CHAPTER V

A GENERALIZATION OF A

STRUCTURE THEOREM OF RISCH

5.1 Preliminary Lemmas

In this chapter we generalize a structure theorem of Risch to another class of fields. First we give some preliminary lemmas that are used in the proof of the main result.

Lemma 5.1.1. Let F be a differential field of characteristic zero and K a differential extension field of F. Let $t \in K$ be transcendental over F. Assume that there are $\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{p}}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{p}}$ in K , with $\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{p}}$ nonzero, such that precisely one member in each pair $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right)$ is algebraic over $\mathrm{F}\left(\mathrm{t}, \mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{i}-1}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{i}-1}\right)$ if $\mathrm{i}>1$ or algebraic over $\mathrm{F}(\mathrm{t})$ if $\mathrm{i}=1$. Then the elements $d u_{1} / u_{1}-d v_{1} \ldots, d u_{p} / u_{p}-d v_{p}, d t$ of $\Omega_{K / F}$ are linearly independent over K

Proof. Let $a_{0}, a_{1}, \ldots, a_{p} \in K$ be such that

$$
\begin{equation*}
a_{0} d t+a_{1}\left(d u_{1} / u_{1}-d v_{1}\right)+\ldots+a_{p}\left(d u_{p} / u_{p}-d v_{p}\right)=0 \tag{5.1}
\end{equation*}
$$

Since, by Theorem 1.6, there exists a K - homomorphism $\mathrm{g}: \Omega_{\mathrm{K} / \mathrm{F}} \rightarrow \Omega_{\mathrm{K} / \mathrm{F}\left(\mathrm{t}, \mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{p}-1}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{p}-1}\right)}$ such that $\mathrm{god}=\mathrm{d}_{\mathrm{p}}$, where d_{p} is the $\mathrm{F}\left(\mathrm{t}, \mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{p}-1}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{p}-1}\right)$ - derivation of K into $\left.\Omega_{\mathrm{K} / \mathrm{F}\left(\mathrm{t}, \mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{p}-1}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{p}-1}\right)}\right)$.

Compose (5.1) by g to get

$$
a_{p}\left(d_{p} u_{p} / u_{p}-d_{p} v_{p}\right)=0 .
$$

Since precisely one member of each pair (u_{p}, v_{p}) is algebraic over
$\mathrm{F}\left(\mathrm{t}, \mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{p}-1}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{p}-1}\right)$, by Theorem 1.7, we obtain $\mathrm{d}_{\mathrm{p}} \mathrm{u}_{\mathrm{p}} / \mathrm{u}_{\mathrm{p}}-\mathrm{d}_{\mathrm{p}} \mathrm{v}_{\mathrm{p}} \neq 0$. Hence $a_{p}=0$. Proceeding in the same manner, we conclude that $a_{i}=0$ for all $\mathrm{i}=0,1, \ldots, \mathrm{p}$.

Lemma 5.1.2. Let F be a differential field of characteristic zero and K a differential extension field of F. Assume that there are $u_{1}, \ldots, u_{p}, v_{1}, \ldots, v_{p}$ in K, with u_{1}, \ldots, u_{p} nonzero, such that precisely one member in each pair $\left(u_{i}, v_{i}\right)$ is algebraic over $F\left(u_{1}, \ldots, u_{i-1}, v_{1}, \ldots, v_{i-1}\right)$ if $\mathrm{i}>1$ or algebraic over F if $\mathrm{i}=1$. Then the elements $d u_{1} / u_{1}-d v_{1}, \ldots, d u_{p} / u_{p}-d v_{p}$ of $\Omega_{K / F}$ are linearly independent over K.

Proof. The proof is analogous to the proof of Lemma 5.1.1.

Definition 5.1.3. Let F be a differential field and K a differential extension field of F . An element t of K is called an elementarv integral over F if there exist elements v_{0}, $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$ in F , with $\mathrm{v}_{1}, . ., \mathrm{v}_{\mathrm{n}}$ nonzero, and $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}$ constants of F such that

$$
D(t)=D\left(v_{0}\right)+\sum_{i=1}^{n} c_{i} D\left(v_{i}\right) / v_{i} \quad \text { for each given derivation } D \text { of } K .
$$

We say that K is a general elemencary oxtension of F if there exists a finite tower of fields $\mathrm{F}=\mathrm{F}_{\mathrm{o}} \subset \mathrm{F}_{1} \subset \cdots \subset \mathrm{~F}_{\mathrm{n}}=\mathrm{K}$ such that for each $\mathrm{i}, \mathrm{l} \leq \mathrm{i} \leq \mathrm{n}$, $\mathrm{F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}-1}\left(\mathrm{t}_{\mathrm{i}}\right)$ and one of the following holds:
(i) t_{i} is algebraic over F_{i-1},
(ii) $\mathrm{t}_{\mathrm{i}}=\exp (\mathrm{u})$ for some u in $\mathrm{F}_{\mathrm{i}-1}$,
(iii) $\mathrm{t}_{\mathrm{i}}=\log (\mathrm{u})$ for some nonzero u in $\mathrm{F}_{\mathrm{i}-1}$,
(iv) t_{i} is primitive and nonelementary integral over F_{i-1}

Let F be a differential field. The statement " $\mathrm{K}=\mathrm{F}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$ is an elementary extension of F (or general elementary extension of F)" refers to the tower of fields $\mathrm{F}=\mathrm{F}_{\mathrm{o}} \subset \mathrm{F}_{1} \subset \cdots \subset \mathrm{~F}_{\mathrm{n}}=\mathrm{K}$ such that $\mathrm{F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}-1}\left(\mathrm{t}_{\mathrm{i}}\right)$ where each t_{i} satisfies one of the
conditions in the definition of the elementary extension (or general elementary extension, respectively).
Let $E=\left\{\mathrm{i} \mid \mathrm{t}_{\mathrm{i}}=\exp \left(\mathrm{a}_{\mathrm{i}}\right), \mathrm{a}_{\mathrm{i}} \in \mathrm{F}_{\mathrm{i}-1}, \mathrm{l} \leq \mathrm{i} \leq \mathrm{n}\right\}$ and
$L=\left\{i \mid t_{i}=\log \left(a_{i}\right), a_{i} \in F_{i-1}, l \leq i \leq n\right\}$.

Example. Let \mathbf{C} be the field of complex numbers and let
 $K=\mathbf{C}(\mathrm{x}, \log (\mathrm{x}), \exp (\mathrm{x}), \sqrt{\mathrm{x}})$ with the usual derivation $\mathrm{D}=\mathrm{d} / \mathrm{dx}$.

Note that $C=F_{0} \subset F_{1}=F_{0}\left(t_{1}\right) \subset F_{2}=F_{1}\left(\mathrm{t}_{2}\right) \subset \mathrm{F}_{3}=\mathrm{F}_{2}\left(\mathrm{t}_{3}\right) \subset \mathrm{F}_{4}=\mathrm{F}_{3}\left(\mathrm{t}_{4}\right)=\mathrm{K}$, where $t_{1}=x, t_{2}=\log (x), t_{3}=\exp (x), t_{4}=\sqrt{x}$. Hence $E=\{3\}$ and $L=\{2\}$.

Lemma 5.1.4. Let F be a differential field of characteristic zero, $K=F\left(t_{1}, \ldots, t_{n}\right)$ an elementary extension of F with the same subfield of constants C. Suppose that u_{1}, \ldots, u_{m} and v are elements of K, with u_{1}, \ldots, u_{m} nonzero, and $\alpha_{1}=1, \alpha_{2}, \ldots, \alpha_{m} \in C$ such that $\sum_{i=1}^{m} \alpha_{i} D\left(u_{i}\right) / u_{i}+D(v) \in F$ for each given derivation D of K. Then
(1) there are $\left\{\mathrm{c}_{\mathrm{i}} \in \mathrm{C} \mid \mathrm{i} \in \mathrm{L}\right\},\left\{\mathrm{d}_{\mathrm{i}} \in \mathrm{C} \mid \mathrm{i} \in \mathrm{E}\right\}$ and f in the algebraic closure of F in K such that

$$
\mathrm{v}+\sum_{\mathrm{i} \in \mathrm{~L}} \mathrm{c}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}+\sum_{\mathrm{i} \in \mathrm{E}} \mathrm{~d}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}}=\mathrm{f},
$$

where $t_{i}=\exp \left(a_{i}\right)$ for $i \in E$,
(2) there are $\left\{\mathrm{k}_{\mathrm{i}} \in \mathbf{Z} \mid \mathrm{k}_{\mathrm{l}} \neq \mathrm{C}, \mathrm{i}=1, \ldots, \mathrm{~m}\right\},\left\{\mathrm{n}_{\mathrm{i}} \in \mathbf{Z} \mid \mathrm{i} \in \mathrm{L}\right\},\left\{\mathrm{m}_{\mathrm{i}} \in \mathbf{Z} \mid \mathrm{i} \in \mathrm{E}\right\}$ and g in the algebraic closure of F in K such that

$$
\left(\prod_{i=1}^{m} u_{i}^{k_{i}}\right)\left(\prod_{i \in L} a_{i}^{n_{i}}\right)\left(\prod_{i \in E} t_{i}^{m_{i}}\right)=g,
$$

where $t_{i}=\exp \left(a_{i}\right)$ for $i \in L$.

Proof. There are $\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{r}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{r}} \in \mathrm{K}$ with $\mathrm{z}_{\mathrm{i}} \neq 0$ for $\mathrm{i}=1, \ldots, \mathrm{r}$ such that
(i) $\mathrm{D}\left(\mathrm{z}_{\mathrm{i}}\right) / \mathrm{z}_{\mathrm{i}}=\mathrm{D}\left(\mathrm{y}_{\mathrm{i}}\right)$ for each given derivation D of K ,
(ii) one member in each pair $\left(\mathrm{z}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ must be t_{j} for some $\mathrm{l} \leq \mathrm{j} \leq \mathrm{n}$,
(iii) precisely one member in each pair ($\mathrm{z}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) is algebraic over $\mathrm{F}\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{i}-1}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{i}-1}\right)$ if $\mathrm{i}>1$ or algebraic over F if $\mathrm{i}=1$,
(iv) K is algebraic over $\mathrm{F}\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{r}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{r}}\right)$.

We have $D\left(z_{i}\right) / z_{i}-D\left(y_{i}\right)=0 \in F$ for $i=1, \ldots, r$, and $\sum_{i=1}^{m} \alpha_{i} D\left(u_{i}\right) / u_{i}+D(v) \in F$.
Since $u_{1}, \ldots, u_{m}, v \in K$ and by (iv), u_{1}, \ldots, u_{m}, v are algebraic over
$\mathrm{F}\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{r}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{r}}\right)$. Hence tr. deg. $\mathrm{F}\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{r}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{r}}, \mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{m}}, \mathrm{v}\right) / \mathrm{F}<\mathrm{r}+1$.
By Theorem 1.8, we can conclude that the elements $d z_{1} / z_{1}-d y_{1}, \ldots, d z_{T} / z_{r}-d y_{\mathrm{r}}$,
$\sum_{i=1}^{m} \alpha_{i} d u_{i} / u_{i}+d v$ of $\Omega_{K / F}$ are linearly dependent over C.
Thus there exist $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{\Gamma} \in C$, not all zero, such that

$$
\begin{equation*}
\gamma_{0}\left(\sum_{i=1}^{m} \alpha_{i} d u_{i} / u_{i}+d v\right)+\sum_{i=1}^{r} \gamma_{i}\left(d z_{i} / z_{i}-d y_{i}\right)=0 \tag{5.2}
\end{equation*}
$$

Claim that $\gamma_{O} \neq 0$. Suppose not. Then

$$
\begin{equation*}
\left.\sum_{i=1}^{r} \gamma_{i}^{\prime} d z_{i} / z_{i}-d y_{i}\right)=0 \tag{5.3}
\end{equation*}
$$

By Lemma 5.1.2, $d z_{1} / z_{1}-d y_{1}, \ldots, d z_{\mathrm{r}} / z_{r}-d y_{\Gamma}$ are linearly independent over K.
Hence, from (5.3), $\gamma_{i}=0$ for $i=1, \ldots, r$.
Thus $\gamma_{0}=\gamma_{1}=\ldots=\gamma_{\mathrm{r}}=0$, a contradiction. So we have the claim.
Without loss of generality, we assume $\gamma_{\mathrm{O}}=1$. Let $\mathrm{c}_{1}=1, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{s}}$ be a basis for the vector space over \mathbf{Q} spanned by $\left\{\alpha_{1}=1, \alpha_{2}, \ldots, \alpha_{m}, \gamma_{1}, \ldots, \gamma_{\gamma}\right\}$ and for $\mathrm{i}=1, \ldots, \mathrm{~m}$, write $\alpha_{i}=\sum_{j=1}^{s} n_{i j} c_{j}$ with each $n_{i j} \in \mathbf{Q}$, and
for $\mathrm{i}=1, \ldots, \mathrm{r}$, write $\gamma_{\mathrm{i}}=\sum_{\mathrm{j}=1}^{\mathrm{s}} \mathrm{m}_{\mathrm{ij}} \mathrm{c}_{\mathrm{j}}$ with each $\mathrm{m}_{\mathrm{ij}} \in \mathbf{Q}$.
Replacing each c_{j} by $c_{j} /$ least common denominator of $\left\{n_{11}, \ldots, n_{m s}, m_{11}, \ldots, m_{r s}\right\}$, if
necessary, we can assume each $\mathrm{n}_{\mathrm{ij}}, \mathrm{m}_{\mathrm{ij}} \in \mathbf{Z}$. In particular,

$$
1=\alpha_{1}=\sum_{j=1}^{s} n_{1 j c_{j}}=n_{11} c_{1} \text {; that is } n_{11}=1, n_{12}=n_{13}=\ldots=n_{1 s}=0
$$

Let $\quad w_{j}=\left(\prod_{i=1}^{m} u_{i}^{n_{i j}}\right)\left(\prod_{i=1}^{r} z_{i}^{m_{i j}}\right) \quad$ for $j=1, \ldots, s$.
We can rewrite (5.2) as $\sum_{j=1}^{s} c_{j} d w_{j} / w_{j}+d\left(v-\gamma_{1} y_{1}-\cdots-\gamma_{r} y_{r}\right)=0$.
By Theorem 1.7, $\mathrm{v}-\gamma_{1} \mathrm{y}_{1}-\cdots-\gamma_{\mathrm{r}} \mathrm{y}_{\mathrm{r}}$ and w_{1} are algebraic over F .
Hence

$$
\left\{\begin{array}{c}
v-\gamma_{1} y_{1}-\ldots-\gamma_{r} y_{r}=f \text { and } \tag{5.4}\\
\left(\prod_{i=1}^{m} u_{i}^{n_{i 1}}\right)\left(\prod_{i=1}^{r} z_{i}^{m_{i 1}}\right)=w_{1}=g
\end{array}\right.
$$

where f, g are in the algebraic closure of F in K. Note that each y_{i} either equals some t_{j} with $j \in L$ or equals some a_{j} where $t_{j}=\exp \left(a_{j}\right), j \in E$. Each z_{i} either equals some t_{j} with $\mathrm{j} \in \mathrm{E}$ or equals some a_{j} where $\mathrm{t}_{\mathrm{j}}=\log \left(a_{j}\right), \mathrm{i} \in \mathrm{L}$. Substitute the y_{i} and the z_{i} in (5.4), to obtain the desired result.

5.2 Main Theorem

Theorem. Let F be a differential field of characteristic zero, $\mathrm{K}=\mathrm{F}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$ a general elementary extension of F with the same subfield of constants C. Suppose that u_{1}, \ldots, u_{m} and v are elements of K, and $\alpha_{1}=1, \alpha_{2}, \ldots, \alpha_{m} \in C$ are such that

$$
\sum_{i=1}^{m} \alpha_{i} D\left(u_{i}\right) / u_{i}+D(v)=0 \text { for each given derivation } D \text { of } K
$$

Then
(1) there are $\left\{\mathrm{c}_{\mathrm{i}} \in \mathrm{C} \mid \mathrm{i} \in \mathrm{L}\right\},\left\{\mathrm{d}_{\mathrm{i}} \in \mathrm{C} \mid \mathrm{i} \in \mathrm{E}\right\}$ and f in the algebraic closure of

Fin K such that

$$
v+\sum_{i \in L} c_{i} t_{i}+\sum_{i \in E} d_{i} a_{i}=f,
$$

where $t_{i}=\exp \left(a_{i}\right)$ for $i \in E$,
(2) there are $\left\{\mathrm{k}_{\mathrm{i}} \in \mathbf{Z} \mid \mathrm{k}_{1} \neq 0, \mathrm{i}=1, \ldots, \mathrm{~m}\right\},\left\{\mathrm{n}_{\mathrm{i}} \in \mathbf{Z} \mid \mathrm{i} \in \mathrm{L}\right\},\left\{\mathrm{m}_{\mathrm{i}} \in \mathbf{Z} \mid \mathrm{i} \in \mathrm{E}\right\}$, and g in the algebraic closure of F in K such that

$$
\left(\prod_{i=1}^{m} u_{i}^{k_{i}}\right)\left(\prod_{i \in L} a_{i}^{n_{i}}\right)\left(\prod_{i \in E} t_{i}^{m_{i}}\right)=g,
$$

where $t_{i}=\exp \left(a_{i}\right)$ for $i \in L$.

Proof. The proof is by induction on r , the number of primitive and nonelementary integral among $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}$. For $\mathrm{r}=0$, the theorem is true by Lerıma 5.1.4.

Let $r \geq 1$. Assume that the theorem is true for all smaller values of r. Among the $r t_{i}$'s that are primitive and nonelementary integral over $\mathrm{F}_{\mathrm{i}-1}$, let t_{R} be the one with the largest subscript.

For notation simplicity, let $F^{\prime}=F\left(t_{1} \ldots, t_{R-1}\right)$ if $R>1$ or $F^{\prime}=F$ if $R=1$ and $t=t_{R}$. There are $z_{1}, \ldots, z_{p}, y_{1}, \ldots, y_{p} \in K$ with $z_{i} \neq 0$ for $i=1, \ldots, p$ such that
(i) for $\mathrm{i}=1, \ldots, \mathrm{p}, \mathrm{D}\left(\mathrm{z}_{\mathrm{i}}\right) / \mathrm{z}_{\mathrm{i}}=\mathrm{D}\left(\mathrm{y}_{\mathrm{i}}\right)$ for each given derivation D of K ,
(ii) one member in each pair ($\mathrm{z}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) must be t_{j} for some $\mathrm{R}+1 \leq \mathrm{j} \leq \mathrm{n}$,
(iii) precisely one member in each pair $\left(\mathrm{z}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ is algebraic over

$$
F^{\prime}\left(t, z_{1}, \ldots, z_{i-1}, y_{1}, \ldots, y_{i-1}\right) \text { if } i>1 \text { or algebraic over } F^{\prime}(t) \text { if } i=1
$$

(iv) K is algebraic over $\mathrm{F}^{\prime}\left(\mathrm{t}, \mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{p}}, \mathrm{y}_{1} \ldots, \mathrm{y}_{\mathrm{p}}\right)$.

Note that $D(t) \in F^{\prime}$,

$$
\begin{aligned}
& D\left(z_{i}\right) / z_{i}-D\left(y_{i}\right)=0 \in F^{\prime} \text { for } i=1, \ldots, p \\
& \sum_{i=1}^{m} \alpha_{i} D\left(u_{i}\right) / u_{i}-D(v)=0 \in F^{\prime}
\end{aligned}
$$

and that tr.deg. $\mathrm{F}^{\prime}\left(\mathrm{t}, \mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{p}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{p}}, \mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{m}}, \mathrm{v}\right) / \mathrm{F}^{\prime}<\mathrm{p}+2$. By Theorem 1.8, we can conclude that the elements $d t, d z_{1} / z_{1}-d y_{1}, \ldots, d z_{p} / z_{p}-d y_{p}, \sum_{i=1}^{m} \alpha_{i} d u_{i} / u_{i}-d v$ of $\Omega_{\mathrm{K} / \mathrm{F}^{\prime}}$ are linearly dependent over C , and so
there exist $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{p}, \gamma \in C$, not all zero, such that

$$
\begin{equation*}
\gamma_{0}\left(\sum_{i=1}^{m} \alpha_{i} d u_{i} / u_{i}-d v\right)+\sum_{i=1}^{p} \gamma_{i}\left(d z_{i} / z_{i}-d y_{i}\right)+\gamma d t=0 \tag{5.5}
\end{equation*}
$$

Claim that $\gamma_{0} \neq 0$. Suppose not. Then

$$
\begin{equation*}
\sum_{i=1}^{p} \gamma_{i}\left(d z_{i} / z_{i}-d y_{i}\right)+\quad \gamma d t=0 \tag{5.6}
\end{equation*}
$$

By Lemma 5.1.1, $d z_{1} / z_{1}-d y_{1}, \ldots, d z_{p} / z_{p}-d y_{p}$, dt are linearly independent over K.
Hence, from (5.6), $\gamma_{1}=\gamma_{2}=. . .=\gamma_{\mathrm{p}}=\gamma=0$.
Thus $\gamma_{\mathrm{O}}=\gamma_{1}=\gamma_{2}=\ldots=\gamma_{\mathrm{p}}=\gamma=0$, a contradiction. So we have the claim.
Without loss of generality, we assume $\gamma_{0}=1$.
Let $c_{1}=1, c_{2}, \ldots, c_{q}$ be a basis for the vector space over Q spanned by $\left\{\alpha_{1}=1, \alpha_{2}, \ldots, \alpha_{m}, \gamma_{1}, \ldots, \gamma_{p}\right\}$ and for each $1=1, \ldots, m$, write $\alpha_{i}=\sum_{j=1}^{q} n_{i j} c_{j}$ with each
$\mathrm{n}_{\mathrm{ij}} \in \mathbf{Q}$, for each $\mathrm{i}=1, \ldots, \mathrm{p}$, write $\gamma_{\mathrm{i}}=\sum_{\mathrm{j}=1}^{\mathrm{q}} \mathrm{m}_{\mathrm{ij}} \mathrm{c}_{\mathrm{j}}$ with each $\mathrm{m}_{\mathrm{ij}} \in \mathbf{Q}$.
Replacing each c_{j} by $\mathrm{c}_{\mathrm{j}} /$ least common denominator of $\left\{\mathrm{n}_{11}, \ldots, \mathrm{n}_{\mathrm{mq}}, \mathrm{m}_{11}, \ldots, \mathrm{~m}_{\mathrm{pq}}\right\}$, if necessary, we can assume each $\mathrm{n}_{\mathrm{ij}}, \mathrm{m}_{\mathrm{ij}} \in \mathbf{Z}$. in particuiar,

$$
1=\alpha_{1}=\sum_{j=1}^{q} n_{1 j} c_{j}=n_{11} c_{1} ; \text { that is } n_{11}=1, n_{12}=\ldots=n_{1 q}=0
$$

Let $\quad w_{0}=v-\sum_{i=1}^{p} \gamma_{i} y_{i}+\gamma t$,

$$
w_{j}=\left(\prod_{i=1}^{m} u_{i} n_{i j}\right)\left(\prod_{i=1}^{p} z_{i} m_{i j}\right) \quad \text { for } j=1, \ldots, p
$$

We can rewrite (5.5) as

$$
\begin{equation*}
\sum_{\mathrm{j}=1}^{\mathrm{q}} \mathrm{c}_{\mathrm{j}} \mathrm{dw}_{\mathrm{j}} / \mathrm{w}_{\mathrm{j}}+\mathrm{d} \mathrm{w}_{0}=0 . \tag{5.7}
\end{equation*}
$$

By Theorem 1.7, $\mathrm{w}_{0}, \mathrm{w}_{\mathrm{l}}, \ldots, \mathrm{w}_{\mathrm{q}}$ are algebraic over F^{\prime}.
We now show $\gamma=0$.
Note that $\gamma D(t)=\sum_{j=1}^{q} c_{j} D\left(w_{j}\right) / w_{j}+D\left(w_{0}\right)$ for each given derivation D of K. $\mathrm{w}_{0}, \mathrm{w}_{\mathrm{l}}, \ldots, \mathrm{w}_{\mathrm{q}}$ are algebraic over F^{\prime}, so taking σ, an element of the Galois group of $F^{\prime}\left(w_{0}, w_{1}, \ldots, w_{q}\right)$ over F^{\prime}, and summing over all σ, gives

$$
s \gamma D t=\sum_{j=1}^{q} c_{j} D\left(N w_{j}\right) / N w_{j}+D\left(T w_{0}\right),
$$

for some $s \in \mathbb{Z} \backslash\{0\}$ and for each given derivation D of K (N and T denote the norm and trace respectively)

If $\gamma \neq 0$, then t would be an elementary integral over F^{\prime}, a contradiction. Hence $\gamma=0$.
Consequently, $\quad \sum_{j=1}^{q} c_{j} D\left(w_{j}\right) / w_{j}+D\left(w_{0}\right)=0$ for each given derivation D of
K and $w_{0}=v-\sum_{i=1}^{p} \gamma_{i} y_{i}$.
The number of primitive and nonelementary integral among $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{R}-1}, \mathrm{w}_{\mathrm{O}}, \ldots, \mathrm{w}_{\mathrm{q}}$, the generators of $\mathrm{F}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{R}-1}, \mathrm{w}_{\mathrm{O}}, \ldots, \mathrm{w}_{\mathrm{q}}\right)$ over F , is less than r .

So by the induction hypothesis we have,

$$
\begin{align*}
& w_{o}+\sum_{i \in L^{\prime}} c_{i}^{\prime} t_{i}+\sum_{i \in E^{\prime}} d_{i}^{\prime} a_{i}=f, \tag{5.8}\\
& \left(\prod_{i=1}^{q} w_{i}^{k_{i}}\right)\left(\prod_{i \in L^{\prime}} a_{i}^{n_{i}}\right)\left(\prod_{i \in E^{\prime}} t_{i}^{m_{i}}\right)=g, \tag{5.9}
\end{align*}
$$

where $\mathrm{E}^{\prime}=\left\{\mathrm{i} \mid 1 \leq \mathrm{i} \leq \mathrm{R}-1, \mathrm{t}_{\mathrm{i}}=\exp \left(\mathrm{a}_{\mathrm{i}}\right)\right.$ and $\left.\mathrm{a}_{\mathrm{i}} \in \mathrm{F}_{\mathrm{i}-1}\right\}$,

$$
L^{\prime}=\left\{i \mid 1 \leq i \leq R-1, t_{i}=\log \left(a_{i}\right) \text { and } a_{i} \in F_{i-1}\right\}
$$

$c_{i}, d_{i} \in C, n_{i}, m_{i}, k_{i} \in \mathbf{Z}$ with $k_{1} \neq 0$ and f, g are in the algebraic closure of F in K.
Now recall

$$
\begin{equation*}
w_{0}=v-\sum_{i=1}^{p} \gamma_{i} y_{i} \tag{5.10}
\end{equation*}
$$

$$
\left\{\begin{array}{cc}
w_{1}=u_{1}^{n_{11}} u_{2}^{n_{21}} \cdots u_{m}^{n_{m l}} \prod_{i=1}^{p} z_{i}^{m_{i 1}} & \left(n_{11}=1\right), \tag{5.11}\\
w_{2}=u_{1}^{n_{12} u_{2}^{n_{22}} \cdots u_{m}^{n_{m}} \prod_{i=1}^{p} z_{i}^{m_{i 2}}} & \left(n_{12}=0\right), \\
& \\
& \\
w_{q}=u_{1}^{n_{1 q}} u_{2}^{n_{2} q} \cdots u_{m}^{n_{m q}} \prod_{i=1}^{p} z_{i}^{m i q} & \left(n_{1 q}=0\right) .
\end{array}\right.
$$

Subsitute the expressions (5.10) and (5.11) in (5.8) and (5.9) respectively and note that each y_{i} either equals some t_{j} with $j \in L$ or equals some a_{j} where $\tau_{j}=\exp \left(a_{j}\right)$, $j \in E$, and each z_{j} either equals some t_{j} with $j \in E$ or equals some a_{j} where $t_{j}=\log \left(a_{j}\right), j \in L$, we get the desired result.

