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APPENDICES

Appendix A  Calcu lation o f N icke l Ferrite  Composition from  E D X

Data given by EDX were the weight percentage of iron as iron oxide (FeO) 
and of nickel as nickel oxide (NiO). The molecular weights of iron oxide and nickel 
oxide are 71.84 and 74.71, respectively, and the total atom of nickel and iron has to 
be three in order to form NixFe3-x04. Hence, one can calculate the composition of the 
nickel ferrite, which was found to be Nio.72Fe2.28O4. The summarized calculations 
are shown in Table A1.

Table A1 Summary of composition calculation

Sample Weight %
number FeO NiO

1 68.13 22.24
2 67.04 22.61
3 67.68 21.61

Average 67.62 22.15
Mole 0.941 0.296 Total mole of Fe and Ni = 1.237

Composition 0.941x3/1.237 
= 2.28

0.296x3/1.237 
= 0.72
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Appendix B Calculation of Nickel Ferrite Lattice Parameter

An interplanar spacing, d, can be calculated by Bragg’s law
nA = 2d sin 0 (Bl)

when ท is usually unity, and /Lis an x-ray wavelength, in this case 1.5406 Â. Since 
the crystal structures of both nickel ferrite and magnetite are cubic, the lattice 
parameter, a 0, can be calculated by

a0 = d j h 2 + k 2 + l2 (B2)
where /7, k, l are planar indices corresponded to each peak.

Table Bl shows the lattice parameters calculated from major peaks; peaks 
with very low intensity were neglected. According to error statistics, the lattice 
parameter calculated from the highest degree with reasonable intensity (around 62.9° 
in this case) is chosen to be the most accurate value of the substance (Cullity, 1978).

Table Bl Lattice parameter values of each peak from XRD analysis

Position of peak, 
29 (degree) h k / d (A) a0(A)

18.4 1 1 1 4.81920 8.347
30.26 2 2 0 2.95199 8.350
35.64 3 1 1 2.51775 8.350
37.28 2 2 2 2.41067 8.350
43.32 4 0 0 2.08752 8.350
53.76 4 2 2 1.70418 8.349
57.32 5 1 1 1.60651 8.348
62.94 4 4 0 1.47591 8.349
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Appendix c  XRD Pattern of a Bare Zirconium Surface

A bare zirconium surface was analyzed with XRD to identify zirconium 
peaks, as shown in Figure Cl. Such peaks were then used to distinguish nickel 
ferrite peaks in the XRD pattern obtained from the coupons with their deposits.

Figure Cl XRD pattern of a bare zirconium surface.
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Boron concentration from boric acid can be determined by titration (Irvine, 
1970; EPRI NP-7077, 1990). Boric acid alone cannot be titrated to a precise 
volumetric endpoint because it is a weak acid. However, the addition of certain 
polyhydroxyl organic compounds to boric acid solutions results in the formation of 
complex acids with boric acid, which then can be titrated. In this work, mannitol 
was used as polyhydroxyl organic compound, and the procedure was as follows.

Sodium hydroxide solution of 0.0265 M was standardized with oxalic acid 
solution, the primary standard solution. The preparation and standardization of 
sodium hydroxide are described in general chemistry books. Ten ml of boric acid 
solution was pipetted in 250-ml Erlenmeyer flask. Three grams of mannitol were 
added, together with 10 ml of de-ionized water and three drops of phenolphthalein, 
into the flask. The solution was swirled well, and kept swirling as sodium hydroxide 
solution was added during the titration. The titration reached endpoint when the 
solution turned pink. In a sample, two titrations were required. The reaction 
between sodium hydroxide and boric acid is one to one mole ratio. Here is the 
example of calculation for boron concentration.

Concentration of NaOH 0.0265 M
Volume of NaOH used 40 ml
Volume of boric acid sample solution 10 ml
Hence, concentration of boric acid in the solution = 0.0265x40/10 = 0.106 M 
Molecular weights of boric and boron are 61.8 and 10.8, respectively.
Therefore, 0.106 M of boric acid = 0.106x61.8X10.8/61.8x1000 = 1145 ppm B

Appendix D Boron Concentration Determination
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Deposited particles were removed from the coupons and dissolved in acid 
solution. The concentrations of iron and nickel were then determined with ICP-OES and 
calculated to the amounts per coupon areas. Since the characterization showed that the 
deposits were mainly composed of injected nickel ferrite, Nio.72Fe2.2sO4, the amounts of 
iron and nickel were converted to the amount of nickel ferrite. Deposit thickness was 
estimated by assuming a crud density of 2 g/cm3. Deposition velocity was calculated 
from the concentration of injected nickel ferrite, 500 ppb, and the duration of the 
experiment. Example of calculation is shown in Table E l.

Table El Calculations of deposit thickness and deposition velocity from Runl

Appendix E Deposit Thickness and Deposition Velocity Calculations

Iron concentration (ppm) 36.40
Nickel concentration (ppm) 3.50
Sample volume (ml) 100
Coupon area (cm3) 3.577
Amount of Fe (mg/cm3) = 36.40x100/3.577/1000 = 1.018
Amount of Ni (mg/cm3) = 3.50x100/3.577/1000 = 0.376
Amount of nickel ferrite based on Fe (mg/cm3) = 1.018x233.59/127.32= 1.867
Amount of nickel ferrite based on Ni (mg/cm3) = 0.376x233.59/42.27 = 2.078
Amount of nickel ferrite based on average(mg/cm3) = (1.867+2.078)/2 = 1.972
Deposit thickness (pm) = 1.972x10/2 = 9.86
Deposition velocity (cm/h) = 1.972x1000/140/0.5 = 28.17
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Appendix F Calculation of the Change in Boron Concentration Due to Water 
Evaporation

At the end of each experiment, the autoclave was isolated, and the samples 
were taken at various times. Boron concentrations in each sample might not be the same 
since the water in the autoclave would evaporate to compensate the volume loss due to 
the sampling. Calculation is required to observe the change in boron concentration due 
to water evaporation. Temperature was recorded, saturated condition was assumed 
during the sampling, and thirty milliliters of samples were taken each time. Based on 
mass balance, one can calculate the boron concentration. Table FI summarizes the 
calculation of the boron hideout return result from Runl.

Table FI Calculation of the change in boron concentration due to evaporation

Time (min) 0 5 10 30 60 180
Temperature (°C) 296 269 253 202 152 93
Density of liquid 
water (kg/m3) 720.47 769.46 794.80 862.34 915.13 963.20

Density of water 
vapor (kg/m3) 43.178 27.584 21.009 8.174 2.677 0.471

Water left in the 
autoclave (kg) 0.683 0.653 0.623 0.593 0.563 0.533

Liquid water left in 
the autoclave (kg) 0.681 0.649 0.618 0.590 0.562 0.533

Amount of boron left 
in the autoclave (mg) 712.600 681.100 649.584 618.174 586.846 555.563

Calculated boron 
concentration (ppm) 1047 1050 1051 1047 1044 1043
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Appendix G Radiation Statistical Analysis

Poisson statistics is applied in radiation counting (Knoll, 1989; Tsoulfanidis, 
1995; and Hussein, 2003). Therefore, the variance, cr2, of any measurement is equal 
to its count, c.

cr2 = c  (Gl)
Then standard deviation is equal to cr.

The calculation of error in the ratio of the counts with and without boric 
acid, รR , is based on propagation of errors as follows:

R = ร  (G2)
Cb

<r\

Vr

= °0 f dR ^ f dR ไ— + <Jh[dCoJ พ J
Q [ 1 ^ \  ^ ( c  ไ
m J m c 2\^b  J

(G3)

(G4)

£  R =  G  R ~ (G5)

where R is the count ratio of counts with and without boric acid.
In order to distinguish the presence of boron, the counts with and without 

any boron should not differ by at least 2crfor 95% confident level. That is
C() - cbmm > 2cf0 + 2(fb (G6)

Since the ratio between with and without boron is obtained from experiments, the 
equation can be arranged finally to

b,ทาin — 2 J r  + 1
R - 1 (G7)

cb calculated from Eq. (G7) is the minimum count that should be obtained in order
to claim that one can distinguish the presence of boron. One can increase the count 
to be higher than minimum by using a stronger source or increasing the counting 
period. In addition, improving the ratio, R, can reduce cb mm .
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Total interaction rate can be expressed by , where 
E = ^  Nia i = macroscopic cross section

i

(j) = neutron flux 
V -  volume of substance
N1 -  = atomic density of substance IA1น
crj = microscopic cross section of substance i 
พ1 = weight fraction of substance i 
p  = density 
A = atomic weight
น = atomic mass unit = 1.66x1 O'27 kg

Properties of elements used for calculation are summarized in Table Cl. The 
autoclave used in this experiment was Hastelloy c , which contains Ni about 50% by 
weight. The inside diameter and the thickness were 114 mm and 6 mm, respectively. 
Boric acid powder, H3BO3, was contained in a tube with 11 mm inside diameter.

Appendix H Calculation of Total Interaction Rate

For boron, ะะะ N B_W(JB_W + N B_na B_n
^ WB-WP 

10 X «  B 10
+ WB-uP

1 1 X น
๐"fi-II

0.183X 2340X 3837X 10~28 0,817 X 2340x 0,005X 10~28
10x 1.66 X 10^27 + l l x l  ,66x 10~27

= 9898 m’1
Boron is present in the form of boric acid. Therefore, weight fraction of boron must 
be taken into account.

10 8Weight fraction of boron in boric acid = ------—------= 0.1753 + 10.8 + 48
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For nickel, 2%, — N Ni 5S(TN i_52 + N N[_60(7Ni_b0
_  0 . 7 1 5  X  8 9 0 0 x 4 . 5 0 3  X  I Q - 28 0 . 2 8 5 x 8 9 0 0 x 2 . 9 x 1 0  ^

5 8 x  1 . 6 Ô X  1 0 “ 27 +  6 0  X  1 . 6 Ô X  1 0 “ 27

= 37.15 m '1
Nickel in Flastelloy c  is about 50%.

Ratio of total interaction rate between boron and nickel was calculated by 
assuming that the autoclave and boric acid powder were exposed to the same amount 
of neutron flux.

n r 1. . 0.1752% F„ 0.1752% nD lh /4Ratio of total interaction rate = ' — ^ = —_■ _ _  B _ B —0 .5 X „ r„  0.5 Y.HinDH:ht
where DB, DNi are diameter of the tube and the autoclave, respectively, h is the height 
of the autoclave and boric acid powder, and t is the autoclave thickness. Substitute 
all numbers, and one can obtain

„  . .  1 ; 0 . 1 7 5 x 9 8 9 8 x 1 . l 2 / 4  „  _Ratio ot total interaction rate = --------------;-------------- = 4 . 1 2

0 . 5 x 3 7 . 1 5 x 1 1 . 4 x 0 . 6

It can be concluded that boron interacts with neutrons and produces about four times 
as many photons as nickel.

Table HI Nuclear properties of boron and nickel

Element Boron Nickel
Density (kg/mJ) 2340 8900
Natural isotopes (weight fraction) B-10 (0.183) 

B-l 1 (0.817)
Ni-58 (0.715) 
Ni-60 (0.285)

Radiative capture cross section at 
0.025 eV (bam)

B-10: 3837 
B-l 1:0.005

Ni58:4.503
Ni60:2.9
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