การทดลองหาสมรรถนะการถ่ายเทความร้อนของเครื่องแลกเปลี่ยนความร้อนแบบแผน

นางสาว ธัญรัตน์ กฤตสรรค์วงศ์

วิทยานิพนธ์นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสุตรปริญญาวิศวกรรมศาสตรมหาบัญฑิต ภาควิชาวิศวกรรม เคมี

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2532

ISBN 974-576-808-1

เป็นลึกขลิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

015829 11030230%

TEST FOR HEAT TRANSFER PERFORMANCE OF A PLATE HEAT EXCHANGER

MISS DHANYARAT KRITSERNVONG

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF CHEMICAL ENGINEERING

CHULALONGKORN UNIVERSITY

GRADUATE SCHOOL

1989

ISBN 974-576-808-1

Thesis Title Test for Heat Transfer Performance of a Plate Heat

Exchanger

Ву

Miss Dhanyarat Kritsernvong

Department

Chemical Engineering

Thesis Advisor Associate Professor Wiwat Tanthapanichakoon

Accepted by the Graduate School Chulalongkorn University in Partial Fullfillment of the Requirement for the Master's Degree

> Thanan Variastasa Dean of Graduate School (Professor Thavorn Vajarabhaya, Ph. D.)

Thesis Committee

Orasutte Chairman

(Associate Professor Piyasan Praserthdam, Dr. Ing.)

Wiwit Tanthapanichakoon. Thesis Advisor

(Associate Professor Wiwat Tanthapanichakoon, Ph. D.)

Woraphet Arthur

(Associate Professor Woraphat Arthayukti, Dr. Ing.)

K. Enleaguette

(Associate Professor Kroekchai Sukanjanajtee, Ph. D.)

9.811.1 (1. fe-914) 2 (1. fe-914) 3 (1. fe-914) 1

ชัญรัตน์ กฤตสรรค์วงศ์ : การทดลองหาสมรรถนะการถ่ายเทความร้อนของเครื่องแลกเปลี่ยน ความร้อนแบบแผ่น (TEST FOR HEAT TRANSFER PERFORMANCE OF A PLATE HEAT EXCHNAGER) อ.ที่ปรึกษา : รศ.ดร. วิวัฒน์ ตัณฑะพานิชกล, 334 หน้า.

งานวิจัยนี้มีวัตถุประสงค์เพื่อหาสมการสหสัมพันธ์ของเครื่องแลกเปลี่ยนความร้อนแบบแผ่นและเขียน โปรแกรมออกแบบเครื่องแลกแปลี่ยนความร้อนแบบแผ่นโดยใช้สมการสหสัมพันธ์ที่ได้จากการทดลอง

เครื่องแลกเปลี่ยนความร้อนแบบแผ่นมีช่องว่างระหว่างแผ่น 0.00303 ม.. ความกว้าง 0.1125 ม., ความยาว 0.445 ม., รอยพิมพ์รูปก้างปลา (มุม 50 องศา) และพื้นที่แลกเปลี่ยนความร้อน 0.05 ตร.ม. ชุดแลกเปลี่ยนความร้อนนี้มีสามส่วน

ในการศึกษาสารผลิตภัณฑ์ที่ใช้คือ น้ำ,น้ำหวาน (สารละลายน้ำตาลความเข้มข้น 20, 30 ,และ 40 เปอร์เซนต์โดยน้ำหนัก), กลีเซอลีน(สารละลายกลีเซอลีนความเข้มข้น 40, 50 และ 60 เปอร์เซนต์โดยปริมาตร) อัตราการไหลของของเหลวที่ใช้ในการทดลองแปรค่าพิสัยตัวเลขเรย์โนลส์จาก 100 ถึง 4,000. ตัวเลขแพลงค์ตัลของผลิตภัณฑ์มีพิสัยจาก 2.11 ถึง 40 สมการสหสัมพันธ์ที่เหมาะสมกับเครื่อง แลกเปลี่ยนความร้อนแบบแผ่นเครื่องนี้คือ

 $Nu = 0.02 Re^{0.87} Pr^{0.78}$

สมการสหสัมพันธ์ที่ได้นี้สอดคล้องกับผลการทดลอง โดยมีค่าเบียงเบนมาตรฐานเท่ากับ 0.081.

โปรแกรมคำนวณออกแบบเครื่องแลกเปลี่ยนความร้อนแบบแผ่นได้นำสมการสหสัมพันธ์นี้ ตลอดจน คุณสมบัติทางกายภาพของของเหลวที่ใช้ในการศึกษารวมในโปรแกรม โปรแกรมนี้เขียนด้วยภาษาเทอร์โบ-เบสิค และใช้วิธีเอฟเฟคทีพเนส-เอ็นทยู (Effectiveness-NTU) ผลลัพธ์การคำนวณออกแบบของโปร แกรมพบว่าสอดคล้องกับผลการทดลองและกระบวนการพาสเจอไรซ์

ภาควิชา	วิศวกรรมเคมี	ลายมือชื่อนิสิต.	A French	n Mi	المستولدة
สาขาวิชา	วิศวกรรมเคมี		-	1	1
ปีการศึกษา	2532	ลายมือชื่ออาจาร	เย็ที่ปรึกษา	Dood.	Olm. Mray

DHANYARAT KRITSERNVONG : TEST FOR HEAT TRANSFER PERFORMANCE OF A PLATE HEAT EXCHANGER. THESIS ADVISOR : ASSO.PROF.WIWUT TANTHAPANICHAKOOL, Ph.D. 344 PP.

The objectives of the present study are to find a suitable heat transfer correlation for a pilot-scale plate exchanger and to develop a computer program to aid inthe design of plate heat exchangers using the correlation obtained.

The pilot-scale plate heat exchangerstudied has a plate gap of 0.00313 m, a width of 0.1125 m., a length of 0.445 m, it has chevron corrugations (angle = 50 degrees), and a surface area of 0.05 m^2 . The exchanger tested has three sections.

The range of products tested includes water, syrup (sucrose solution of 20 wt%, 30 wt% and 40 wt% concentration), and glycerine(glycerine in water at 40 vol%, 50 vol% and 60 vol% concentration). Their flow rates were varied to yield Reynolds numbers ranging from 100 to 4,000. The Prandtl numbers of the products ranged from 2.11 to 40. One of the heat transfer correlations for the tested plate heat exchanger is

$$Nu = 0.02 \text{ Re}^{0.87} \text{ Pr}^{0.78}$$

The proposed correlation is found to correlate the experimental data resonably well with a standard deviation of 0.081.

To aid in the design of plate heat exchangers a computer program has been developed, using the obtained correlation and incorporating the physical properties of all the tested liquids. The program is coded in TURBO BASIC and uses the effectiveness-NTU approach as design procedure. The design and calculation results of the program are found to agree well with experimental results as well as with actual HTST processes.

ภาควิชา CHEMICAL ENGINEERING

สาขาวิชา CHEMICAL ENGINEERING

ปีการศึกษา 1989

ลายมือชื่อนิสิต มีพร้องป์

ACKNOWLEDGEMENTS

The author would like to express her gratitude to her advisor, Associate Professor Dr. Wiwat Tanthapanichakoon, for his guidance during the course of this work. Special thanks are due to Associate Professor Dr. Woraphat Arthayukti and Associate Professor Dr. Sutham Vanichseni for their support and advice.

The author would also like to thank Mr. Dharittee Kritsernvong who gave valuable advice on computer programming for this study. She wishes to also thank all her friends for their spiritual support.

Finally, she would like to thank her parents for their patience, support and encouragement over the many years that it took to complete this work.

CONTENTS

	Page
THA! AESTRACT	IV
ENGLISH ABSTRACT	ΛΙ
ACKNOWLEDGEMENT	IIV
LIST OF TABLES	IIX
LIST OF FIGURES	IIVX
NOMENCLATURE	XIIX
CHAPTERS	
1 INTRODUCTION	1
1.1 Background	1
1.2 Objective	2
1.3 Scope of Work	3
2 REVIEW OF LITERATURE	۷
2.1 Literature Survey of Heat Transfer Correlation	۷
2.2 Theory of Heat Transfer	5
2.3 Pressure Drop	13
2.4 Fouling	16
2.5 Heat Transfer Method of Plate Heat Exchanger	17
3 CHARACTERISTICS OF PLATE HEAT EXCHANGERS	31
3.1 Construction of Plate Heat Exchanger	31
3.1.1 General Description	31
3.1.2 Plate Construction Features	33
3.1.3 Gasket	36
3.1.4 Frame	36
3.1.5 Channel Construction	3.8

CHAPTERS			Page
	3.2	Operation	39
	3.3	Plate Arrangement	40
		3.3.1 Type of Pass Arrangements	40
		3.3.1.1 Single Pass	40
		3.3.1.2 Multipass With Equal Passes	40
		3.3.1.3 Multipass With Unequal Passes	40
		3.3.2 End Effects	41
		3.3.2.1 End Passages	42
		3.3.2.2 Equal Number of Passes	42
		3.3.2.3 Unequal Passes	42
4	EXPE	RIMENTAL APPARATUS AND PROCEDURE	43
	EXPE	RIMENTAL APPARATUS	43
	4.1	Plate Heat Exchanger	43
		4.1.1 Description	43
		4.1.2 Flow Diagram of Plate Heat Exchanger	48
	Expe	rimental Procedure	50
	4.2	General Experimental Procedure	50
	4.3	Experiment Conditions Investigated	5 1
		4.3.1 Case !: Product is water	5 t
		4.3.1.1 Case 1-1: Equal flow rates	5 t
		4.3.1.1.1 Case I-1(a): Hot water at 75 °C	5 1
		4.3.1.1.2 Case I-I(b): Hot water at 35 °C	52
		4.3.1.1.3 Case I-1(c): Hot water at 98 °C	52
		4.3.1.2 Case I-2: Unequal flow rates	52
		4.3.1.2.1 Case [-2(a): Hot water at 75 °C	52
		4.3.1.2.2 Case I-2(5): Hot water at 85 °C	52
		4.3.1.2.3 Case I-3(c): Hot water at 98 °C	53
		4.3.2 Case II: Product is syrup(Sucrose solution)	53

CHAPTERS	P	age
	4.3.2.2 Case II-2: 30 wt% syrup	53
	4.3.2.3 Case II-3: 40 wt% syrup	53
	4.3.3 Case III: Product is glycerine(in water) .	53
	4.3.3.1 Case III-1: 40 vol% glycerine	53
	4.3.3.2 Case III-2: 50 vol% glycerine	53
	4.3.3.3 Case III-3: 60 vol% glycerine	53
	4.4 Summary of Experimental Conditions	53
5	RESULTS AND DISCUSSIONS	73
	5.1 Equal water/water flow rates	73
	5.2 Unequal water/water flow rates	81
	5.3 Equal syrup/syrup flow rates	91
	5.4 Equal glycerine/glycerine flow rates	145
	5.5 Unequal water/syrup flow rates	158
	5.5.1 Theoretical correlation is used to estimate h	159
	5.5.2 Constrained correlation (5-7) is used to	
	estimated h	159
	5.5.3 Unconstrained correlation (5-8) is used to	
	estimated h	160
	5.6 Unequal water/glycerine flow rates	165
	5.6.1 Theoretical correlation is used to estimate h	166
	5.6.2 Constrained correlation (5-7) is used to	
	estimated h	166
	5.6.3 Unconstrained correlation (5-8) is used to	
	estimated h	166
4	5.7 Generalized heat transfer correlation	167
. 6	COMPUTER PROGRAM FOR THE DESIGN OF PLATE HEAT EXCHANGERS	197
	6.1 Design Examples	206
	6.2 Application to Industrial Problem	217

CHAFTERS		Page
7	CONCLUSIONS AND RECOMMENDATIONS	230
	7.1 CONCLUSIONS	230
	7.2 RECOMMENDATIONS	231
REFERENC	ES	234
APPENDIC	ES	238
A	FLOW CHARTS OF PROGRAMS	239
A 1	PROGRAM 1	262
A2	PROGRAM 2	268
A3	PROGRAM 3	271
A 4	PROGRAM 4	278
A5	PROGRAM 5	292
A6	PROGRAM 6	304
8	Physical properties of liquids	319
	B.1 Water	319
	B.1.1 Viscosity	319
	B.1.2 Thermal Conductivity	319
	B.1.3 Specific heat	320
	B.1.4 Density	320
	B.2 Syrup solution (Sucrose Solution)	321
	B.2.1 Vicosity	321
	B.2.2 Thermal Conductivity	326
	B.2.3 Specific heat	326
	B.2.4 Density	327
	B.3 Glycerine	328
	B.3.1 Vicosity	328
	B.3.2 Thermal Conductivity	330
	B.3.3 Specific heat	332
	B.3.4 Density	332

LIST OF TABLES

Table		Page
3.1	Gasket material applications	36
4.1	Summary of experimental for equal flow rates.	
	Hot water flow rate(H) = Cool water flow rate(C)	
	= Product water flow rate(P), LPM.	
	Each run number consists of three cases, namely,	0
	T10 = 98, 85, and 75 °C, respectively	54
4.2	Summary of experimental conditions for unequal	
	water/water flow rates (LPM)	
	Each run number consists of three cases, namely,	
	T10 = 98, 85, and 75 °C, respectively	55
4.3	Experimental conditions for equal water/water flow	
	rates	58
4.4	Experimental conditions for unequal water/water (H=C=3	
	and vary P (LPM))	59
4.5	Experimental conditions for unequal water/water (H=C=4	
	and vary P (LPM))	60
4.6	Experimental conditions for unequal water/water (H=C=5	
	and vary P (LPM))	61
4.7	Experimental conditions for unequal water/water ($H=C=6$	
	and vary P (LPM))	62
4.8	Experimental conditions for unequal water/water (H=C=7	
	and vary P (LPM))	63
4.9	Experimental conditions for unequal water/water (H=C=7.5	
	and vary P (LPM))	64

Table		Page
4.10	Experimental conditions for unequal water/water (H=C=9	
	and vary P (LPM))	65
4.11		0.5
4.11	Experimental conditions for unequal water/water (H=C=12	
	and vary P.(LPM))	66
4.12	Experimental conditions for equal syrup/syrup flow	
	rates.(20 wt% concentration)	67
4.13	Experimental conditions for equal syrup/syrup flow	
	rates.(30 wt% concentration)	68
4.14	Experimental conditions for equal syrup/syrup flow	
- ·	rates.(40 wt% concentration)	69
4.15	Experimental conditions for equal glycerine/glycerine	
	flow rates.(40 vol% concentration)	70
4.16	Experimental conditions for equal glycerine/glycerine	
	flow rates.(50 vol% concentration)	7 1
4.17	Experimental conditions for equal glycerine/glycerine	
	flow rates.(60 vol% concentration)	72
5.1	Experimental and estimated values of the Nusselt	
	number; System: Equal water/water flow rates	76
5.2	Experimental and estimated values of the heat	
	transfer coefficient; System: Equal water/water	
	flow rates	85
5.3.1	Experimental and estimated values of the heat	
	transfer coefficient; System: Unequal water/water	
	flow rates; Flow rate of product = 2,3,4,5,6,7 LPM.	
	Flow rate of cooling water = Flow rate of hot water	
	= 12 LPM	92

7.5

Table		Page
5.3.2	Experimental and estimated values of the heat	
	transfer coefficient; System: Unequal water/water	
	flow rates; Flow rate of product = 2,3,4,5,6,7 LPM.	
	Flow rate of cooling water = Flow rate of hot water	
	= 9 LPM	94
5.3.3	Experimental and estimated values of the heat	
	transfer coefficient; System: Unequal water/water	
	flow rates; Flow rate of product = 2,3,4,5,6,7 LPM.	
	Flow rate of cooling water = Flow rate of hot water	
	= 7.5 LPM	96
5.3.4	Experimental and estimated values of the heat	
	transfer coefficient; System: Unequal water/water	
	flow rates; Flow rate of product = 2,3,4,5,6,7.5 LPM.	
	Flow rate of cooling water = Flow rate of hot water	
	= 7 LPM	98
5.3.5	Experimental and estimated values of the heat	
	transfer coefficient; System: Unequal water/water	
	flow rates; Flow rate of product = 2,3,4,5,7,7.5 LPM.	
	Flow rate of cooling water = Flow rate of hot water	
	= 6 LPM	100
5.3.6	Experimental and estimated values of the heat	100
3.3.0	·	
	transfer coefficient; System: Unequal water/water	
	flow rates; Flow rate of product = 2,3,4,6,7,7.5 LPM.	
	Flow rate of cooling water = Flow rate of hot water	
	= 5 LPM	102

Table		Page
5.3.7	Experimental and estimated values of the heat	
	transfer coefficient; System: Unequal water/water	
	flow rates; Flow rate of product = 2,3,5,6,7,7.5 LPM.	
	Flow rate of cooling water = Flow rate of hot water	
	= 4 LPM	104
5.3.8	Experimental and estimated values of the heat	
	transfer coefficient; System: Unequal water/water	
	flow rates; Flow rate of product = 2,4,5,6,7,7.5 LPM.	
	Flow rate of cooling water = Flow rate of hot water	
	= 3 LPM	106
5.4	Experimental and estimated values of the Nusselt	
	number; System: Equal syrup/syrup flow rates	133
5.5	Experimental and estimated values of the heat	
	transfer coefficient; System: Equal syrup/syrup flow	
	rates	140
5.6	Experimental and estimated values of the Nusselt	
	number; System: Equal glycerine/glycerine flow rates	146
5.7	Experimental and estimated values of the heat	
	transfer coefficient; System: Equal glycerine/glycerine	
	flow rates	153
5.8	The calculation results of Nusselt number in	
	various cases; System: water/syrup	161
5.9	The calculation results of Nusselt number in	
	various cases: System: water/glycerine	168
5.10	Experimental and estimated values of the heat	
	transfer coefficient; System: water/syrup	181

Table		5886
5.11	Experimental and estimated values of the heat	
	transfer coefficient; System: water/glycerine	184
8-1	Viscosity of Sucrose Solution	322
B-2	Experimental measurement of viscosity of 30% by	
	weight sugar solution	325
8-3	Viscosity measurement of glycerine solution as a	
	function of concentration in volume % and	
	temperature	328

LIST OF FIGURES

Figure		Page
1	For same material, plate exchanger costs less	1
2.2.1	Heat transfer through a composite plane wall with	
	convection at the surfaces	7
2.2.2	Axial temperature distribution in heat exchangers	10
2.3.1	Performance characteristics of a small chevron-trough	
	plate heat exchanger	15
2.5.1	Mechanism of heat transfer in a plate heat exchanger	18
2.5.2	Typical arrangement of plates and flow channels	19
2.5.3	LMTD correction factors for multipass systems	24
2.5.4	Countercurrent E-NTU relationships for loop patterns	27
2.5.5	Cocurrent E-NTU relationships for loop patterns	28
2.5.6	Series-series E-NTU relationships for 4 channels,	
	types I and III, and 8 channels	29
2.5.7	Series-series E-NTU relationships for 4 channels,	
	types !I and IV	29
3.1	Typical plates showing intermating and chevron troughs .	31
3.2	Typical plate and frame heat exchanger	32
3.3	Diagram of heat exchanger plate	33
3.4	Vertical flow plate with chevron troughs	34
3.5	Diagonal flow plate with intermating troughs	35
3.6	Industrial frame with tie bar tightening	36
3.7	Stainless steel-clad hygienic frame with screw closure .	37
3.8	Schematic representation of mixed plates	39
3.9	n-narallel nlate single and multinass arrangements	4 1

Figure	E	e ge
4.1	Photograph of Plate Heat Exchanger Investigated	44
4.2	Type Eurocal 5; Chevron Corrugation(angle = 50 degrees).	44
4.3	Flow Arrangement in Each Section of the Plate Heat	
	Exchanger	45
4.4	Flow Diagram of Plate Heat Exchanger	47
5.1	Experimental results for the case of equal water/water	
	flow rates; (at hot water temperature ,T10 = 98, 85,	
	and 75 °C , O: 6 = 0.4, D: 6 = 1.38)	79
5.2	Comparison between Nu, the experimental value of	
	the Nusselt number and Nu	
	based on eqn(5-6) for the case of equal water/water	
	flow rates	82
5.3	Comparison between the experimental value of the	
	Nusselt number and value estimated with eqn(5-7) for	
	the case of equal water/water flow rates	83
5.4	Comparison between the experimental value of the	
	Nusselt number and value estimated with eqn(5-8) for	
	the case of equal water/water flow rates	84
5.5	Comparison between the experimental value of the	
	overall heat transfer coefficient and the theoretical	
	value given by eqn(5-6) for the case of equal water/water	
	flow rates	85
5.6	Comparison between the experimental value of the overall	
	heat transfer coefficient and the estimated from eqn(5-7)	

for the case of equal water/water flow rates 88

5.7	Comparison between the experimental value of the overall	
	heat transfer coefficient and the estimated from eqn(5-8)	
	for the case of equal water/water flow rates	89
5.8(a)	Comparison between the experimental value of U and the	
	theoretical value given by eqn(5-6) for the case of	
	unequal water/water flow rates ;	
	(Flow rate of product = 2,3,4,5,6,7 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 12 LPM.)	108
5.8(b)	Comparison between the experimental value of U and the	
	value estimated from eqn(5-7) for the case of unequal	
	water/water flow rates;	
	(Flow rate of product = 2,3,4,5,6,7 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 12 LPM.)	109
5.8(c)	Comparison between the experimental value of U and the	
	value estimated from eqn(5-8) for the case of unequal	
	water/water flow rates ;	
	(Flow rate of product = 2,3,4,5,6,7 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 12 LPM.)	110
5.9(a)	Comparison between the experimental value of U and the	
	theoretical value given by eqn(5-6) for the case of	
	unequal water/water flow rates;	
	(Flow rate of product = 2,3,4,5,6,7 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 9 LPM.)	111

5.9(b)	Comparison between the experimental value of U and the	
	value estimated from eqn(5-7) for the case of unequal	
	water/water flow rates;	
	(Flow rate of product = 2,3,4,5,6,7 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 9 LPM.)	112
5.9(c)	Comparison between the experimental value of U and the	
	value estimated from eqn(5-8) for the case of unequal	
	water/water flow rates ;	
	(Flow rate of product = 2,3,4,5,6,7 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 9 LPM.)	113
5.10(a)	Comparison between the experimental value of U and the	
	theoretical value given by eqn(5-6) for the case of	
	unequal water/water flow rates;	
	(Flow rate of product = 2,3,4,5,6,7 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 7.5 LPM.)	114
5.10(Ъ)	Comparison between the experimental value of U and the	
	value estimated from eqn(5-7) for the case of unequal	
	water/water flow rates;	
	(Flow rate of product = 2,3,4,5,6,7 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 7.5 LPM.)	115
5.10(c)	Comparison between the experimental value of U and the	
	value estimated from eqn(5-8) for the case of unequal	
	water/water flow rates ;	
	(Flow rate of product = 2,3,4,5,6,7 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 7.5 LPW.)	115

5.11(a)	Comparison between the experimental value of U and the	
	theoretical value given by eqn(5-6) for the case of	
	unequal water/water flow rates;	
	(Flow rate of product = 2,3,4,5,6,7.5 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 7 LPM	117
5.11(b)	Comparison between the experimental value of U and the	
	value estimated from eqn(5-7) for the case of unequal	
	water/water flow rates;	
	(Flow rate of product = 2,3,4,5,6,7.5 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 7 LPM	118
5.11(c)	Comparison between the experimental value of U and the	
	value estimated from eqn(5-8) for the case of unequal	
	water/water flow rates ;	
1	(Flow rate of product = 2,3,4,5,6,7.5 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 7 LPM	119
5.12(a)	Comparison between the experimental value of U and the	
	theoretical value given by eqn(5-6) for the case of	
	unequal water/water flow rates;	
	(Flow rate of product = 2,3,4,5,7,7.5 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 6 LPM.)	120
5.12(b)	Comparison between the experimental value of U and the	
	value estimated from eqn(5-7) for the case of unequal	
	water/water flow rates;	
	(Flow rate of product = 2,3,4,5,7,7.5 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 6 LPM.)	121

5.12(c)	Comparison between the experimental value of U and the	
	value estimated from eqn(5-8) for the case of unequal	
	water/water flow rates ;	
	(Flow rate of product = 2,3,4,5,7,7.5 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 6 LPM.)	122
5.13(a)	Comparison between the experimental value of U and the	
	theoretical value given by eqn(5-6) for the case of	
	unequal water/water flow rates;	
	(Flow rate of product = 2,3,4,6,7,7.5 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 5 LPM.)	123
5.13(b)	Comparison between the experimental value of U and the	
	value estimated from eqn(5-7) for the case of unequal	
	water/water flow rates;	
	(Flow rate of product = 2,3,4,6,7,7.5 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 5 LPM.)	124
5.13(c)	Comparison between the experimental value of U and the	
	value estimated from eqn(5-8) for the case of unequal	
	water/water flow rates ;	
	(Flow rate of product = 2,3,4,6,7,7.5 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 5 LPM.)	125
5.14(a)	Comparison between the experimental value of U and the	
	theoretical value given by eqn(5-6) for the case of	
	unequal water/water flow rates;	
	(Flow rate of product = 2,3,5,6,7,7.5 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 4 LPM.)	126

5.14(b)	Comparison between the experimental value of U and the	
	value estimated from eqn(5-7) for the case of unequal	
	water/water flow rates;	
	(Flow rate of product = 2,3,5,6,7,7.5 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 4 LPM.)	127
5.14(c)	Comparison between the experimental value of U and the	
	value estimated from eqn(5-8) for the case of unequal	
	water/water flow rates ;	
	(Flow rate of product = 2,3,5,6,7,7.5 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 4 LPM.)	128
5.15(a)	Comparison between the experimental value of U and the	
	theoretical value given by eqn(5-6) for the case of	
	unequal water/water flow rates;	
	(Flow rate of product = 2,4,5,6,7,7.5 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 3 LPM.)	129
5.15(b)	Comparison between the experimental value of U and the	
	value estimated from eqn(5-7) for the case of unequal	
	water/water flow rates;	
	(Flow rate of product = 2,4,5,6,7,7.5 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 3 LPM.)	130
5.15(c)	Comparison between the experimental value of U and the	
	value estimated from eqn(5-8) for the case of unequal	
	water/water flow rates ;	
	(Flow rate of product = 2,4,5,6,7,7.5 LPM., Flow rate of	
	cooling water = Flow rate of hot water = 3 LPM.)	131

5.16	Experimental results for the case of equal syrup/syrup	
	flow rates; (at hot water temperature ,T10 = 98, 85,	
	and 75 °C, \bigcirc : b = 0.4, \bigcirc : b = 0.54)	35
5.17	Comparison between Nu , the experimental value of	
	the Nussult number and Nu , the theoretical value	
	based on eqn(5-6) for the case of equal syrup/syrup	
	flow rates	36
5.18	Comparison between the experimental value of the	
	Nusselt number and value estimated with eqn(5-9) for	
	the case of equal syrup/syrup flow rates 1	37
5.19	Comparison between the experimental value of the	
	Nusselt number and value estimated with eqn(5-10) for	
	the case of equal syrup/syrup flow rates 1	38
5.20	Comparison between the experimental value of the	
	overall heat transfer coefficient and the theoretical	
	value given by eqn(5-6) for the case of equal syrup/syrup	
	flow rates 1	42
5.21	Comparison between the experimental value of the overall	
	heat transfer coefficient and the estimated from eqn(5-9)	
	for the case of equal syrup/syrup flow rates 1	43
5.22	Comparison between the experimental value of the overall	
	heat transfer coefficient and the estimated from eqn(5-10)	
	for the case of equal syrup/syrup flow rates i	44
5.23	Experimental results for the case of equal glycerine/glycer	ine
	flow rates; (at hot water temperature ,T10 = 98, 85,	
	and 75 °C , : b = 0.4, : b = 0.57)	48

5.24	Comparison between Nu , the experimental value of
	the Nusselt number and Nu the theoretical value
	based on eqn(5-6) for the case of equal glycerine/glycerine
	flow rates
5.25	Comparison between the experimental value of the
	Nusselt number and value estimated with eqn(5-11) for
	the case of equal glycerine/glycerine flow rates 150
5.26	Comparison between the experimental value of the
	Nusselt number and value estimated with eqn(5-12) for
	the case of equal glycerine/glycerine flow rates 15
5.27	Comparison between the experimental value of the
	overall heat transfer coefficient and the theoretical
	value given by eqn(5-6) for the case of equal
	glycerine/glycerine flow rates 155
5.28	Comparison between the experimental value of the overall
	heat transfer coefficient and the estimated from eqn(5-11)
	for the case of equal glycerine/glycerine flow rates 158
5.29	Comparison between the experimental value of the overall
	heat transfer coefficient and the estimated from eqn(5-12)
	for the case of equal glycerine/glycerine flow rates 157
5.30	Experimental results for the case of water/syrup
	flow rates; (at hot water temperature ,T10 = 98, 85,
	and 75 °C, O: b = 0.4, D: b = 1.02)
5.31	Experimental results for the case of water/gycerine
	flow rates; (at hot water temperature ,T10 = 98, 85,
	and 75 °C, O: b = 0.4, D: b = 0.89)

5.32	Experimental results for the case of overall data of	
	equal flow rates; (at hot water temperature ,T10 = 98, 85,	
	and 75 °C , O: b = 0.4, D: b = 0.89)	72
5.33	Comparison between the experimental value of the	
	Nusselt number and value estimated with eqn(5-27) for	
	the case of equal water/water flow rates 1	74
5.34	Comparison between the experimental value of the	
	Nusselt number and value estimated with eqn(5-28) for	
	the case of equal water/water flow rates 1	75
5.35	Comparison between the experimental value of the	
	Nusselt number and value estimated with eqn(5-27) for	
	the case of equal syrup/syrup flow rates 1	78
5.36	Comparison between the experimental value of the	
	Nusselt number and value estimated with eqn(5-28) for	
	the case of equal syrup/syrup flow rates	77
5.37	Comparison between the experimental value of the	
	Nusselt number and value estimated with eqn(5-27) for	
	the case of equal glycerine/glycerine flow rates 1	78
5.38	Comparison between the experimental value of the	
	Nusselt number and value estimated with eqn(5-28) for	
	the case of equal glycerine/glycerine flow rates 1	79
5.39	Comparison between the experimental value of the overall	
	heat transfer coefficient and the estimated from eqn(5-27)	
	for the case of equal water/water flow rates 1	87

5.40	Comparison between the experimental value of the overall
	heat transfer coefficient and the estimated from eqn(5-28)
	for the case of equal water/water flow rates 188
5.41	Comparison between the experimental value of the overall
	heat transfer coefficient and the estimated from eqn(5-27)
	for the case of equal syrup/syrup flow rates 189
5.42	Comparison between the experimental value of the overall
	heat transfer coefficient and the estimated from eqn(5-28)
	for the case of equal syrup/syrup flow rates 190
5.43	Comparison between the experimental value of the overall
	heat transfer coefficient and the estimated from eqn(5-27)
	for the case of equal glycerine/glycerine flow rates 191
5.44	Comparison between the experimental value of the overall
	heat transfer coefficient and the estimated from eqn(5-28)
	for the case of equal glycerine/glycerine flow rates 192
5.45	Comparison between the experimental value of the overall
	heat transfer coefficient and the estimated from eqn(5-27)
	for the case of water/syrup flow rates
5.46	Comparison between the experimental value of the overall
	heat transfer coefficient and the estimated from eqn(5-28)
	for the case of water/syrup flow rates
5.47	Comparison between the experimental value of the overall
	heat transfer coefficient and the estimated from eqn(5-27)
	for the case of water/glycerine flow rates 195

5.48	Comparison between the experimental value of the overall	
	heat transfer coefficient and the estimated from eqn(5-28)	
, I	for the case of water/glycerine flow rates	196
8-1	Viscosity of sucrose solution as a function of temperature	
	and percentage of sucrose by weight. (Based on Perry's	
	Chemical Engineer's Handbook Fourth Edition, 1963.)	323
B-2	Temperature-viscosity relation for 30 wt% sucrose solution	
	(Based on measured data)	324
B-3	Temperature-viscosity relations for glycerine solution	
	(Based on measured data)	329
B-4	Thermal conductivity versus Glycerine concentration (vol%)	
	(Based on Perry's Chemical Engineer's Handbook Fourth	
	Edition, 1963)	331
8-5	Specific heat versus Glycerine concentration (mole %)	
	(Based on Perry's Chemical Engineer's Handbook Fourth	
	Edition, 1963)	333

NOMENCLATURE

- a, A Area of plate, m^2 (2A = area per channel bounded by two plates).
- A Total area of the thermal plates (A, N), m^2 .
- Distance between plates or plate gap, m.
- C Heat capacity of the fluid, kJ/kgK.
- d Fouling factor, m2K/W.
- Equivalent diameter of the flow channel (D = 2b , m.
- E Heat transfer effectiveness.
- F Correction factor for LMTD.
- f Friction factor.
- G Mass flow rate of fluid, kg/m²s.
- h Heat transfer film coefficient fluid, W/m2K.
- k Thermal conductivity, W/mK.
- L Length of flow passage, m.
- m Exponent in Eq.(2.2.1)
- n Exponent in Eq.(2.2.1) and number of thermal plates.
- N Number of thermal plates.
- NTU Number of transfer units or thermal length, 9 or performance factor, or temperature ratio, TR.
- Nu Nusselt number (hD /k).
- Pr Prandtl number (C_u/k).
- \triangle P Pressure drop, kN/m².
- Q Heat transfer rate, kW.
- Re Reynolds number (2w/b₂).
- T Temperature, K.
- T Inlet temperature of the process fluid.

T Outlet temperature of the process fluid.

 \triangle T Temperature difference, K.

 $\triangle T_{im}$ Log mean temperature difference, K.

U Overall heat transfer coefficient, W/m K.

W Width of the plate, m.

w Mass flow rate of fluid, kg/s.

x Exponent in Eq.(2.2.1) or plate thickness, m.

8 Thermal length, or NTU.

μ Fluid viscosity, kg/ms.

ρ Fluid density, kg/m³.

Subscripts.

av Average.

c Cold.

ci Cold fluid, inlet.

co Cold fluid, outlet.

h Hot.

hi Hot fluid, inlet.

ho Hot fluid, outlet.

max Maximum.

min Minimum.