of H).
Clearly, $\quad \frac{\log x}{x+1}=\frac{\log x(x+1)}{x+1}-\frac{\log (x+1)}{x+1}$.
Hence $\int \frac{\log x}{x+1}$ lies in an $\mathrm{Ei}-$ extension of F .

Claim that

$$
\begin{equation*}
\frac{\log x}{x+1} \neq D\left(v_{o}\right)+\sum_{i=1}^{n} b_{i} D\left(v_{i}\right) / v_{i}+\sum_{i=1}^{m}\left(e_{i} D\left(y_{i}\right)+f_{i} D\left(y_{i}\right) / y_{i}\right) z_{i} \tag{4.6}
\end{equation*}
$$

for any $v_{0} \in F$, the $v_{i} \in F \backslash\{0\}$, the y_{i}, z_{i} algebraic over F with $z_{i}=\log y_{i}\left(y_{i}-1\right)$ and $\mathrm{y}_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}}-1\right) \neq 0$ and constants $\mathrm{b}_{\mathrm{i}}, \mathrm{e}_{\mathrm{i}}, \mathrm{f}_{\mathrm{i}} \in \mathbf{C}$.

Suppose equality holds in (4.6).
By Theorem 3.2.1, we have for each $\mathrm{i}=1, \ldots, m$, that $\mathrm{z}_{\mathrm{i}}=\mathrm{r}_{\mathrm{i}} \log (\mathrm{x})+\mathrm{k}_{\mathrm{i}}$ for some $r_{i} \in \mathbf{Q}, k_{i} \in \mathbf{C}$. We also have, for each $i=1, \ldots, m, y_{i}\left(y_{i}-1\right)=c_{i} x^{r_{i}}$ for some $c_{i} \in \mathbf{C}$. We can assume that each c_{i} is not zero. (If $\mathrm{c}_{\mathrm{i}}=0$ for some i , then $\mathrm{y}_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}}-1\right)=0$, a contradiction.) Each y_{i} is algebraic over $K=C\left(x, \log (x), x^{r_{1}}, \ldots, x^{r_{m}}\right)$ and satisfies the irreducible equation $\mathrm{Y}(\mathrm{Y}-1)-\mathrm{c}_{\mathrm{i}} \mathrm{x}_{\mathrm{r}}=0$. Taking automorphisms over some appropriate extension (containing y_{1}, \ldots, y_{m}) of K and then summing over all the automerphisms, we obtain

$$
\begin{aligned}
i \frac{\log x}{x+1}= & D\left(T v_{0}\right)+\sum_{i=1}^{n} b_{i} D\left(N v_{i}\right) /\left(N v_{i}\right) \\
& +\sum_{i=1}^{m}\left(e_{i} D\left(T y_{i}\right)+f_{i} D\left(N y_{i}\right) /\left(N y_{i}\right)\right)\left(r_{i} \log (x)+k_{i}\right)
\end{aligned}
$$

where $t \in Z^{+}, T$ and N denote trace and norm respectively
Now, consider $\quad \sum_{i=1}^{m}\left(e_{i} D\left(T y_{i}\right)+f_{i} D\left(N y_{i}\right) /\left(N y_{i}\right)\right)\left(r_{i} \log (x)+k_{i}\right)$.
For each $\mathrm{i}=1, \ldots, \mathrm{~m}$, since $\mathrm{T} \mathrm{y}_{\mathrm{i}} \in \mathbf{Z}, \mathrm{D}\left(\mathrm{T}_{\mathrm{i}}\right)=0$.
Since $N y_{i}=\left(c_{i} x^{r_{1}}\right)^{t}, D\left(N y_{i}\right) / N y_{i}=r_{i} t D(x) / x$.
Hence $\sum_{i=1}^{m}\left(e_{i} D\left(T y_{i}\right)+f_{i} D\left(N y_{i}\right) /\left(N y_{i}\right)\right)\left(r_{i} \log (x)+k_{i}\right)$ is of the form
$s D\left(\log ^{2} x\right)+r D(x) / x$ where $s, r \in \mathbf{C}$.
Therefore $\frac{\log x}{x+1}=D\left(w_{0}\right)+\sum_{i \in I} d_{i} D\left(w_{i}\right) / w_{i}$, where $w_{0} \in K, w_{i} \in K \backslash\{0\}$,
$\mathrm{d}_{\mathrm{i}} \in \mathbf{C}$ and I is a finite indexing set.
Take $\sigma \in \operatorname{Aut}(\mathrm{K} / \mathbf{C}(\mathrm{x}, \log (\mathrm{x}))$ to the last equation and then summing over all σ, we get

$$
\mathrm{t}_{1} \frac{\log \mathrm{x}}{\mathrm{x}+1}=\mathrm{D}\left(\mathrm{Tw}_{\mathrm{o}}\right)+\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{~d}_{\mathrm{i}} \mathrm{D}\left(N w_{\mathrm{i}}\right) /\left(\mathrm{Nw} w_{\mathrm{i}}\right), \quad \text { where } \mathrm{t}_{1} \in \mathbf{Z}
$$

This contradicts the fact that $\int \frac{\log x}{x+1}$ is not elementary (for proof see Appendix B). \#

4.4 Gamma Extension

Lemma 4.4.1. Let F be a differential field of characteristic zero with derivation D , and C being its algebraically closed subfield of constants. Let t be transcendental over F such that

$$
\begin{equation*}
D(t)=D(u) t \text { for some } u \text { in } F \text {. } \tag{4.7}
\end{equation*}
$$

Let E be a finite algebraic differential extension of $F(t)$ with extended derivation D. Assume that the subfield of constants of E is C . Let $\gamma \in \mathrm{F}$. Assume that there exist
(1) $b_{i} \in C, v_{0} \in E, v_{i} \in E \backslash\{0\}$ for all $i \in I$,
(2) $c_{1} \in C, r_{i} \in \mathbf{Q}$ with $-1 \leq r_{i} \leq i, w_{i}, x_{i} \in E \backslash\{0\}$ and $G_{i} \in C(Y)$ for all $i \in J$ such that

$$
\gamma=\mathrm{D}\left(\mathrm{v}_{\mathrm{o}}\right)+\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{~b}_{\mathrm{i}} \mathrm{D}\left(\mathrm{v}_{\mathrm{i}}\right) / \mathrm{v}_{\mathrm{i}}+\sum_{\mathrm{i} \in \mathrm{~J}} \mathrm{c}_{\mathrm{i}} \mathrm{D}\left(\mathrm{w}_{\mathrm{i}}^{\mathrm{r}_{\mathrm{i}}}\right) \mathrm{G}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right),
$$

where I and J are finite indexing sets, $x_{i}=\exp \left(w_{i}\right)$ for all $i \in J$
Then there exist
(1) $\bar{b}_{i} \in C, \bar{v}_{O}$ algebraic over F, and nonzero elements \bar{v}_{i} algebraic over F for all $\mathrm{i} \in \overline{\mathrm{I}}$,
(2) $\overline{\mathrm{c}}_{\mathrm{i}} \in \mathbf{C}, \overline{\mathrm{r}}_{\mathrm{i}} \in \mathbf{Q}$ with $-1 \leq \overline{\mathrm{r}}_{\mathrm{i}} \leq 1$, nonzero elements $\overline{\mathrm{w}}_{\mathrm{i}}, \overline{\mathrm{x}}_{\mathrm{i}}$ algebraic over F for all $\mathrm{i} \in \overline{\mathrm{J}}$,
such that

$$
\gamma=\mathrm{D}\left(\bar{v}_{\mathrm{o}}\right)+\sum_{\mathrm{i} \in \overline{\mathrm{I}}} \overline{\mathrm{~b}}_{\mathrm{i}} \mathrm{D}\left(\overline{\mathrm{v}}_{\mathrm{i}}\right) / \bar{v}_{\mathrm{i}}+\sum_{\mathrm{i} \in \overline{\mathrm{~J}} \overline{\mathrm{c}}_{\mathrm{i}} \mathrm{D}\left(\overline{\mathrm{w}}_{\mathrm{i}} \overline{\mathrm{r}}_{\mathrm{i}}\right) \mathrm{G}_{\mathrm{i}}\left(\bar{x}_{\mathrm{i}}\right), ~, ~, ~}
$$

where $\overline{\mathrm{I}}$ and $\overline{\mathrm{J}}$ are all finite indexing sets, $\overline{\mathrm{x}}_{\mathrm{i}}=\exp \left(\overline{\mathrm{w}}_{\mathrm{i}}\right)$ for all $\mathrm{i} \in \overline{\mathrm{J}}$.

Proof. Part I. Assume that F is algebraically closed.
For each $\mathrm{i} \in \mathrm{J}$, we have $\mathrm{D}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{D}\left(\mathrm{w}_{\mathrm{i}}\right) \mathrm{x}_{\mathrm{i}}$, then by Theorem 1.9, we have that $\mathrm{w}_{\mathrm{i}} \in \mathrm{F}$ and there exist $v_{i} \in \mathbf{Q}$ and $p_{i} \in F$ such that $x_{i}=p_{i} t^{v_{i}}$. Without loss of generality, we may assume that v_{i} are actually integers.

Let K be an extension of E such that K is Galois over $F(t)$ and let σ be an element of the Galois group of K over $F(t)$. Then

$$
\gamma=\sigma(\gamma)=\mathrm{D}\left(\sigma v_{\mathrm{o}}\right)+\sum_{i \in \mathrm{I}} \mathrm{~b}_{\mathrm{i}} \mathrm{D}\left(\sigma v_{i}\right) /\left(\sigma v_{\mathrm{i}}\right)+\sum_{\mathrm{i} \in \mathrm{~J}} \mathrm{c}_{\mathrm{i}} \mathrm{D}\left(\mathrm{w}_{\mathrm{i}}^{\mathrm{r}_{\mathrm{i}}}\right) \mathrm{G}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right) .
$$

Summing over all σ yields, for some M in \mathbf{Z},
(4.8) $\mathrm{M} \gamma=\mathrm{D}\left(\mathrm{Tv}_{\mathrm{o}}\right)+\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{b}_{\mathrm{i}} \mathrm{D}\left(\mathrm{Nv} v_{\mathrm{i}}\right) /\left(\mathrm{Nv} v_{\mathrm{i}}\right)+\mathrm{M} \sum_{\mathrm{i} \in \mathrm{J}} \mathrm{c}_{\mathrm{i}} \mathrm{D}\left(\mathrm{w}_{\mathrm{i}}^{\mathrm{r}_{\mathrm{i}}}\right) \mathrm{G}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right)$,
where T and N denote the trace and norm respectively.
We now consider the head of the right hand side of (4.8). It is straightforward to verify that

$$
\begin{aligned}
D\left(T v_{o}\right)+\sum_{i \in I} b_{i} D\left(N v_{i}\right) / N v_{i}= & D\left(\bar{v}_{o}\right)+\sum_{i \in I} b_{i} D\left(\bar{v}_{i}\right) / \bar{v}_{i}+a D(u) \\
& + \text { elements in } F(t) \backslash F
\end{aligned}
$$

where a $\in C, \bar{v}_{0} \in F$ and $\bar{v}_{i} \in F \backslash\{0\}$ for all $i \in I$.
For each $\mathrm{i} \in \mathrm{J}$, recall $\mathrm{x}_{\mathrm{i}}=\mathrm{p}_{\mathrm{i}} \mathrm{t}^{\mathrm{t}_{i}}$.
Write $\sum_{i \in J} c_{i} D\left(w_{i}^{r_{i}}\right) G_{i}\left(x_{i}\right)=\sum_{\substack{i \in J \\ v_{i}=0}} c_{i} D\left(w_{i}^{r_{i}}\right) G_{i}\left(x_{i}\right)+\sum_{\substack{i \in J \\ v_{i} \neq 0}} c_{i} D\left(w_{i}^{r_{i}}\right) G_{i}\left(x_{i}\right)$.
Clearly, $\sum_{\substack{i \in J \\ v_{i}=0}} c_{i} D\left(w_{i}^{r_{i}}\right) G_{i}\left(x_{i}\right) \in F$.

It is easy to see that

$$
\sum_{\substack{i \in J \\ v_{i} \neq 0}} c_{i} D\left(w_{i}^{r_{i}}\right) G_{i}\left(x_{i}\right)=\sum_{\substack{i \in J \\ v_{i} \neq 0}} \bar{c}_{i} D\left(w_{i}^{r_{i}}\right)+\text { elements in } F(t) \backslash F,
$$

where the $\overline{\mathrm{c}}_{\mathrm{i}} \in \mathrm{C}$.
From (4.8), we equate the head to get,

$$
\begin{aligned}
\mathrm{M} \gamma= & \mathrm{D}\left(\overline{\mathrm{v}}_{\mathrm{o}}\right)+\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{~b}_{\mathrm{i}} \mathrm{D}\left(\overline{\mathrm{v}}_{\mathrm{i}}\right) / \overline{\mathrm{v}}_{\mathrm{i}}+\mathrm{aD}(\mathrm{u}) \\
& +M \sum_{\substack{i \in J \\
v_{i}=0}} c_{i} \mathrm{D}\left(\mathrm{w}_{\mathrm{i}}^{\mathrm{r}_{\mathrm{i}}}\right) \mathrm{G}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right) \\
& +\mathrm{M} \sum_{\substack{i \in J \\
v_{i} \neq 0}} c_{i} D\left(w_{\mathrm{i}}^{\mathrm{r}_{\mathrm{i}}}\right)
\end{aligned}
$$

Dividing by M , we get the required result.

Part II. Assume that F is not algebraically closed.
Let $\overline{\mathrm{F}}$ be an algebraic closure of F .
Lat $S=\left\{\mathrm{v}_{\mathrm{o}}\right\} \cup\left\{\mathrm{v}_{\mathrm{i}} \mid \mathrm{i} \in \mathrm{I}\right\} \cup\left\{\mathrm{w}_{\mathrm{i}} \mid \mathrm{i} \in \mathrm{J}\right\} \cup\left\{\mathrm{x}_{\mathrm{i}} \mid \mathrm{i} \in \mathrm{J}\right\}$.
Hence $\overline{\mathrm{F}}(\mathrm{t}, \mathrm{S})$ is algebraic over $\overline{\mathrm{F}}(\mathrm{t})$.
Note that $\overline{\mathrm{F}}(\mathrm{t}, \mathrm{S}), \overline{\mathrm{F}}(\mathrm{t}), \overline{\mathrm{F}}$ and F have the same subfield of constants C .(See Appendix A for cietails.) By Part I, there exist
(1) $\bar{b}_{i} \in \mathrm{C}, \overline{\mathrm{v}}_{\mathrm{o}} \in \overline{\mathrm{F}}, \overline{\mathrm{v}}_{\mathrm{i}} \in \overline{\mathrm{F}} \backslash\{0\}$ for all $\mathrm{i} \in \overline{\mathrm{I}}$,
(2) $\overline{\mathrm{c}}_{\mathrm{i}} \in \mathrm{C}, \overline{\mathrm{r}}_{\mathrm{i}} \in \mathbf{Q}$ with $-1 \leq \overline{\mathrm{r}}_{\mathrm{i}} \leq 1, \overline{\mathrm{w}}_{\mathrm{i}}, \overline{\mathrm{x}}_{\mathrm{i}} \in \overline{\mathrm{F}} \backslash\{0\}$ for all $\mathrm{i} \in \overline{\mathrm{J}}$,
such that

$$
\gamma=\mathrm{D}\left(\overline{\mathrm{v}}_{\mathrm{o}}\right)+\sum_{\mathrm{i} \in \overline{\mathrm{I}}} \overline{\mathrm{~b}}_{\mathrm{i}} \mathrm{D}\left(\overline{\mathrm{v}}_{\mathrm{i}}\right) / \overline{\mathrm{v}}_{\mathrm{i}}+\sum_{\mathrm{i} \in \overline{\mathrm{~J}}} \overline{\mathrm{c}}_{\mathrm{i}} \mathrm{D}\left(\overline{\mathrm{w}}_{\mathrm{i}}^{\bar{r}_{\mathrm{i}}}\right) \mathrm{G}_{\mathrm{i}}\left(\overline{\mathrm{x}}_{\mathrm{i}}\right),
$$

where $\overline{\mathrm{I}}, \overline{\mathrm{J}}$ are finite indexing sets, $\mathrm{D}\left(\overline{\mathrm{x}}_{\mathrm{i}}\right) / \overline{\mathrm{x}}_{\mathrm{i}}=\mathrm{D}\left(\overline{\mathrm{w}}_{\mathrm{i}}\right)$ for all $\mathrm{i} \in \overline{\mathrm{J}}$.

Lemma 4.4.2. Lemma 4.4.1 holds if equation (4.7) is replaced by one of the following conditions
(i) $\mathrm{D}(\mathrm{t})=\mathrm{D}(\mathrm{u}) / \mathrm{u}$ for some nonzero u in F ,
(ii) $\mathrm{D}(\mathrm{t})=\mathrm{D}\left(\mathrm{u}^{\mathrm{r}}\right) \mathrm{G}(\mathrm{v})$ for some $\mathrm{r} \in \mathbf{Q}$ with $-\mathrm{l} \leq \mathrm{r} \leq 1, \mathrm{G} \in \mathrm{C}(\mathrm{Y})$ and $u, v \in F$ such that $v \neq 0, D(v) / v=D(u)$.

Proof. Part I. Assume that F is algebraically closed.
For each $\mathrm{i} \in \mathrm{J}$, we have that $\mathrm{D}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{D}\left(\mathrm{w}_{\mathrm{i}}\right) \mathrm{x}_{\mathrm{i}}$, then by Theorem 1.9, we get $\mathrm{x}_{\mathrm{i}} \in \mathrm{F}$ and there exist $\lambda_{i} \in C, p_{i} \in F$ such that $w_{i}=\lambda_{i} t+p_{i}$.

Let K be an extension of E containing $\left\{w_{i}^{r_{1}}!i \in J\right\}$ such that K is Galois over $F(t)$.
Let σ be an element of the Galois group of K over $\mathrm{F}(\mathrm{t})$. Then

$$
\gamma=\sigma(\gamma)=\mathrm{D}\left(\sigma v_{0}\right)+\sum_{i \in \mathrm{I}} \mathrm{~b}_{\mathrm{i}} \mathrm{D}\left(\sigma v_{\mathrm{i}}\right) /\left(\sigma v_{\mathrm{i}}\right)+\sum_{\mathrm{i} \in \mathrm{~J}} \mathrm{c}_{\mathrm{i}} \mathrm{D}\left(\sigma w_{\mathrm{i}}^{\mathrm{r}_{\mathrm{i}}}\right) \mathrm{G}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right)
$$

Summing over all σ yields, for some M in \mathbf{Z}.

$$
\begin{equation*}
\mathrm{M} \gamma=\mathrm{D}\left(\mathrm{Tv}_{\mathrm{o}}\right)+\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{~b}_{\mathrm{i}} \mathrm{D}\left(N v_{\mathrm{i}}\right) /\left(N v_{\mathrm{i}}\right)+\sum_{\mathrm{i} \in \mathrm{~J}} \mathrm{c}_{\mathrm{i}} \mathrm{D}\left(\mathrm{Tw}_{\mathrm{i}}^{\mathrm{r}_{\mathrm{i}}}\right) \mathrm{G}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right) \tag{4.9}
\end{equation*}
$$

where T and N denote the trace and norm respectively.
Now consider $\sum_{i \in J} c_{i} D\left(T w_{i}^{r_{i}}\right) G_{i}\left(x_{i}\right)$.
For each $\mathrm{i} \in \mathrm{J}$, recall $\mathrm{w}_{\mathrm{i}}=\lambda_{\mathrm{i}} \mathrm{t}+\mathrm{p}_{\mathrm{i}}$.
Write $\sum_{i \in J} c_{i} D\left(T w_{i}^{r_{i}}\right) G_{i}\left(x_{i}\right)=\sum_{\substack{i \in J \\ \lambda_{i}=0}} c_{i} D\left(T w_{i}^{r_{i}}\right) G_{i}\left(x_{i}\right)+\sum_{\substack{i \in J \\ \lambda_{i} \neq 0}} c_{i} D\left(T w_{i}^{r_{i}}\right) G_{i}\left(x_{i}\right)$

Consider $\mathrm{i} \in \mathrm{J}$ for which $\lambda_{i}=0$. Hence $w_{i} \in F$ and also $w_{i}^{r_{i}} \in F$.
So $\mathrm{T} \mathrm{w}_{\mathrm{i}}^{\mathrm{r}_{\mathrm{i}}}=\mathrm{M} \mathrm{w}_{\mathrm{i}}^{\mathrm{r}_{\mathrm{i}}}$.

Thus $\sum_{\substack{i \in J \\ \lambda_{i}=0}} c_{i} D\left(T w_{i}^{r_{i}}\right) G_{i}\left(x_{i}\right)=\sum_{\substack{i \in J \\ \lambda_{i}=0}} c_{i} M D\left(w_{i}^{r_{i}}\right) G_{i}\left(x_{i}\right)$.
Now consider $\mathrm{i} \in \mathrm{J}$ for which $\lambda_{\mathrm{i}} \neq 0$. For these $\mathrm{i},-1 \leq \mathrm{r}_{\mathrm{i}} \leq 1$.
If $\mathrm{r}_{\mathrm{i}}=1$, then $T w_{i}=M w_{i}$ and $\mathrm{D}\left(\mathrm{T} w_{\mathrm{i}}\right)=\mathrm{MD}\left(\mathrm{x}_{\mathrm{i}}\right) / \mathrm{x}_{\mathrm{i}}$.
If $\mathrm{r}_{\mathrm{i}}=-1$, then $\mathrm{Tw}_{\mathrm{i}}^{-1}=\mathrm{Mw}_{\mathrm{i}}^{-1}$ and $\mathrm{D}\left(\mathrm{T} \mathrm{w}_{\mathrm{i}}^{-1}\right)=-\mathrm{MD}\left(\mathrm{w}_{\mathrm{i}}\right) /\left(\lambda_{\mathrm{i}} \mathrm{t}+\mathrm{p}_{\mathrm{i}}\right)^{2}$.
If $-1<r_{i}<1$, then write $r_{i}=s_{i} / h_{i}$ where s_{i} and h_{i} are relatively prime in Z.
Here $w_{i}^{r_{i}}$ satisfy $Y^{h_{i}}-\left(\lambda_{i} t+p_{i}\right)^{s_{i}}=0$. By Lemma 4.2.1, $Y^{h_{i}}-\left(\lambda_{i} t+p_{i}\right)^{s_{i}}$ is irreducible over $\mathrm{F}(\mathrm{t})$.

Hence $T w_{i}^{r_{i}}=0$. Thus $D\left(T w_{i}^{r_{1}}\right)=0$.
Therefore $\begin{aligned} \sum_{\substack{i \in J \\ \lambda_{i} \neq 0}} c_{i} D\left(T w_{i}^{r_{i}}\right) G_{i}\left(x_{i}\right)= & \sum_{\substack{i \in J \\ \lambda_{i} \neq 0, r_{i}=1}} c_{i} M \frac{D\left(x_{i}\right)}{x_{i}} G_{i}\left(x_{i}\right) \\ & + \text { elements in } F(t) \backslash F[t],\end{aligned}$

$$
=D\left(u_{0}\right)+\sum_{i \in J} d_{i} D\left(u_{i}\right) / u_{i}+\text { elements in } F(t) \backslash F[t],
$$

where $u_{0} \in F, d_{i} \in C, u_{i} \in F \backslash\{0\}$ for all $i \in \bar{J}$ and \bar{J} is a finite indexing set. This last equality follows from the fact that $\mathrm{G}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right) / \mathrm{x}_{\mathrm{i}}$ is a rational function of x_{i} with constant coefficients. So

$$
\begin{aligned}
\sum_{i \in J} c_{i} D\left(T w_{i}^{r_{i}}\right) G_{i}\left(x_{i}\right) & =M \sum_{\substack{i \in J \\
\lambda_{i}=0}} c_{i} D\left(w_{i}^{r_{i}}\right) G_{i}\left(x_{i}\right)+D\left(u_{o}\right)+\sum_{i \in \bar{J}} d_{i} D\left(u_{i}\right) / u_{i} \\
& + \text { elements in } F(t) \backslash F[t] .
\end{aligned}
$$

It is straightforward to see that

$$
\sum_{i \in I} b_{i} D\left(N v_{i}\right) /\left(N v_{i}\right)=\sum_{i \in I} b_{i} D\left(k_{i}\right) / k_{i}+\text { elements in } F(t) \backslash F[t],
$$

where $\mathrm{k}_{\mathrm{i}} \in \mathrm{F} \backslash\{0\}$ for all $\mathrm{i} \in \mathrm{I}$

From (4.9), we can conclude that

$$
\begin{align*}
M \gamma= & D\left(T v_{0}\right)+\sum_{i \in I} b_{i} D\left(k_{i}\right) / k_{i}+M \sum_{\substack{i \in J \\
\lambda_{i}=0}} c_{i} D\left(w_{i}^{r_{i}}\right) G_{i}\left(x_{i}\right) \tag{4.10}\\
& +D\left(u_{0}\right)+\sum_{i \in \bar{J}} d_{i} D\left(u_{i}\right) / u_{i}+\text { elements in } F(t) \backslash F[t] .
\end{align*}
$$

Now consider $\mathrm{D}\left(\mathrm{Tv}_{\mathrm{o}}\right)$.
Write $T v_{0}=\sum_{j=0}^{n} \bar{v}_{j} t^{j}+$ elements in $F(t) \backslash F[t]$, where $n \in Z^{+}$and $\bar{v}_{j} \in F$ for all $j=0,1, \ldots, n$, we have

$$
\begin{aligned}
\mathrm{D}\left(\mathrm{Tv}_{\mathrm{o}}\right)= & \mathrm{D}\left(\overline{\left.\mathrm{v}_{\mathrm{n}}\right) \mathrm{t}^{\mathrm{n}}}+\sum_{\mathrm{j}=1}^{\mathrm{n}}\left(\overline{\mathrm{v}}_{\mathrm{j}} \mathrm{D}(\mathrm{t})+\mathrm{D}\left(\bar{v}_{\mathrm{j}-1}\right)\right) \mathrm{t}^{\mathrm{j}-1}\right. \\
& + \text { elements in } \mathrm{F}(\mathrm{t}) \mathrm{F}[\mathrm{t}] .
\end{aligned}
$$

Claim that $n \leq 1$. Suppose that $n \geq 2$, hence $\bar{v}_{n} \neq 0$. Replacing $D\left(T v_{0}\right)$ in (4.10), we have that the right hand side of (4.10) would contain an expression of the form t^{i} with $i \geq 1$. Comparing terms of degree n and $n-1$ in (4.10), we get $D\left(\bar{v}_{n}\right)=0$ and $n \bar{v}_{n} D(t)+D\left(\bar{v}_{n-1}\right)=0$. Since $D\left(\bar{v}_{n}\right)=0, \bar{v}_{n} \in C$.

Hence $D\left(n \bar{v}_{n} t+\bar{v}_{n-1}\right)=n \bar{v}_{n} D(t)+D\left(\bar{v}_{n-1}\right)=0$. So $n \bar{v}_{n} t+\bar{v}_{n-1} \in C$.
Thus t is algebraic over F, a contradiction. So we have the cliam.
Therefore $\mathrm{D}\left(\mathrm{Tv}_{\mathrm{o}}\right)=\mathrm{D}\left(\mathrm{v}_{1}\right) \mathrm{t}+\mathrm{v}_{1} \mathrm{D}(\mathrm{t})+\mathrm{D}\left(\mathrm{v}_{\mathrm{o}}\right)+$ elements in $\mathrm{F}(\mathrm{t}) \operatorname{LF}[\mathrm{t}]$.
Clearly, $\bar{v}_{1} \in C$. Hence $D\left(T v_{0}\right)=\bar{v}_{1} D(t)+D\left(\bar{v}_{0}\right)+$ elemerits in $F(t){ }^{\prime} F[t]$.
Again replacing $\mathrm{D}\left(\mathrm{Tv}_{\mathrm{O}}\right)$ in (4.10) and comparing the head, we get

$$
\begin{aligned}
\mathrm{M} \gamma= & \bar{v}_{1} D(t)+D\left(\bar{v}_{0}+u_{o}\right)+\sum_{i \in \mathrm{I}} b_{i} D\left(k_{k_{1}}\right) / k_{i}+\sum_{i \in \bar{J}} d_{i} D\left(u_{i}\right) / u_{i} \\
& +M \sum_{\substack{i \in J \\
\lambda_{i}=0}} c_{i} D\left(w_{i}^{\mathrm{T}_{\mathrm{i}}}\right) G_{i}\left(x_{i}\right)
\end{aligned}
$$

Dividing by M, we obtain the correct sum of γ.

Part II. To remove the assumption that F is algebraically closed, we proceed as in the proof of Part II of Lemma 4.4.1.

Proof of Theorem 4.1.4. Let $m=\operatorname{tr} . \operatorname{deg} . \mathrm{K} / \mathrm{F}$. The proof is by induction on m . If $\mathrm{m}=0$, then K is algebraic over F , and the theorem is trivially true. Assume that $m>0$. Suppose that the theorem is true for any Gamma extension L of a field F^{\prime} such that tr. deg. $\mathrm{L} / \mathrm{F}^{\prime}<\mathrm{m}$. Since tr. deg. $\mathrm{K} / \mathrm{F}=\mathrm{m}$, we can choose a transcendence basis $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{m}}$ of K over F such that $\mathrm{F}=\mathrm{F}_{\mathrm{o}} \subset \mathrm{F}\left(\mathrm{t}_{1}\right)=\mathrm{F}_{1} \subset \ldots \subset \mathrm{~F}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{m}}\right)=\mathrm{F}_{\mathrm{m}} \subset \mathrm{K}$ and each t_{i} satisfies one of the following three conditions:
(1) $\mathrm{D}\left(\mathrm{t}_{\mathrm{i}}\right)=\mathrm{D}(\mathrm{u}) / \mathrm{u}$ for some nonzero u in $\overline{\mathrm{F}}_{\mathrm{i}-1} \cap \mathrm{~K}$,
(2) $\mathrm{D}\left(\mathrm{t}_{\mathrm{i}}\right)=\mathrm{D}(\mathrm{u}) \mathrm{t}_{\mathrm{i}}$ for some u in $\mathrm{F}_{\mathrm{i}-1} \cap \mathrm{~K}$,
(3) $\mathrm{D}\left(\mathrm{t}_{\mathrm{i}}\right)=\mathrm{D}\left(\mathrm{u}^{\mathrm{P}}\right) \mathrm{G}(\mathrm{v})$ for some $\mathrm{r} \in \mathbf{Q},-1 \leq \mathrm{r} \leq 1, \mathrm{G} \in \mathrm{C}(\mathrm{Y})$ and u , v in $\overline{\mathrm{F}}_{\mathrm{i}-1} \cap \mathrm{~K}$ such that $\mathrm{v} \neq 0, \mathrm{D}(\mathrm{v}) / \mathrm{v}=\mathrm{D}(\mathrm{u})$.
($\overline{\mathrm{F}}_{\mathrm{i}-1}$ denote the algebraic closure of $\mathrm{F}_{\mathrm{i}-1}$).
Note that K is also a Gamma extension of F_{1} and t . deg. $\mathrm{K} / \mathrm{F}_{1}=\mathrm{m}-\mathrm{l}<\mathrm{m}$. So by induction hypothesis, there exist
(1) $b_{1} \in C, v_{o}$ algebraic over F_{1} and nonzero elements v_{i} algebraic over $F_{!}$foi ail $i \in I$,
(2) $\mathrm{c}_{\mathrm{i}} \in \mathrm{C}, \mathrm{r}_{\mathrm{i}} \in \mathbf{Q}$ with $-1 \leq \mathrm{r}_{\mathrm{i}} \leq 1$, nonzéro elements $\mathrm{w}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}$ algebraic over F_{1} and $\mathrm{G}_{\mathrm{i}} \in \mathrm{C}(\mathrm{Y})$ for all $\mathrm{i} \in \mathrm{J}$,
such that

$$
\gamma=\mathrm{D}\left(\mathrm{v}_{\mathrm{o}}\right)+\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{~b}_{\mathrm{i}} \mathrm{D}\left(\mathrm{v}_{\mathrm{i}}\right) / \mathrm{v}_{\mathrm{i}}+\sum_{\mathrm{i} \in \mathrm{~J}} \mathrm{c}_{\mathrm{i}} \mathrm{D}\left(\mathrm{w}_{\mathrm{i}}^{\mathrm{r}_{\mathrm{i}}}\right) \mathrm{G}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right),
$$

where I, J are finite indexing sets, $\mathrm{D}\left(\mathrm{x}_{\mathrm{i}}\right) / \mathrm{x}_{\mathrm{i}}=\mathrm{D}\left(\mathrm{w}_{\mathrm{i}}\right)$ for all $\mathrm{i} \in \mathrm{J}$.
By Lemma 4.4.1 and 4.4.2, we get the result of the theorem.

