CHAPTER V

A GENERALIZATION OF A

STRUCTURE THEOREM OF RISCH

5.1 Preliminary Lemmas

In this chapter we generalize a structure theorem of Risch to another class of fields. First we give some preliminary lemmas that are used in the proof of the main result.

Lemma 5.1.1. Let F be a differential field of characteristic zero and K a differential extension field of F. Let $t \in K$ be transcendental over F. Assume that there are $u_1,...,u_p, v_1,...,v_p$ in K, with $u_1,...,u_p$ nonzero, such that precisely one member in each pair (u_i,v_i) is algebraic over F(t, $u_1,...,u_{i-1}, v_1,...,v_{i-1})$ if i > 1 or algebraic over F(t) if i = 1. Then the elements $du_1/u_1 - dv_1,...,du_p/u_p - dv_p$, dt of $\Omega_{K/F}$ are linearly independent over K

Proof. Let $a_0, a_1, \dots, a_p \in K$ be such that

(5.1)
$$a_0 dt + a_1 (du_1/u_1 - dv_1) + \dots + a_p (du_p/u_p - dv_p) = 0.$$

Since, by Theorem 1.6, there exists a K - homomorphism $g: \Omega_{K/F} \rightarrow \Omega_{K/F(t,u_1,...,u_{p-1},v_1,...,v_{p-1})}$ such that $g \circ d = d_p$, where d_p is the $F(t, u_1,...,u_{p-1}, v_1,...,v_{p-1})$ - derivation of K into $\Omega_{K/F(t,u_1,...,u_{p-1},v_1,...,v_{p-1})$.

Compose (5.1) by g to get

$$a_p(d_p u_p / u_p - d_p v_p) = 0.$$

Since precisely one member of each pair (up, vp) is algebraic over

F(t, $u_1,...,u_{p-1},v_1,...,v_{p-1}$), by Theorem 1.7, we obtain $d_p u_p / u_p - d_p v_p \neq 0$. Hence $a_p = 0$. Proceeding in the same manner, we conclude that $a_i = 0$ for all i = 0, 1, ..., p.

Lemma 5.1.2. Let F be a differential field of characteristic zero and K a differential extension field of F. Assume that there are $u_1,...,u_p$, $v_1,...,v_p$ in K, with $u_1,...,u_p$ nonzero, such that precisely one member in each pair (u_i, v_i) is algebraic over $F(u_1,..., u_{i-1}, v_1,...,v_{i-1})$ if i > 1 or algebraic over F if i = 1. Then the elements $du_1/u_1 - dv_1,...,du_p/u_p - dv_p$ of $\Omega_{K/F}$ are linearly independent over K.

Proof. The proof is analogous to the proof of Lemma 5.1.1.

Definition 5.1.3. Let F be a differential field and K a differential extension field of F. An element t of K is called an <u>elementary integral</u> over F if there exist elements v_0 , $v_1, ..., v_n$ in F, with $v_1, ..., v_n$ nonzero, and $c_1, ..., c_n$ constants of F such that

$$D(t) = D(v_0) + \sum_{i=1}^{n} c_i D(v_i) / v_i \quad \text{for each given derivation D of K.}$$

We say that K is a <u>general elementary extension</u> of F if there exists a finite tower of fields $F = F_0 \subset F_1 \subset \cdots \subset F_n = K$ such that for each i, $1 \le i \le n$, $F_i = F_{i-1}(t_i)$ and one of the following holds:

- (i) t_i is algebraic over F_{i-1} ,
- (ii) $t_i = \exp(u)$ for some u in F_{i-1} ,
- (iii) $t_i = \log(u)$ for some nonzero u in F_{i-1} ,
- (iv) t_i is primitive and nonelementary integral over F_{i-1} .

Let F be a differential field. The statement "K = $F(t_1,...,t_n)$ is an elementary extension of F (or general elementary extension of F)" refers to the tower of fields $F = F_0 \subset F_1 \subset \cdots \subset F_n = K$ such that $F_i = F_{i-1}(t_i)$ where each t_i satisfies one of the conditions in the definition of the elementary extension (or general elementary extension, respectively).

Let
$$E = \{ i \mid t_i = exp(a_i), a_i \in F_{i-1}, 1 \le i \le n \}$$
 and
 $L = \{ i \mid t_i = log(a_i), a_i \in F_{i-1}, 1 \le i \le n \}.$

Example. Let C be the field of complex numbers and let $K = C(x, \log(x), \exp(x), \sqrt{x})$ with the usual derivation D = d/dx. Note that $C = F_0 \subset F_1 = F_0(t_1) \subset F_2 = F_1(t_2) \subset F_3 = F_2(t_3) \subset F_4 = F_3(t_4) = K$, where $t_1 = x, t_2 = \log(x), t_3 = \exp(x), t_4 = \sqrt{x}$. Hence $E = \{3\}$ and $L = \{2\}$.

Lemma 5.1.4. Let F be a differential field of characteristic zero, $K = F(t_1,...,t_n)$ an elementary extension of F with the same subfield of constants C. Suppose that $u_1,...,u_m$ and v are elements of K, with $u_1,...,u_m$ nonzero, and $\alpha_1 = 1, \alpha_2,...,\alpha_m \in C$ such that $\sum_{i=1}^{m} \alpha_i D(u_i)/u_i + D(v) \in F$ for each given derivation D of K. Then

(1) there are $\{c_i \in C \mid i \in L\}$, $\{d_i \in C \mid i \in E\}$ and f in the algebraic closure of F in K such that

$$\mathbf{v}$$
 + $\sum_{i \in L} c_i t_i$ + $\sum_{i \in E} d_i a_i$ = f,

where $t_i = \exp(a_i)$ for $i \in E$,

(2) there are { $k_i \in \mathbb{Z} \mid k_1 \neq 0$, i = 1,...,m }, { $n_i \in \mathbb{Z} \mid i \in L$ }, { $m_i \in \mathbb{Z} \mid i \in E$ } and g in the algebraic closure of F in K such that

$$\left(\prod_{i=1}^{m} u_i^{k_i}\right) \left(\prod_{i\in L} a_i^{n_i}\right) \left(\prod_{i\in E} t_i^{m_i}\right) = g,$$

where $t_i = \exp(a_i)$ for $i \in L$.

Proof. There are $z_1, ..., z_r, y_1, ..., y_r \in K$ with $z_i \neq 0$ for i = 1, ..., r such that

(i) $D(z_i)/z_i = D(y_i)$ for each given derivation D of K,

- (ii) one member in each pair (z_i, y_i) must be t_i for some $1 \le j \le n$,
- (iii) precisely one member in each pair (z_i, y_i) is algebraic over $F(z_1, ..., z_{i-1}, y_1, ..., y_{i-1})$ if i > 1 or algebraic over F if i = 1,
- (iv) K is algebraic over $F(z_1,...,z_r, y_1,...,y_r)$.

We have
$$D(z_i)/z_i - D(y_i) = 0 \in F$$
 for $i = 1,...,r$, and $\sum_{i=1}^{m} \alpha_i D(u_i)/u_i + D(v) \in F$.

Since $u_1, ..., u_m, v \in K$ and by (iv), $u_1, ..., u_m, v$ are algebraic over

$$F(z_1,...,z_r, y_1,...,y_r)$$
. Hence tr.deg. $F(z_1,...,z_r, y_1,...,y_r, u_1,...,u_m, v)/F < r+1$.

By Theorem 1.8, we can conclude that the elements $dz_1/z_1 - dy_1,...,dz_r/z_r - dy_r$, $\sum_{i=1}^{m} \alpha_i du_i/u_i + dv \text{ of } \Omega_{K/F} \text{ are linearly dependent over C.}$

Thus there exist $\gamma_0, \gamma_1, ..., \gamma_{\Gamma} \in C$, not all zero, such that

(5.2)
$$\gamma_0(\sum_{i=1}^m \alpha_i du_i/u_i + dv) + \sum_{i=1}^r \gamma_i(dz_i/z_i - dy_i) = 0.$$

Claim that $\gamma_0 \neq 0$. Suppose not. Then

(5.3)
$$\sum_{i=1}^{r} \gamma_i (dz_i/z_i - dy_i) = 0$$

By Lemma 5.1.2, $dz_1/z_1 - dy_1,...,dz_r/z_r - dy_r$ are linearly independent over K. Hence, from (5.3), $\gamma_i = 0$ for i = 1, ..., r.

Thus $\gamma_0 = \gamma_1 = ... = \gamma_r = 0$, a contradiction. So we have the claim.

Without loss of generality, we assume $\gamma_0 = 1$. Let $c_1 = 1, c_2,...,c_s$ be a basis for the vector space over \mathbf{Q} spanned by { $\alpha_1 = 1, \alpha_2,...,\alpha_m, \gamma_1,...,\gamma_r$ } and for i = 1,...,m, write $\alpha_i = \sum_{j=1}^s n_{ij}c_j$ with each $n_{ij} \in \mathbf{Q}$, and for i = 1,...,r, write $\gamma_i = \sum_{j=1}^s m_{ij}c_j$ with each $m_{ij} \in \mathbf{Q}$.

Replacing each ci by ci/least common denominator of {n₁₁,...,n_{ms}, m₁₁,...,m_{rs}}, if

necessary, we can assume each n_{ij} , $m_{ij} \in {\rm Z}$. In particular,

$$1 = \alpha_1 = \sum_{j=1}^{s} n_{1j}c_j = n_{11}c_1$$
; that is $n_{11} = 1, n_{12} = n_{13} = \dots = n_{1s} = 0$

Let
$$w_j = \left(\prod_{i=1}^m u_i^{n_{ij}}\right) \left(\prod_{i=1}^r z_i^{m_{ij}}\right)$$
 for $j = 1,...,s$.

We can rewrite (5.2) as $\sum_{j=1}^{s} c_j dw_j / w_j + d(v - \gamma_1 y_1 - \dots - \gamma_r y_r) = 0.$

By Theorem 1.7, v - $\gamma_1 y_1 - \cdots - \gamma_r y_r$ and w_1 are algebraic over F. Hence

(5.4)
$$\begin{pmatrix} v - \gamma_1 y_1 - \dots - \gamma_r y_r &= f & \text{and} \\ \\ \begin{pmatrix} \prod_{i=1}^m u_i^{n_{i1}} \\ i & i \end{pmatrix} \begin{pmatrix} \prod_{i=1}^r z_i^{m_{i1}} \\ i & i \end{pmatrix} &= w_1 &= g, \end{pmatrix}$$

where f, g are in the algebraic closure of F in K. Note that each y_i either equals some t_j with $j \in L$ or equals some a_j where $t_j = \exp(a_j)$, $j \in E$. Each z_i either equals some t_j with $j \in E$ or equals some a_j where $t_j = \log(a_j)$, $j \in L$. Substitute the y_i and the z_i in (5.4), to obtain the desired result.

5.2 Main Theorem

Theorem. Let F be a differential field of characteristic zero, $K = F(t_1,...,t_n)$ a general elementary extension of F with the same subfield of constants C. Suppose that $u_1,...,u_m$ and v are elements of K, and $\alpha_1 = 1, \alpha_2,...,\alpha_m \in C$ are such that

$$\sum_{i=1}^{m} \alpha_i D(u_i)/u_i + D(v) = 0 \text{ for each given derivation D of K}$$

Then

(1) there are { $c_i \in C \mid i \in L$ }, { $d_i \in C \mid i \in E$ } and f in the algebraic closure of

F in K such that

$$v + \sum_{i \in L} c_i t_i + \sum_{i \in E} d_i a_i = f,$$

where $t_i = \exp(a_i)$ for $i \in E$,

(2) there are { $k_i \in \mathbb{Z} \mid k_1 \neq 0, i = 1,...,m$ }, { $n_i \in \mathbb{Z} \mid i \in L$ }, { $m_i \in \mathbb{Z} \mid i \in E$ }, and g in the algebraic closure of F in K such that

$$\left(\prod_{i=1}^{m} u_i^{k_i}\right) \left(\prod_{i \in L} a_i^{n_i}\right) \left(\prod_{i \in E} t_i^{m_i}\right) = g,$$

where $t_i = \exp(a_i)$ for $i \in L$.

Proof. The proof is by induction on r, the number of primitive and nonelementary integral among $t_1, ..., t_n$. For r = 0, the theorem is true by Lemma 5.1.4.

Let $r \ge 1$. Assume that the theorem is true for all smaller values of r. Among the r t_i 's that are primitive and nonelementary integral over F_{i-1} , let t_R be the one with the largest subscript.

For notation simplicity, let $F' = F(t_1, ..., t_{R-1})$ if R > 1 or F' = F if R = 1 and $t = t_R$. There are $z_1, ..., z_p, y_1, ..., y_p \in K$ with $z_i \neq 0$ for i=1,...,p such that

(i) for i = 1,...,p, $D(z_i)/z_i = D(y_i)$ for each given derivation D of K,

- (ii) one member in each pair (z_i, y_i) must be t_i for some $R+1 \le j \le n$,
- (iii) precisely one member in each pair (z_i, y_i) is algebraic over

 $F'(t, z_1, ..., z_{i-1}, y_1, ..., y_{i-1})$ if i > 1 or algebraic over F'(t) if i = 1,

(iv) K is algebraic over $F'(t, z_1, ..., z_p, y_1, ..., y_p)$.

Note that $D(t) \in F'$, D(t)/T = D(t) = 0, C = F' for i = 1

$$D(z_i)/z_i - D(y_i) = 0 \in F' \text{ for } i = 1,...,p,$$

$$\sum_{i=1}^{m} \alpha_i D(u_i)/u_i - D(v) = 0 \in F',$$

and that tr.deg. $F'(t, z_1,...,z_p, y_1,...,y_p,u_1,...,u_m, v)/F' . By Theorem 1.8, we$

can conclude that the elements dt, $dz_1/z_1 - dy_1, ..., dz_p/z_p - dy_p$, $\sum_{i=1}^m \alpha_i du_i/u_i - dv$ of $\Omega_{K/F'}$ are linearly dependent over C, and so

there exist $\gamma_0,\,\gamma_1,\,...,\!\gamma_p,\,\gamma\ \in C$, not all zero, such that

(5.5)
$$\gamma_0(\sum_{i=1}^m \alpha_i du_i/u_i - dv) + \sum_{i=1}^p \gamma_i(dz_i/z_i - dy_i) + \gamma dt = 0.$$

Claim that $\gamma_0 \neq 0$. Suppose not. Then

(5.6)
$$\sum_{i=1}^{p} \gamma_i (dz_i/z_i - dy_i) + \gamma dt = 0.$$

By Lemma 5.1.1, $dz_1/z_1 - dy_1,...,dz_p/z_p - dy_p$, dt are linearly independent over K. Hence, from (5.6), $\gamma_1 = \gamma_2 = ... = \gamma_p = \gamma = 0$.

Thus $\gamma_0 = \gamma_1 = \gamma_2 = ... = \gamma_p = \gamma = 0$, a contradiction. So we have the claim. Without loss of generality, we assume $\gamma_0 = 1$.

Let $c_1 = 1, c_2, ..., c_q$ be a basis for the vector space over \mathbf{Q} spanned by $\{\alpha_1 = 1, \alpha_2, ..., \alpha_m, \gamma_1, ..., \gamma_p\}$ and for each i = 1, ..., m, write $\alpha_i = \sum_{j=1}^q n_{ij}c_j$ with each $n_{ij} \in \mathbf{Q}$, for each i = 1, ..., p, write $\gamma_i = \sum_{j=1}^q m_{ij}c_j$ with each $m_{ij} \in \mathbf{Q}$.

Replacing each c_j by c_j /least common denominator of $\{n_{11}, ..., n_{mq}, m_{11}, ..., m_{pq}\}$, if necessary, we can assume each n_{ij} , $m_{ij} \in \mathbb{Z}$. In particular,

$$1 = \alpha_1 = \sum_{j=1}^{q} n_{1j}c_j = n_{11}c_1$$
; that is $n_{11} = 1$, $n_{12} = ... = n_{1q} = 0$.

$$\begin{split} \mathbf{w}_{0} &= \mathbf{v} - \sum_{i=1}^{p} \gamma_{i} \mathbf{y}_{i} + \gamma \mathbf{t} ,\\ \mathbf{w}_{j} &= \left(\prod_{i=1}^{m} \mathbf{u}_{i}^{n} \mathbf{i}_{j}\right) \left(\prod_{i=1}^{p} \mathbf{z}_{i}^{m} \mathbf{i}_{j}\right) \qquad \text{for } j = 1, \dots, p. \end{split}$$

Let

We can rewrite (5.5) as

(5.7)
$$\sum_{j=1}^{q} c_j dw_j / w_j + dw_0 = 0.$$

By Theorem 1.7, w_0 , w_1 ,..., w_q are algebraic over F'.

We now show
$$\gamma = 0$$
.

Note that $\gamma D(t) = \sum_{j=1}^{q} c_j D(w_j)/w_j + D(w_0)$ for each given derivation D of K.

 $w_0, w_1, ..., w_q$ are algebraic over F', so taking σ , an element of the Galois group of F'($w_0, w_1, ..., w_q$) over F', and summing over all σ , gives

$$s\gamma Dt = \sum_{j=1}^{q} c_j D(Nw_j)/Nw_j + D(Tw_0),$$

for some $s \in \mathbb{Z} \setminus \{0\}$ and for each given derivation D of K (N and T denote the norm and trace respectively).

If $\gamma \neq 0$, then t would be an elementary integral over F', a contradiction. Hence $\gamma = 0$.

Consequently,
$$\sum_{j=1}^{q} c_j D(w_j)/w_j + D(w_0) = 0$$
 for each given derivation D of
K and $w_0 = v - \sum_{i=1}^{p} \gamma_i y_i$.

The number of primitive and nonelementary integral among $t_1, ..., t_{R-1}, w_0, ..., w_q$, the generators of $F(t_1, ..., t_{R-1}, w_0, ..., w_q)$ over F, is less than r.

So by the induction hypothesis we have,

(5.8)
$$w_0 + \sum_{i \in L'} c'_i t_i + \sum_{i \in E'} d'_i a_i = f,$$

(5.9)
$$\left(\prod_{i=1}^{q} w_i^{k_i}\right) \left(\prod_{i \in L'} a_i^{n_i}\right) \left(\prod_{i \in E'} t_i^{m_i}\right) = g,$$

where $E' = \{ i \mid 1 \le i \le R-1, t_i = exp(a_i) \text{ and } a_i \in F_{i-1} \}$,

(5.10)
$$w_{0} = v - \sum_{i=1}^{p} \gamma_{i} y_{i}$$

$$w_{1} = u_{1}^{n_{11}} u_{2}^{n_{21}} \cdots u_{m}^{n_{m1}} \prod_{i=1}^{p} z_{i}^{m_{i1}} \qquad (n_{11} = 1),$$

$$w_{2} = u_{1}^{n_{12}} u_{2}^{n_{22}} \cdots u_{m}^{n_{m2}} \prod_{i=1}^{p} z_{i}^{m_{i2}} \qquad (n_{12} = 0),$$

$$\vdots$$

$$w_{q} = u_{1}^{n_{1q}} u_{2}^{n_{2q}} \cdots u_{m}^{n_{mq}} \prod_{i=1}^{p} z_{i}^{m_{iq}} \qquad (n_{1q} = 0).$$

Subsitute the expressions (5.10) and (5.11) in (5.8) and (5.9) respectively and note that each y_i either equals some t_j with $j \in L$ or equals some a_j where $\tau_j = \exp(a_j)$, $j \in E$, and each z_i either equals some t_j with $j \in E$ or equals some a_j where $t_j = \log(a_j)$, $j \in L$, we get the desired result.

#