การออกแบบโครงข่าย เครื่องแลก เปลี่ยนความร้อนโดยอาศัยคอมพิว เตอร์

นาย บุญเลี่ยง ซึ้มศรีสกุล

วิทยานิพนธ์นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชา เทคโนโลยีปิโตร เคมี

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2532

ISBN 974-576-976-2

ลิบสิทธิ์บองบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

015702

117519029

COMPUTER-AIDED HEAT EXCHANGER NETWORK DESIGN

Mr. Boonliang Simsrisakul

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering

Program of Petrochemical Technology

Graduate School

Chulalongkorn University

1989

ISBN 974-576-976-2

Thesis Title : Computer-aided Heat Exchanger Network design

By : Mr. Boonliang Simsrisakul

Department : Petrochemical Technology

Thesis advisor : Associate Professor Dr. Wiwut Tanthapanichakoon

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree.

(Professor Thavorn Vajrabhaya, Ph.D.)

Thesis Committee

tathey Ramul O-Chairman

(Associate Professor Dr. Pattarapan Prasassarakich)

Mint Tanthapanichakoon Thesis Advisor

(Associate Professor Dr. Wiwut Tanthapanichakoon)

Sulcions soyter Member

(Associate Professor Dr. Kroekchai Sukanjanajtee)

Woraphut Arthoup .. Member

(Associate Professor Dr. Woraphat Arthayukti)

บุญเลี่ยง ซึ้มศรีสกุล : การออกแบบโครงข่ายเครื่องแลกเปลี่ยนความร้อนโดยอาศัยคอมพิว-เตอร์ (COMPUTER-AIDED HEAT EXCHANGER NETWORK DESIGN) อ.ที่ปรึกษา : รศ. ดร. วิวัฒน์ ตัพพะพาบิชกุล, 191 หน้า. ISBN 974-576-976-2

วัตถุประสงค์ของวิทยานิพนธ์นี้ เพื่อพัฒนาคอมพิวเตอร์ซอฟแวร์สาหรับการออกแบบโครงข่าย เครื่องแลกเปลี่ยนความร้อน โดยใช้พินซ์เทคโนโลยีและกฎเกณฑ์อื่นที่กาหนดขึ้น โดยมีสมมุติฐานดังนี้

- 1. เงื่อนไขของขบวนการ เป็นที่ทราบค่าและไม่มีการ เปลี่ยนแปลง
- 2. ไม่มีการ เปลี่ยนสถานะของของใหลในระหว่างการแลก เปลี่ยนความร้อน
- ไม่มีการสูญ เสียความร้อน
 โครงข่ายที่ออกแบบ เบื้องต้นนี้จะถูกปรับปรุง
 ให้มีจานวน เครื่องแลก เปลี่ยนความร้อนน้อยลงตัวยการกาจัด ลูพที่ เกิดขึ้น

ผลการใช้ซอฟแวร์ที่พัฒนาขึ้นในการออกแบบโครงข่าย เครื่องแลก เปลี่ยนความร้อน พบว่าโครง ข่ายที่ได้จากการออกแบบ เป็นโครงข่ายที่ใช้ความร้อนกลับคืนสูงสุด และจานวน เครื่องแลก เปลี่ยนความร้อน ที่ใช้จะน้อยที่สุด หรือใกล้ เคียงกับค่าที่น้อยที่สุด เป็นส่วนใหญ่

ภาควิชา	ปิโตร-โพลีเมอร์
สาขาวิชา	เทคโนโลยีปีโตรเคมี
ปีการศึกษา	

ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

BOONLIANG SIMSRISAKUL: COMPUTER-AIDED HEAT EXCHANGER NETWORK DESIGN. THESIS ADVISOR: ASSO. PROF. WIWUT TANTHAPANICHAKOON, Ph.D. 191 pp. ISBN 974-576-976-2

The objective of this thesis is to develop necessary computer software for heat exchanger networks (HENs) synthesis, based on a combination of the pinch design method and heuristic rules. The software is developed under the following assumptions.

- 1. Process conditions are known and unchanged.
- 2. No change of phase of any fluid stream occurs during heat exchange.
- 3. Heat loss from exchangers to environment is negligible.

The obtained maximum-energy-recovery (MER) HEN is further improved by appplying an evolutionary procedure to minimize the number of units, in which the program will automatically search for and break up primary loop up to the second-level.

Through actual applications of the software to various published examples, it has been shown that the MER networks obtained satisfy the minimum utility requirements while the HENs obtained by loop breaking successfully minimize the number of exchanger units in a majority of the examples studied. The thesis describes the general algorithm and features of the software and show some typical examples studied.

ภาควิชา	ปีโตร-โพลีเมอร์
สาขาวิชา	เทคในโลยีปิโตร เคมี
ปีการศึกษา .	2532

ACKNOWLEDGEMENT

The author wishes to express his deepest gratitude to his advisor, Associate Professor Dr. Wiwut Tanthapanichakoon, for his helpful guidances and encouragements throughout the thesis. Thanks are also expressed to Associate Professor Dr. Pattarapan Prasassarakich, Associate Professor Dr. Kroechai Sukanjanajtee, Associate Professor Dr. Woraphat Arthayukti for their interests and suggestions.

Contents

	page
Abstract in Thai	iv
Abstract in English	v
Acknowledgement	٧i
List of Tables	х
List of Figures	хi
Chapter	
1. Introduction	1
1.1 Background	1
1.2 Objectives	3
1.3 Scope of Work	3
1.3.1 Capability of the developed computer	
software	3
1.3.2 Assumptions	4
1.4 Literature Survey	4
2. Pinch design method	10
2.1 Energy target	10
2.1.1 First law analysis	11
2.1.2 Prediction of energy targets using	
composite curve	12
2.1.2.1 Construction of composite curve .	15
2.1.3 Prediction of energy target using problem	
table method	18
2.1.4 Relation of minimum heating and cooling to	
the first law requirement	22

Chapter		page	
	2.2	Pinch design	22
		2.2.1 Significance of the pinch	24
		2.2.2 Grid representation	25
		2.2.3 Criteria for pinch match	26
		2.2.3.1 The number of process streams and	
		branches	26
		2.2.3.2 The heat capacity flowrate for	
		individual matches	27
		2.2.4 Algorithm for design at the pinch	30
	2.3	Heuristic method for network design	30
		2.3.1 Classification of heat exchanging streams	32
		2.3.2 Design strategy	34
	2.4	Example of heat exchanger network design	37
3.	Thre	shold problems	48
4.	Trad	ling off energy against capital	51
	4.1	Minimum number of units	51
	4.2	Optimum ¿Tmin	55
5.	Trea	tment of loop in heat exchanger network	57
	5.1	Loop level and loop identification	57
		5.1.1 Loop identification procedure	59
	5.2	Loop breaking procedure	59
		5.2.1 Primary loop breaking	61
6.	Econ	nomic analysis of heat exchanger networks	68
	6.1	Capital cost	68
		6.1.1 Heat exchanger cost	68
		6.1.2 Piping cost and installation cost	71

Chapter	
6.2 Calculation of annual cost	71
6.3 Calculation of payback period	72
6.4 Example of economic analysis	72
7. Computer program for heat exchanger network design	77
7.1 Overview of the program	77
7.2 Assumptions used in the developed software	78
7.3 Limitations of the software	79
7.4 Program features	79
7.4.1 The PINCH.BAS module	79
7.4.2 The RMATCHA.BAS module	84
7.4.3 The RMATCHB.BAS module	90
7.4.4 The BLOOP.BAS module	93
7.4.5 The ECONOMIC.BAS module	93
8. Example problem of the computer program to network	
design	97
9. Conclusion	164
References	167
Appendix A. Heat Transfer Area	172
Appendix B. Overall Heat Transfer Coefficient	173
Appendix C. Utility Costs	174
Appendix D. Summary of the designed networks	175
Biography	191

List of Tables

Tab:	le		page
	1.1	First results of applying pinch in Union Carbide	2
	2.1	Data for example problem	11
	2.2	Data for example 2-2	44
	2.3	Problem table analysis	44
	6.1	Matching results for the network shown in figure 5.5d	73
	6.2	Required heat transfer area	74
	6.3	Present costs of heat exchanger	75
	8.1	Data for example 8-1	97
	8.2	Data for example 8-2	106
	8.3	Heating and cooling demands for ABCDE process	116
	8.4	Data for example 8-4	131
	8.5	Heat transfer areas of the existing exchanger in	
		example 8-5	138
	8.6	Data for example 8-6	155
	9.1	Summary of the designed results	165

List of Figures

Figures		Page
2.1	Representation of process stream in the T/H diagram	13
2.2	Energy targets and the pinch with composite curves	14
2.3	Construction of composite curve	16
2.4	Graphical construction of composite curve	17
2.5	Temperature interval analysis	20
2.6	The heat cascade diagram	21
2.7	Composite curves of example problem	23
2.8	Effect of heat transfer across the pinch	25
2.9	Grid representation	26
2.10	Above the pinch streams	26
2.11	Feasible pinch match	28
2.12	Stream splitting at the pinch	29
2.13	Algorithm for design at the pinch	31
2.14	Heat transfer in the third catagory for pinch design	33
2.15	Heuristic procedure for above-the-pinch design	35
2.16	Heuristic procedure for below-the-pinch design	36
2.17	The CP table for above-the-pinch design	38
2.18	Above-the-pinch design structure	39
2.19	CP table for below-the-pinch design	40
2.20	Below-the-pinch design	42
2.21	A minimum utility designed network	42
2.22	Above-the-pinch design	46
2.23	Final network structure	46
3 4	mbmoshald myohlom	40

Figure		page
4.1	Principle of subsets and loops	52
4.2	Showing two heat load loops	54
4.3	Network cost as a function of ¿Tmin	55
5.1	Example for identification of loop level	58
5.2	Loop searching procedure	60
5.3	Primary loop breaking	62
5.4	Example of merging process	63
5.5	Example for primary loop breaking	65
6.1	Reference cost of heat exchangers	70
7.1	Simplified overall flowchart of the developed program	80
7.2	Flowchart of the PINCH.BAS module	81
7.3	Typical interchange in a subnetwork constrained by	
	restricted matches	83
7.4	Design at pinch (above the pinch)	85
7.5	Naming of split and recombined points	86
7.6	Recombination of split streams (above the pinch)	89
7.7	Design at pinch (below the pinch)	91
7.8	Flowchart of the BLOOP.BAS module	94
7.9	Flowchart of the ECONOMIC.BAS module	95
8.1	Composite curves for example 8-1	100
8.2	Grid representation for M.E.R. network of example 8-1	101
8.3	Composite curves for example 8-2	109
8.4	Grid representation for M.E.R. and final network of	
	example 8-2	111
8.5	Flow diagram of the ABCDE process	115
8.6	Composite curves for example 8-3	120

Figure	page
8.7 Grid representation for M.E.R. network of example 8-3	122
8.8 Evolved network structure of example 8-3	125
8.9 Flowsheet for the dehydration of isopropanol with	
isopropyl ether	130
8.10 Composite curves for example 8-4	134
8.11 Designed network configuration for example 8-4	136
8.12 The grid diagram for an existing network	138
8.13 Composite curves for example 8-5	142
8.14 Initial M.E.R. design for example 8-5	143
8.15 Designed network for example 8-5	146
8.16 Network obtained under unrestricted conditions for	
example 8-6	156
8.17 Composite curves for example 8-6	159
8.18 Network obtained under restricted match condition	162