
CHAPTER V

WEATHER FORECASTING BY TWO-LEVEL MODEL

In this chapter, we will apply the two-level model which is the basic model o f more 
levels model to forecast the weather. In this study, Krishnamurti’s theories and techniques 
(Krishnamurti,1986) are used as a basis for numerical solutions.

The Model Equations

The physical model consists o f two layers bounded by surfaces as shown in
Fig-5.1
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Figure 5.1 Schematic diagram of the vertical level structure.

We can derive the model equation by applying the quasi-geostrophic vorticity 
equation (4.15) at level 1 and level 2. To do this we must evaluate the divergence term 
at each level by using finite difference approximations to the vertical derivatives as follows:
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/3 (o \ _  CO - (Op /8co \ _  Cûg -  CÛ
\dp)i  p - p o  ’ \3p/2 P g - P

let Ap = p - po = Pg - p = 500 hPà
So, the vorticity equations at level 1 and level 2 can be written as

^  = -(£xv¥1) 

-(£xvv2)

v ( v V i  + f) + f° ® (5 .1 )
Ap

v (v 2\|/2 + f) - f° ๑ (5 .2 )
Ap

We next evaluate ( I )  using the difference formula

( ฐ  at 500 hPa

then, we can write the thermodynamic energy equation (4.22) at 500 hPa as follow:

d(v 1 - ¥ 2) 
at . k x V ^ M Ï • V(\jf1 - \\r2) + (5 .3 )

Now eq.(5.1), eq.(5.2) and eq.(5.3) become a closed set o f prediction equations in 
the variables \jq and \|/2- We next add eq.(5.1) and eq.(5.2) to obtain

3V (พ+V2) = . (£ x yv1) v(vV 1 + f) - (k X Vy2). v(v2V2 + f) (5.4)

and then subtract eq.(5.2) from eq.(5.1) and add the result to - 2 X2 time eq.(5.3) to get
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j(v - 2 X )(vi-y2)] = _ ( 2  x vv1). v(v2\]/i+ f) + (kX Vy2) • v(vV2+ f)
+ x \k  X V(vi + \)/2)]. V (\|fi - \|/2) (5 .5)

Eq.(5.4) and eq.(5.5) are the model equations for two-level model. Eq.(5.4) states 
that the local rate o f change of the vertically averaged vorticity (that is, the average of the 
250 and 750 hPa vorticities) is equal to the average o f the 250 and 750 hPa vorticity 
advections. And eq.(5.5) states that the local rate of change of the 250-750 hPa thickness 
is proportional to the difference between the vorticity advections at 250 and 750 hPa plus 
the thermal advection. These two equations can be used to forecast the streamfunction and 
wind fields at level 250 and 750 hPa. Eq.(5.4) and eq.(5.5) can be rewritten in Jacobian 
form as

8V2(yi + y 2)
at - J (vi.Çal) - J (v 2>Ça2) (5 .6 )

+ ?12 [k X V(Yi + \|/2)]. V (\J/1 - \|/2) (5.7)

where J (\)T, Ça) is a Jacobian which can be written as,

8x 0y By Bx

Cal = V V i  + f

and
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Ca2 = V \ | /2  + f

X2 = ----Q—
a ( A p f

G  =

(ApfL
1 ©  + -Llg \9 z / CpJ

The values o f X and G can be calculated by using standard values (in Appendix A).

Region Covered by the Model and Horizontal Grid Structure

The forecasting area is shown in Fig.5.2, which covered the area between 90E- 
180E longitudes and 0-45N latitudes. The total number of the grid-points is 38 X 19 points 
with the grid-space o f 2.5° latitudes /  2.5° longitudes and time space o f 1800 seconds. 
The input data are 200 hPa and 850 hPa wind data analyzed by ECMWF (European Centre 
for Medium Range Weather Forecast) at 12 UTC ( 30 /  8 /  1993).

Figure 5.2 The forecasting area ( 0-45N, 90E-180E) and horizontal grid structure
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Boundary Conditions

In the zonal direction, we extended the domain by adding two grid points and using 
cyclic continuity condition. The extended grid-point values in the east can be calculated by 
linear interpolating.

\|4L,j,k) = \|/(1 j,k ))

\|/(L-l,j,k) = (\|/(L,j,k)) + \|/(L -2 ,j,k ))/2
(5 .8 )

But in the north and south domain boundaries, we assumed that the streamfunctions 
are constants which are equal to the initial streamfunctions.

M  t ) = Y(t = 0) (5 .9 )

Numerical Techniques

The finite difference scheme is used to approximate the differential equation on a 
grid o f points in space and time. In order that a finite difference scheme be computationally 
stable in the sense that a solution of the difference equations will approximate a solution of 
the original system, it turns out that the ratio o f the time and space increments must satisfy 
certain conditions. However, for finite difference solutions stability alone does not 
guarantee accurate solutions because all such solutions are subject to truncation error due 
to the approximate nature o f the finite difference estimates o f space and time derivatives.

A. Space Differencing Scheme
The center space differencing scheme which is in the second order o f accuracy is

used as followed:
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p v \|< i+ l,j,k )-\|/(i-l,j,k )
(dx i,j,k 2 Ax

p v \)/(i,j+l,k)-\|/(i,j -l,k )
UyJi,j,k 2 Ay

P V j M i+1 ,j,k) - 2 \|/(i,j,k) + \|/(i-l,j,k)
ldx2 ji,j,k (A x ) 2

(a2v) v ( ij+ l ,k )  - 2 \|/(i,j,k) + \|/(i,j -l,k)
\dy2 1i.j.k (A y ) 2

And the Laplacian become

(v 2 ) _  \ |< i+ lj ,k ) -2 \|<ij,k) + \|i(i-lj,k ) 1 \|/(i,j+l,k) - 2 V|/(i,j,k) + \|/(ij -l,k ) (จ 1 m
j (A x ) 2 K T

And the differential form of Jacobian (Mesinger and Arakawa, 1976) can be written as,

where

and

J (v> c) = d y d Ç  d\|/dÇ
dx dy dy dx

= 3 ( J 1 (v. c) + h  (v, c) + h  (v, c)l

J1 (\J/, c) is a finite difference analog o f the term ^dx dy dy dx

dMv* c) is a finite difference analog o f the term —

d
h  (v. c) is a finite difference analog o f the term —

d\}/
dx_ d d\|/'

dy dx
1 p c ac

LŸ Sy. d r S ]
dx dy

The following is a final form o f the Jacobian for a rectangular mesh of grid points at
distance, Ax and Ay 5 apart (Arakawa, 1966)
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Ji,j,k (v>ç) 12 Ax(j) Ay
(Ç(i+l,j,k)-Ç(i,j,k))

[(\|<i j - l ,k )  + \|/(i+ l,j-l,k) - \(/(i,j+l,k) - \|i(i+l j+ l,k ))

+ (\|<i-l,j-l,k) + \|/(i,j-l,k)- \|/(i-l,j+l,k)- \|<ij+l,k))(ç(i,j,k)- Ç(i-l,j,k))
+ (\j/(i+l,j,k) + \|/(i+l,j+l,k) - \|/(i-l,j,k) - \|/(i-l,j+l,k) )(ç(i,j+l,k) - Ç(i,j,k))
+ (\)/(i+l,j-l,k) + \|/(i+l,j,k) - \|/(i-lj-l,k) - #-l,j,k))(ç(i,j,k) - Ç(i,j-l,k))
+ (\(/(i+1 ,j,k)- \|<i,j+l,k) )(ç(i+l,j+l,k)- C(iJ,k))
+ (\|<i,j-l,k) - \Ki-l j.k) )(ç(i,j,k) - Ç(i-l,j-l,k))
+ ( # 5j+l,k) - Mi-l,j,k))fc(i-l,j+l,k) - C(i,j,k))
+ M i+1 j,k) - \|/(i,j-1 ,k) ) (c(i,j,k) - Ç(i+1 ,j-1 ,k))] (5.11)

B. Time Integration Scheme
In order to forecast the future circulation we must extrapolate ahead in time using a 

finite difference approximations. In this study we use an explicit time differencing scheme. 
This scheme is a slight modification of the Euler backward predictor-corrector technique, or 
Matsuno scheme (Matsuno,1966). Given the equation:

the predictor and corrector are defined by the relations

F^ 1 = Fi + Gi At (predictor)
F2 = Fi + G(2 At (corrector)

(5 .1 2 a )
(5 .1 2 b )

Because o f the finite differences are only approximations to the actual derivatives, 
so they have errors called truncation errors. And this phenomena is called computational 
instability. For the Euler backward scheme it was required the stability condition which
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can be computed by applying it to the one-dim ensional advection equation  
(Krishnamurti,1986) :

3F = 3F 
dt c 3x

Fm',n+1 = Fm,ท4. cAt ( Fm+11ท - Fm-1,ท )
2 Ax

Fm,n+1 = Fm,ท + o > f—
* ( Fm'+11ท Fm'-l,n+l )2 Ax

= Fm>n 1 c At (pm+l,ท ■*"̂  Fm+2
2 Ax แ 2 Ax

-|Fm l , n  +  —Au P  V 1 m,ท Fm-2,ท )l
2 Ax 1

Trial solution o f the form Fm_ท = eiamAx
Here A(nl is the amplitude at time level ท. We define an amplification factor |aJ 

by A<n+1) = A, A(n/ . If พ  < 1  we call the solution Fm1ท stable or else the solution is
unstable. Now we get

so

*-*<5O+r-HII giaAx 4.1 CA t)|g2iaAx g-iaAx ,c A t ) ( i -2 Ax [ V2 Ax' yi Ax/

-  1+ c At giaAx _ e-iaAx) 4. 1 c At 1 ig2iaAx 4. g-2iaAx _ 2)
2 Ax \2 Ax'

II + O > r-ï sin aAx - (sin a A x f
Ax Ax/

= (sin a A x f  + 1 - 2 (sin ocAxf + (c A tf(sin\ A x/ \ Ax / A x/

= 1 - H 2[sin aA x )2 + (£-^] (sin a A x f
1 Ax/ V Ax/

พ  = / \ J  1 - (sin aAx)2 + เ^ ^ !  (sin aA x )4
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The condition for stability requires that |xj < 1 for every a ,  therefore

çA t < 1 
Ax

For a two-dimensional grid with uniform grid space d, in the X and y directions it 
can be shown that At and d must satisfy

The speed c is just the maximum wind speed, typically, c < 50 ms_1(Lindzen,1990). In 
this study the minimum grid interval is 196 km, so the time increment must be less than 
2,772 seconds.

c. Over-Relaxation Method

The most practical scheme for solving Poisson eq.(5.6) and Helmholtz eq.(5.7) on 
a large grid mesh is a subsequent iteration technique known as relaxation . To illustrate this 
method ( Haltiner and Williams, 1979), consider the Poisson and Helmholtz equations

c At < J_
d ปี:

V2G = F (5  =  0 )

v 2g  - h g  = f ( 8 = 1 )

V2G - 5 HG = F (5 .1 3 )

Where F is a known “ Forcing “ function, H is a known positive coefficient and 8 = 0 or 1,
eq.(5.13) can be rewritten in finite difference as
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V2G (i,j ) -8 HG(i,j) = F (ij) (5.14)

Now assume an initial estimate and let Gv(i,j) represent the V th estimate. Then the 
residual Rv(i,j) for the V th estimate is defined as follows ะ

The objective o f the subsequent iterations is to reduce the residuals to some 
acceptably small value although the exact solution with the R(i,j) = 0 everywhere will not 
be reached. Given the V th estimate Gv(i,j), an improved value Gv+1(i,j), which will 
temporarily reduce the residual Rv(i,j) to zero, may be obtained by giving

Where a  is an over-relaxation coefficient. Eq.(5.15) and eq.(5.16) are the two 
steps of over-relaxation method. If the method is convergent, Gv(i,j) should approach the 
true solution G(i,j) at all grid points as V —» oo.

Data Initialization

In this subsection we propose the method for construction o f streamfunction from 
the analyzed wind field by applying Krishnamurti’s technique (Krishnamurti,1986).

Given the horizontal wind components น and V, the streamfunction ( X]/ ) can be 
computed using a program (in Appendix C). The various steps in this method are:

Rv(i,j) = v V ( i , j ) - Ô H G v(i,j)-F(i,j) (5.15)

Gv+1(i,j) = Gv(i,j) + a  Rv(i,j) Ax(j) Ay (5 .1 6 )
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1 ) . C o m p u t e  th e  r e la t iv e  v o r t ic i ty  (  Ç ) o v e r  a n  a r r a y  i  =  1 , 2 ,  3 ,  . . .L  ( in  th e  w e s t -  

e a s t  d ir e c t io n )  a n d  J =  1 , 2 ,  3 , . . .  M  ( in  th e  s o u th -n o r th  d ir e c t io n ) .  H e r e  o n e  c a lc u la t e s

~ _  9 v  3 u  
dx By

= ^1+1ง่^)- vp-i งํ>k) u(i,j+l,k)-u(i,j-l,k) 
2  A x (j)  2  A y

S in c e and V _ d y  ,= -̂ ~, th e n  d x c = vV

( 5 . 1 7 )

2 ) .  D e f i n e  a p p r o p r ia te  b o u n d a r y  c o n d i t io n s  f o r  t h e  s t r e a m f u n c t io n .  T h e  v a lu e  o f  

s t r e a m f u n c t io n  a t th e  b o u n d a r ie s  c a n  b e  c o m p u t e d  b y  u s i n g  th e  c o n t in u i t y  e q u a t io n .  T h e  

n e t  m a s s  f lu x  o u t  o f  th e  d o m a in  m a y  b e  e x p r e s s e d  b y

M p  = Vnds

W h e r e V n  =  -  V  a t th e  so u th e r n  b o u n d a r y  

=  - บ  a t  th e  w e s te r n  b o u n d a r y  

V n  =  +  V  a t th e  n o r th ern  b o u n d a r y  

V n  =  +  บ  a t th e  e a s t h e m  b o u n d a r y

W e  a s s u m e  th a t  th e  o u t w a r d  n o r m a l  v e l o c i t y  a t  t h e  b o u n d a r y  c a n  b e  c o r r e c t e d  to  

y i e l d  a  n e t  z e r o  o u t w a r d  m a s s  f lu x  b y  th e  r e la t io n

( 5 . 1 8 )

w h e r e

V eท = v n + e [Vnl (5 .19 )
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the correction, is proportional to the magnitude o f the outward normal velocity. Thus, we 
obtain the correction coefficient, e  , by the relation

e  = (5 .2 0 )

Z V n A s

I  |vj As
(5 .2 1 )

Here ร is a length element along the boundary, o f the domain. The boundary wind 
น and V are next corrected at each point o f the boundary by these relations. The 
streamfunction at one point i = 1, j = M the northwestern comer, is assumed to be known, 
( \\f = 0 ) its value at the remaining points of the boundary is calculated using the corrected 
normal velocity v n.

or \|/2 = Yi + 1 2 Aร (5 .2 2 )

Where Y i denotes a know value and Y2 is the adjacent neighbor where the value of Y 
is being defined. As is the grid size Ax or Ay depending on the boundary.

3). The next step requires the solution o f a Poisson equation subject to the above 
boundary conditions. This can be carried out using the relaxation method eq.(5.15) and 
eq.(5.16) described below for a rectangular domain. There are two steps in an iteration 
manner over all grid points. These are:

R = V V  - Ç
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and \j/(v + 1) = ไ}/(v) + a  R Ax Ay

Which can be written in finite difference as ะ

Rv(ij,k ) = (y v(i+ 1 ,j ,k) + \|/v+1(i- 1 j,k ) - 2 \|/v(i,j ,k))
(Axùf

(y v(i,j+l ,k) + V|/v+1(i,j- 1 ,k) - 2 ไ}/v(i,j,k))
พ '

- Ç(i,j,k) (5 .23)

and

Vv+1(i j,k ) = ไ}/v(i,j,k) + a  Rv(i,j) Ax(j) Ay (5 .2 4 )

Where a  is an over relaxation coefficient, and V is the order of approximation

Summary of the Procedure for Forecasting

The procedure for forecasting with a two-level model can now be summarized in 
two parts as follows ะ

Part 1. Initialize data ( Program NWPI in Appendix c )
1) . Use the input velocity wind field at time t = 0 to compute the relative vorticity 

(ç) at ฟ! grid points by eq.(5.17)
2) . Define appropriate boundary conditions and compute the velocity correction 

coefficient (e) by eq.(5.21) and the correction velocity (vn) by eq.(5.19) and then 
compute the streamfunctions (ไ}/) at the boundary by eq. (5.22)

3) . Use relaxation method by eq.(5 .23) and eq.(5.24) to com pute the 
streamfunctions (ไ}/) at all grid points.
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Part 2. Forecast weather ( Program NWPF in Appendix D )
1) . Use initial streamfunctions (\|t) form part 1 to compute the relative vorticity (ç)

by eq.(5.10) and the absolute vorticity (ça)
2) . Compute the Jacobian J (\j/i„Çai) and J ( v 2>Ca2) by eq.(5.11) and compute 

the last term on the right-side o f eq.(5.7)
3) . Compute the forcing function ( the right-side o f eq.(5.6) and eq.(5.7) )
4 ) . Integrate eq.(5.6) and eq.(5.7) by extrapolating ahead with a time increment At 

using eq.(5.12)
5) . Use the new values form step 4 to compute the summation of streamfunctions 

(Vi + V2) and the difference o f streamfunctions (v|/i - Y2) by relaxation method eq.(5.15) 
and eq.(5.16)

6) . Use the new values form step 5 to compute the streamfunctions Yi and \|/2
7) . Repeat step 2-6 until the desired forecast time reached.

Forecasting Results

In this study, the proto-type model has been developed for the IBM (PC/AT) 
80386-25 compatible computer. The 850 hPa and 200 hPa grid point values o f the wind 
fields (1200 UTC, 30 /  8 /  1993) are used as initial data, which are results o f objectively 
analyzed fields o f the original First GARP Global Experiment (FGGE) observations by the 
European Centre for Medium Range Weather Forecast ( ECMWF ). The data initialization 
( by Program NWPI in Appendix c ) take 2 minutes to complete and the results o f initial 
streamfunctions are shown in Fig. (5.3a) and Fig.(5.3b). These streamfunctions are the 
input data for forecasting the future circulation ( by Program NWPF in Appendix D ) and 
the results o f 24-hr, 48-hr, 72-hr, and 96-hr forecast are shown in Fig.(5.4), F ig.(5.5), 
Fig.(5.6), and Fig.(5.7) respectively.
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Streamfunction at 250 hPa
90 00 100.00 110.00 120.00 130.00 140.00 150.00 160.00 170.00 180.00 45.00

37.50

30.00

22.50

15.00

7.50

" 90.00 100.00 110.00 120.00 130.00 140.00 150.00 160.00 170.00 180.00
L0NGITUDE(90E-180E)

Figure 5.3a The result of initialized data at level 250 hPa

Streamfunction at 750 hPa
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Figure 5.3b The result of initialized data at level 750 hPa
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Streamfunction at 250 hPa
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Figure 5.4a The result o f 24-hr forecast at level 250 hPa
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Figure 5.4b The result of 24-hr forecast at level 750 hPa
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Streamfunction at 250 hPa
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Figure 5.5a The result of 48-hr forecast at level 250 hPa
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Figure 5.5b The result of 48-hr forecast at level 750 hPa
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Streamfunction at 250 hPa
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Figure 5.6a The result of 72-hr forecast at level 250 hPa
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Figure 5.6b The result of 72-hr forecast at level 750 hPa
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Figure 5.7a The result o f 96-hr forecast at level 250 hPa
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Figure 5.7b The result of 96-hr forecast at level 750 hPa
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