HYDROLYSIS OF SUGARCANE BAGASSE FOR SUGAR PRODUCTION BY MICROBES FROM THAI HIGHER TERMITES

Chunaree Nibhondhratana

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science
The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with
The University of Michigan, The University of Oklahoma,
Case Western Reserve University, and Institut Français du Pétrole
2011

Thesis Title: Hydrolysis of Sugarcane Bagasse for Sugar Production by

Microbes from Thai Higher Termites

By: Ms. Chunaree Nibhondhratana

Program: Petrochemical Technology

Thesis Advisors: Assoc. Prof. Pramoch Rangsunvigit

Prof. Sumaeth Chavadej

Asst. Prof. Thammanoon Sreethawong

Assoc. Prof. Sirirat Rengpipat

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

...... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Assoc. Prof. Pramoch Rangsunvigit)

Prawoch ()

(Prof. Sumaeth Chavadej)

(Asst. Prof. Thammanoon Sreethawong)

(Assoc. Prof. Sirirat Rengpipat)

S. Rengin jul

(Prof. Suntud Sirianuntapiboon)

(Assoc. Prof. Thirasak Rirksomboon)

ABSTRACT

5271007063: Petrochemical Technology Program

Chunaree Nibhondhratana: Hydrolysis of Sugarcane Bagasse for

Sugar Production by Microbes from Thai Higher Termites

Thesis Advisors: Assoc. Prof. Pramoch Rangsunvigit, Prof. Sumaeth

Chavadej, Asst. Prof. Thammanoon Sreethawong, and Assoc. Prof.

Sirirat Rengpipat 71 pp.

Keywords: Biomass/ Sugarcane Bagasse/ Hydrolysis/ Microbes/ Sugar

Production/ Glucose

į

One of important agricultural residues found in huge quantities to be considered, especially in tropical countries, is sugarcane bagasse. This research studied and optimized the production of sugars through hydrolysis of sugarcane bagasse using cellulose-producing bacteria, *Microcerotermes* sp., from Thai higher termites. Without a pretreatment of sugarcane bagasse, we studied the following effects on the hydrolysis of sugarcane bagasse: particle size of ground bagasse (40 and 60 mesh), operating temperature (30 and 37°C), bacteria strain (A 002 and M 015) and type of fermentation media. The sugarcane bagasse used as the raw material obtained from Mitr Phol Sugar Corp., Ltd., consisted of 45.63 wt% cellulose, 21.02 wt% hemicellulose, 29.50 wt% lignin, and 3.85 wt% extractives. The result shows that the bacteria strains have a significant effect on the hydrolysis of sugarcane bagasse. The maximum glucose concentration in the product was 1.03 g/L obtained from the hydrolysis of 60 mesh ground bagasse with M 015 bacteria strain at 37°C.

บทคัดย่อ

ชุณารี นิพนธ์รัตนา : การผลิตน้ำตาลจากชานอ้อยโดยอาศัยกระบวนการย่อยสลายด้วย เชื้อจุลินทรีย์จากปลวกชั้นสูง (Hydrolysis of Sugarcane Bagasse for Sugar Production by Microbes from Thai Higher Termites) อ. ที่ปรึกษา : รศ. คร. ปราโมช รังสรรค์วิจิตร ศ. คร. สุเมธ ชวเคช ผศ. คร. ธรรมนูญ ศรีทะวงศ์ และ รศ. คร. ศิริรัตน์ เร่งพิพัฒน์ 71 หน้า

ชานอ้อยหรือกากอ้อยนับเป็นหนึ่งในเสษวัสดุเหลือใช้ทางการเกษตรสำคัญที่พบได้เป็น จำนวนมาก โดยเฉพาะอย่างยิ่งในประเทศเขตร้อน งานวิจัยนี้ศึกษาการผลิตน้ำตาลจากการย่อย สลายชานอ้อย โดยใช้แบคที่เรียที่สามารถผลิตเอนไซม์เซลลูเลส (Microcerotermes sp.) ภายใน ลำใส้ปลวกชั้นสูงซึ่งพบในประเทศไทย โดยพิจารณาผลกระทับของขนาดอนุภาค (40 และ 60 เมช) อุณหภูมิ (30 และ 37 องศาเซลเซียส) สายพันธุ์ของเชื้อแบคทีเรีย (A 002 และ M 015) และ ชนิดของน้ำหมักที่ใช้ ต่อกระบวนการย่อยสลายชานอ้อย ชานอ้อยที่ใช้เป็นวัตถุคิบในกระบวนการ ได้จากโรงงานของบริษัทน้ำตาลมิตรผล อำเภอค่านช้าง จังหวัดสุพรรณบุรี และประกอบด้วย เซลลูโลสร้อยละ 45.63 เฮมิเซลลูโลสร้อยละ 21.02 ลิกนินร้อยละ 29.50 และสารแทรกร้อยละ 3.85 ผลจากการทดลองพบว่าสายพันธุ์ของเชื้อแบคทีเรียกระทบกระบวนการย่อยเพื่อผลิตน้ำตาล ความ เข้มข้นของกลูโคสซึ่งเป็นน้ำตาลเพียงชนิดเดียวที่ตรวจพบจากกระบวนการย่อยมีความเข้มข้น สูงสุดเท่ากับ 1.03 กรัมต่อลิตร ได้จากการย่อยสลายตัวอย่างชานอ้อยขนาด 60 เมช ด้วยแบคทีเรีย สายพันธุ์ M 015 ที่อุณหภูมิ 37 องศาเซลเซียส

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who gave me the possibility to complete this thesis. First and foremost, I would like to take this opportunity to show my deepest gratitude and thank Assoc. Prof. Pramoch Rangsunvigit, Prof. Sumaeth Chavadej, Asst. Prof. Thammanoon Sreethawong, and Assoc. Prof. Sirirat Rengpipat. My master thesis could not have been possible without their kind assistance, helpful suggestion, and constant encouragement throughout the course of this work.

I am grateful for the staff and technician in the research affairs office for their helpful in providing the guideline and technique to work with the instrument.

I would like to thank all my classmates in PPC, especially Wannaporn Eourarekullart, who did research work in the same laboratory, help me in an experiment, and overcome any problems and difficulties, for their support.

I also offer my regards and blessings to my CT friends, who continual encouraged, supported me at any respect, and believed in me from the initial to the final of the project.

This thesis work is funded by the Petroleum and Petrochemical College, and by the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

Finally, I would like to express my gratitude to my family, who always gives me the greatest love, willpower and financial support until this study completion.

1

TABLE OF CONTENTS

			PAGE
Title	Page		i
Abst	ract (in English)		iii
Abst	ract (in Thai)		iv
Ack	nowledgements		v
Tabl	e of Contents		vi
List	List of Tables		ix
List	of Figures		X
CHAPTE	R		
I	INTRODUCTION		1
II	LITERATURE REVIEW		3
	2.1 Lignocellulosic Biomass		3
394	2.2 Sugarcane Bagasse		4
	2.3 Sugars		10
	2.4 Pretreatment of Lignocellulosic Biomass		13
	2.5 Hydrolysis of Pretreated-Lignocellulosic Biomass		20
	2.6 Cellulase Enzymes		21
	2.7 Factors Limiting Enzymatic Hydrolysis		24
	2.8 Components of Biomass Analysis		24
Ш	EXPERIMENTAL		28
111	3.1 Materials		28
	3.1.1 Samples		28
	3.1.1 Samples		28
	3.1.3 Identification Kits		28
	3.2 Equipment		29
	3.2.1 Instrument		29
	3.2.2 Apparatus		29
	3.2.2 Apparatus		4 7

CHAPTER		PAGE
3.2	2.3 Bioreactors	30
3.3 Me	ethodology	31
3.3	3.1 Biomass Preparation	31
3.3	3.2 Bacteria Preparation	32
3.3	3.3 Hydrolysis Experiment	32
3.3	3.4 Sugar Analysis	33
IV RESUI	LTS AND DISCUSSION	34
4.1 Ra	w Material Characterization	34
4.1	.1 Content Analysis	34
4.1	.2 Particle Size Analysis	34
4.1	.3 Surface Area Analysis	35
4.2 Su	gar Production	35
4.2	2.1 Effects of Particle Size of Ground Bagasse	36
4.2	2.2 Effects of Operating Temperature	37
4.2	2.3 Effects of Bacteria Strain	40
4.2	2.4 Effects of Fermentation Media	41
4.2	2.5 Bacteria Growth	42
V CONC	CLUSIONS AND RECOMMENDATIONS	48
5.1 Co	onclusions	48
5.2 Re	ecommendations	48
REFE	RENCES	49
APPE	NDICES	52
Appen	dix A SEM Images of Sugarcane Bagasse Samples	52
Appen	dix B HPLC Analysis	56
Appen	dix C Media for Microorganisms	58

CHAPTER			PAGE
	Appendix D	Reagent Preparation	59
	Appendix E	Total N Kit HR (10 – 150 mg N/L) Procedure	60
	Appendix F	Experiment Data of Sugarcane Bagasse Hydrolysis	s 62
	CURRICUL	UM VITAE	71
		Ü	
		*,	
		<u>:</u>	
		*	

ş

LIST OF TABLES

TABL	J.E	PAGE
2.1	Composition of various lignocellulosic biomasses	4
2.2	Hemicellulose composition of various lignocellulosic	
	materials	8
2.3	Comparison of advantages and disadvantages of different	
	pretreatment methods for lignocellulosic materials	18
4.1	Ultimate analysis and component analysis of ground bagasse	34
4.2	Particle sizes of SCB40 and SCB60 samples	35
4.3	Results from surface area analyzer of SCB40 and SCB60	
	samples	35

į

LIST OF FIGURES

FIGURE		PAGE	
2.1	Different steps of biomass to ethanol	3	
2.2	Arrangement of microfibrils, cellulose, and hemicellulose in		
	cell walls	5	
2.3	Schematic representation of a cellulose chain	6	
2.4	Basic structure of hemicellulose	7	
2.5	Schematic of the structure of hemicellulose: A, arabinose;		
	FeA, ferulic acid; G, galactose; Glc, glucuronic acid; and X,		
	xylose	7	
2.6	Schematic structure of lignin	9	
2.7	Structure of some important pentose and hexose	10	
2.8	Schematic of goals of pretreatment on lignocellulosic		
	material	13	
2.9	Schematic of pretreatment process	14	
2.10	Mechanistic scheme of enzymatic cellulose hydrolysis by		
	cellulase enzymes	22	
2.11	Higher termites, Microcerotermes sp. and cellulase-		
	producing bacteria, Bacillus subtilis	23	
2.12	Enzymatic hydrolysis of pretreated cellulose for each strain	23	
3.1	Bioreactor and experimental setup for using in microbial		
	hydrolysis of sugarcane bagasse	32	
4.1	Glucose concentration from the hydrolysis of ground		
	bagasse with the M 015 bacteria strain at 37°C	37	
4.2	Glucose concentration from the hydrolysis of ground		
	bagasse with the A 002 bacteria strain at 37°C	37	
4.3	Glucose concentration from the hydrolysis of the 40 mesh		
	ground bagasse with the M 015 bacteria strain at 30 and		
	37 °C	38	

FIGURE		PAGE
4.4	Glucose concentration from the hydrolysis of the 60 mesh	
	ground bagasse with the M 015 bacteria strain at 30 and	
	37 °C	39
4.5	Glucose concentration from the hydrolysis of the 40 mesh	
	ground bagasse with the A 002 bacteria strain at 30 and	
	37 °C	39
4.6	Glucose concentration from the hydrolysis of the 60 mesh	
	ground bagasse with the A 002 bacteria strain at 30 and	
	37 °C	40
4.7	Glucose concentration from the hydrolysis of the 40 mesh	
	ground bagasse with the M 015 and A 002 bacteria strain at	
	37 °C .	41
4.8	Glucose concentration from the hydrolysis of the 60 mesh	
	ground bagasse with the M 015 and A 002 bacteria strain at	
	37 °C	41
4.9	Bacteria growth and glucose concentration from the	
	hydrolysis of the 40 mesh ground bagasse with the M 015	
	bacteria strain at 37 °C	43
4.10	Bacteria growth and glucose concentration from the	
	hydrolysis of the 60 mesh ground bagasse with the M 015	
	bacteria strain at 37 °C	43
4.11	Bacteria growth and glucose concentration from the	
	hydrolysis of the 40 mesh ground bagasse with the A 002	
	bacteria strain at 37 °C	44
4.12	Bacteria growth and glucose concentration from the	
	hydrolysis of the 60 mesh ground bagasse with the A 002	
	hacteria strain at 37 °C	4.4

FIGURE		PAGE
4.13	Bacteria growth and glucose concentration from the	
	hydrolysis of the 40 mesh ground bagasse with the M 015	
	bacteria strain at 30 °C	45
4.14	Bacteria growth and glucose concentration from the	
	hydrolysis of the 60 mesh ground bagasse with the M 015	
	bacteria strain at 30 °C	45
4.15	Bacteria growth and glucose concentration from the	
	hydrolysis of the 40 mesh ground bagasse with the A 002	
	bacteria strain at 30 °C	46
4.16	Bacteria growth and glucose concentration from the	
	hydrolysis of the 60 mesh ground bagasse with the A 002	
	bacteria strain at 30 °C	46

į