
CHAPTER IV

WEATHER FORECASTING MODEL

From the point o f view of Theoretical Physics the problem of weather prediction 
may be regarded as an initial-value problem. Thus, if the initial state o f the atmosphere and 
the laws that govern its motion were known, the future behavior o f the atmosphere could 
be determined by mathematical deduction.

Since, in standard practice meteorological data is reported on constant pressure 
surface rather than constant height surface, so it is advantageous to compute the closed set 
o f prediction equation relative to surface of constant pressure rather than surfaces of 
constant height. Thus, in this chapter we will compute the closed set o f prediction equation 
relative to surface of constant pressure and then, present some basic weather prediction 
models.

Isobaric Coordinates

Isobaric coordinates are the coordinates in which pressure is the independent 
vertical coordinate. Since in chapter n, the closed set o f prediction equation was 
expressed used height as a vertical coordinate. Therefore, this involves a transformation 
from z to p as the independent vertical coordinate. The expression of the horizontal 
pressure gradient in terms o f the height gradient at constant pressure may be carried out 
with the aid o f Fig.4.1
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Figure 4.1 Slope of pressure surfaces in the X, z plane

From fig .4 .1 we see that
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taking the limit as 5x -»  0 and 5y —> 0, we obtain

(po + 8p) - Po = (po + 8p) -
8x

Po
ÔZ

(dpi = (dpi /dz]
W z  \dz)x \3xjp

which after substitution from the hydrostatic approximation may be written

i g p )  = J M  =  M
p \3xjz °  \5x/p \ 0x/p (4.1)

Similarly, it is easy to show that

i g p ]  _  
p Wy/z U y/p (4 .2 )

Thus, in the isobaric coordinate system the horizontal pressure gradient force is measured 
by the gradient of geopotential at constant pressure.
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The Horizontal Momentum and Hydrostatic Equation

The approximate horizontal momentum eq.(2.10) and eq.(2.11) may be written in 
vectorial form as

\

+ f k x V  = -^- Vp (4.3)

where V = 1 น + J V is the horizontal velocity vector. In order to express eq.(4.3) in 
isobaric coordinate form, we transform the pressure gradient force using eq.(4.1) and 
eq.(4.2) to obtain

^ -  + f k x  V  = -VpO (4 .4 )

where Vp is the horizontal gradient operator applied with pressure held constant. And the 
hydrostatic relation in isobaric coordinate can be obtained as follows

§  - • “ ■ • v  (4-5)

Since p is the independent vertical coordinate, we must expand the total derivative 
as follows:

4_ = jj I dxd  1 dy d 1 dp a 
dt dt dtdx dtdy dtdp

8 a a a= -=r +  น̂ — + v^— + cô — dt dx dy dp (4.6)
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change following the motion, which plays the same role in the isobaric coordinate system  

as w = dt P̂ ays ^  height coorclinate.

The Continuity Equation

From the conservation of mass of the fluid element, we can write

After differentiating, using the chain rule, and changing the order o f the differential 
operators we obtain

Taking the limit 8x, 5y, 8p —> 0 we obtain the continuity equation in the isobaric system

8M dt ÔX gy gp dt

รน I 8v I 8co _ 0 
8x 8y 8p

(4.7)
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The Thermodynamic Energy Equation

The first law of Thermodynamics eq.(2.21) can be expressed in the isobaric system 

by letting ^2- = (0 and expanding by using eq.(4.5)dt

M ? +uS +va F “ f ) ' a“  = 4

This may be rewritten as

dT dT dT^ - + u  V -  + V dt dx dy377 - Sp 0) =  q /  Cp (4.8)

Where Sp = with the aid o f the definition o f entropy eq.(2.22) and the

hydrostatic eq.(4.5), then eq.(4.8) can be rewritten as follow:

+ น dx + V dy 0 ๓  = Cp dt (4.9)

where o , the static stability parameter, is defined by

a  = q  D Sp
o s  e i  = R P

The Vorticity and the Divergence Equation

Starting with the horizontal momentum eq.(4.4) we can derive the vorticity equation 
by operating on eq.(4.4) with the operator k . V X , where V now indicates the
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horizontal gradient on a surface o f constant pressure. However to facilitate this process it 
is desirable to first use the vector identity

( V . v ) V  = v ( - ^ - )  + k x  V Ç (4.10)

where ç = k . (v  X V ) ,  to rewrite eq.(4.4) as

= . V ( + o ) - kX V* C -C û ^ -  + f V* x k  (4.11)

We now apply the operator k . V X to eq.(4.11). Using the facts that for any 
scalar A, V X VA = 0 and for any vector "a, b

V x ( a x b )  = (v .b )a  - (a .v ) b - (v .a) b + (b .v )a  (4 .12)

We can eliminate the first term on the right and simplify the second term so that the 
resulting vorticity equation becomes

§  = -" v .v (ç  + f ) - 0) | U ( ç  + f ) v .  V* + k . |^ -x V o )J  (4.13)

The divergence equation can be obtain by operating on eq.(4.11) with the operator V. as 
follow:

f c z l  = . V ^  + S j.v Ik x T lo t)]

- G) a ( y . v )
3p

d V T7-^— .Vœdp (4.14)
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A. Ouasi-Geostrophic Vorticitv Equation
The quasi-geostrophic vorticity equation can be obtained by referring back to the 

vorticity equation (4.13). The terms in eq.(4.13) in order reading from left to right are as 
follows:

1. The local rate of change of relative vorticity
2. The horizontal advection of absolute vorticity
3. The vertical advection of relative vorticity
4. The divergence term
5. The twisting or tilting term.

By evaluating the order of magnitude or scaling consideration, we may simplify the 
vorticity equation (4.13) for synoptic scale motions by

1. neglecting the vertical advection and twisting terms,
2. neglecting Ç compared to f  in the divergence term,
3. approximating the horizontal velocity by the geostrop hie wind in the advection 

term, and
4. replacing the relative vorticity by its geostrophic value.

As a further simplification, we may expand the Coriolis parameter in a Taylor series 
about the latitude 4>0 as

f  = fo + P y + (higher - order terms)

Eq.(4.13) and eq.(4.14) are independent scalar equation which can be used in place of the
horizontal equations of motion.

where p = (df /  dy)(j,0 , and y = 0 at <t>0 - If we let L designate the latitudinal scale of the
motion, then the ratio of the first two terms in the expansion of f has order of magnitude
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P L cos <t>0 L
fo sin(j)o a

Thus, when the latitude scale o f the motions is small compared to the radius o f the earth 
(L /  a «  1) we can let the Coriolis parameter have a constant value fo except where it 
appears differentiated in the advection term.

Applying all the above approximations, we obtain the quasi-geostrophic vorticity 
equation,

^  = - T , .v ( c  + f ) - £ » v . v  (4.15)

where Çg = V2 o  /  fo and Vg = k X VO /  fo are both evaluated using constant Coriolis 
parameter fo

B. Ouasi-Geostrophic Potential Vorticity Equation
According to Helmholtz’s theorem in (Appendix B), any velocity field can be 

divided into nondivergent part V*v  plus a divergent part v*e such that

~v =  V*v  +  v*e

where V.v*Y = 0 and V X v*e = 0. If the velocity  field is two dimensional, the 
nondivergent part can be expressed in terms of the streamfunction defined by letting

v\1, = k x V \|f (4.16)



38

or in Cartesian components,

and

ch|/ d\\f
u» = ' a 7  ’ =

V .  \  บุ, =  0
ç  =  k .v  X V*บุ/ =  V2\J/

In case of quasi-nondivergent, that is

v\|/| » | " v e |

Thus to a first approximation we can replace V by V บุ, everywhere in eq.(4.13) and 
eq.(4.14) except in terms involving the horizontal divergence and use filtering o f waves 
conditions then the vorticity and the divergence equation become

^ -  = - V v .v (c  + f) - fo V /v  e (4.17)

and

v 2d> = - f 0 V .( k x V v ) = f0 V2\|/ (4.18)

Where fo is the average Coriolis parameter. From eq.(4.18) the streamfunction can be 
given approximately by the relation

(4.19)
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and the nondivergent part o f velocity is

_  k X VO
7 » = ft (4 .2 0 )

The geostrophic vorticity equation and hydrostatic thermodynamic energy equation 
can now be written in terms of \|t and ๓ as

a v V  _* vJ v72 3 - 9๓9t = ■  v V-My  V + + f0 (4 .2 1 )

d(dp) _  —* G ๓
a r  v - w J - f b  (4.22)

Differentiation o f eq.(4.13) with respect to p after multiplying through by fo2 /  G and 
adding the result to eq.(4.21) gives the quasi-geostrophic potential vorticity equation.

เ โ + V v v )q  = 0 (4.23)

Where
ah รุ่̂ )

q = v V  + f  + fj) 3p p

and we have assumed that G is a function of pressure only. This equation states that the 
geostrophic potential vorticity q is conserved following the nondivergent wind in pressure 
coordinates. If the time derivatives are eliminated between eq.(4.21) and eq.(4.22), we 
obtain the diagnostic omega equation

พ2 fo d2 \
l  dpV

f0 a [ v <)/. v ( v V  + 1 V2fo ¥ U p 11
G (4.24)
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Eq.(4.24) can be used to diagnose the ๓ field at any instant provided that the V  
field is known.

One-Level Barotropic Model

Krishnamurti and Pearce designed the one-level barotropic model by using the 
principle o f conservation of absolute vorticity ( Krishnamurti and Pearce, 1977 ), which can 
be obtained by referring back to the vorticity equation (4.13) and retaining only the first 
term on the right-hand side, then we get

Eq.(4.26) is called the principle o f conservation of absolute vorticity which can be written

(4.25)

eq.(4.25) as

(4.26)

* * 1. .  11* , * , *5T 57 5y 5y- น ^ -  พ ^

And can be simplified to the form:

(4 .2 7 )
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basic framework of the one-level barotropic model. Adejokun and Krishnamurtiused used 
this model to forecast the weather ( Adejokun and Krishnamurti ,1983).

Equivalent Barotropic Model

In the previous model the atmosphere was assumed to be essentially barotropic and 
a number of factors were neglected. It will now be seen that similar results may be obtained 
with somewhat less restrictive assumptions by assuming that the wind speed changes with 
height but the direction remain constant. Thus the horizontal wind field is assumed to be of 
the form

where B = —  is the beta parameter and J is the Jacobian operator. Eq.(4.27) is the
dy

Vvp(x,y,p) = A(p) ( Vy(x,y) ) (4.28)

The angle brackets here denote a vertical average

(4.29)

where Po = 1000 hPa. From the definition o f Ç and \j/ we also can write

c = A (p)<c> , V = A(p) <Y>

Using the above notation, the vorticity equation (4.13) can be rewritten as

3 [ a (p )V 2 ( v )] = ^ pP  < v y > .v(v2< v > ) - A ( p ) ^ l p  + f o ^ (4 .30)
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We next average eq.(4.30) in the vertical by applying eq.(4.29), noting that

<A(p)> = A(p) dp = 1

and Cü(0) = 0 .  The result is

a f  < v >  = -<A(pf> < v v >.v(v2<v > ) - p ^ -  + f0 ^  (4 .31 )

We now define a level p * , called the starred level, according to

v 4x ,y ,p *) = V* = <A(p )2 )< Y v > (4 .3 2 )

so that

v(x,y,p*) = V|/* = < A (p f > < V|/ )

Multiplying through by ( Afp)2 ) in eq.(4.31) and using the definitions in eq.(4.32) we 
find that at the starred level the vorticity equation is

(4 .3 3 )

Therefore, at the starred level the prediction equation reduces to the barotropic vorticity 
equation with one addition term due to vertical motion at the lower boundary.
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One-Level Primitive Equation Model

This model is base on the principle of conservation of potential vorticity. It is
described by the following three equations for the three unknowns น, V, and z. The
equations of motion are:

3u 9u 5u
ฮ ิโ  =

dv dV dV
ฮ ิโ  = a x > - f u - g

d(z + h)

3(z + h)
dy

(4.34)

(4.35)

and the mass continuity equation:

dz _ dz dz p u  3v\
at = u 3x v dy z \3x + 5y ) (436)

Where z is the height of a free surface and h is a smoothed mountain height. The pacel

invariant of this system are potential vorticity (-* + j i  = Çp and all its powers. In order

to show this, we start with the vorticity eq.(4.13) by retaining the first two terms on the 
right side, then we obtain

= - V . V Ç , H , V . 7
(4.37)

Upon elimination of V. V from the above equation and the mass continuity equation, we 
obtain

(4.38)
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or

d = 0 (4.39)

Eq.(4.39) is the principle o f conservation o f potential vorticity. Adejokun and 
Krishnamurti used this model to forecast the weather ( Adejokun and Krishnamurti ,1983).
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