PHOTOCATALYTIC AND ANTIBACTERIAL PROPERTIES UNDER UV LIGHT OF TiO2 IMPREGNATED BACTERIAL CELLULOSE

Nattakammala Janpetch

• :

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2011

Thesis Title:	Photocatalytic and Antibacterial Properties under UV Light of
	TiO ₂ Impregnated Bacterial Cellulose
By:	Nattakammala Janpetch
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Ratana Rujiravanit
	Prof. Seiichi Tokura

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

. 1

(Asst. Prof/Pomthong Malakul)

Thesis Committee:

Ratana Rujisananit

(Assoc. Prof. Ratana Rujiravanit)

104

(Prof. Seiichi Tokura)

(Asst. Prof. Thammanoon Sreethawong)

Pany a Wonypamit

(Dr. Panya Wongpanit)

บทคัดย่อ

ณัฐกมลา จั่นเพีชร : สมบัติโฟโตคะตะไลติกและการด้านเชื้อแบคทีเรียของไททาเนียม ใดออกไซด์ที่ถูกฝังในแบคทีเรียเซลลูโลส (Photocatalytic and Antibacterial Properties under UV Light of TiO₂ Impregnated Bacterial Cellulose) อ. ที่ปรึกษา : รอง ศาสตราจารย์ ดร.รัตนา รุจิรวนิช และศาสตราจารย์ ดร. เซอิชิ โทคุระ 62 หน้า

ปัญหาการปนเปื้อนสารพิษและเชื้อโรคในแหล่งน้ำยังคงเป็นปัญหาใหญ่ในปัจจุบัน ซึ่งมี วิธีการบำบัดเพื่อแก้ปัญหาดังกล่าวมากมาย รวมไปถึงการใช้โฟโตคะตะลิสในการส่งเสริม ปฏิกิริยาโฟโตคะตะไลติก โดยมีการรายงานว่าปฏิกิริยาโฟโตคะตะไลติกนั้นเป็นวิธีที่มี ประสิทธิภาพในการบำบัดสารพิษและกำจัดเชื้อโรค ซึ่งไททาเนียมไดออกไซด์เป็นสารอนินทรีย์ โฟโตคะตะลิสที่ได้รับการพิสูจน์แล้วว่ามีความสามารถสูงในการใช้ประโยชน์ด้านสิ่งแวดล้อม อย่างกว้างขวาง ในการศึกษาครั้งนี้แบคทีเรียเซลลูโลสถูกเลือกนำมาใช้เป็นแผ่นรองรับไททาเนียม ไดออกไซด์ เนื่องจากโครงสร้างมีรูพรุนและมีพื้นที่ผิวสูง ซึ่งจะสามารถเป็นตัวส่งเสริมปฏิกิริยาโฟ โตคะตะไลติกของไททาเนียมไดออกไซด์ได้ ดังจะเห็นได้จากการกำจัดสีเมทิลลีนบูล รวมไปถึง การด้านเชื้อแบคทีเรียสายพันธ์อีโคไล(แบคทีเรียแกรมลบ) และแบคทีเรียสายพันธ์เอสออเรียส (แบคทีเรียแกรมบวก)

ABSTRACT

5272011063: Polymer Science Program

Nattakammala Janpetch: Photocatalytic and Antibacterial Properties under UV Light of TiO₂ Impregnated Bacterial Cellulose. Thesis Advisors: Assoc. Prof. Ratana Rujiravanit ,and Prof. Seiichi Tokura 62 pp.

Keywords: Antibacterial/ Bacterial cellulose/ Nanofibers/ Photocatalytic/ Titanium dioxide/ UV irradiation

Nowadays, toxic and pathogenic contamination in water has become a serious pollution problem. Several treatments have been proposed to solve the problem including the use of photocatalysts to promote photocatalytic reactions. Photocatalytic reactions have been reported to be an efficient method to treat various toxic substances as well as pathogenic microorganisms. Among the inorganic photocatalysts, TiO₂ has proven as the most promising photocatalyst capable ofbeing utilized for a wide range of environmental applications. In this study, TiO₂ was impregnated into a bacterial cellulose (BC) matrix. Due to its porous structure and high surface area, the BC was found to be a good support for photocatalytic reactions of TiO₂. Methylene blue, a basic dye, was used as a model to determine photocatalytic efficiency of the TiO₂ impregnated bacterial cellulose on the methylene blue removal. In addition, antibacterial property against *S. aureus*, a gram positive bacterium, and *E. coli*, a gram negative bacterium, of the TiO₂ impregnated bacterial cellulose was also investigated.

ACKNOWLEDGEMENTS

First and foremost, his all attitudes should go to Associate Professor Ratana Rujiravanit, his advisor, whose encouragement, continuous guidance, invaluable suggestion, constructive criticism and intensive support from the initial to the final level enabled him to accomplish the present thesis. He also wishes to acknowledge gratefully his excellent way of teaching of both research skills and scientific knowledge.

He would like to express his thanks to Professor Seiichi Tokura, his coadvisor

He would like to thank Asst. Prof. Thammanoon Sreethawong and Dr. Panya Wongpanit for being his thesis committee and offering worth advices and fruitful suggestions.

He is indebted to all Professors at the Petroleum and Petrochemical College, Chulalongkorn University, for their dedicated devotion in tendering in-depth knowledge on polymer science. He would like to offer his regards to all faculty members who supported him in any respect during the completion of the thesis.

He is grateful for the funding of the thesis work provided by the Petroleum and Petrochemical College; and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

He would like to give a sincere thank to all members in Ratana's and Pitt's laboratory for their helps, friendship, and good memories throughout his study. He also wishes to thank his friends at PPC who have made each day a new experience to him.

Last but not least, he would like to thank his family, his father, mother, grandmother, and brother, for their unconditional love, understanding, encouragement, and constant support throughout his life.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	x
Abbreviations	xiv

CHAPTER

I	INTRODUCTION	1
II	LITERATURE REVIEW	4
	2.1 Photocatalytic Reactions	4
	2.1.1 Principle of Photocatalytic	4
	2.2 TiO ₂ Photocatalytic Reaction	6
	2.2.1 Mechanism of TiO ₂ Photocatalysis	6
	2.2.2 Strategies to Ameliorate the	
	Photocatalytic Activity of TiO ₂	9
	2.2.3 Applications of TiO ₂ Photocatalytic	10
	2.3 Bacterial Cellulose (BC)	14
	2.3.1 Introduction of BC	14
	2.3.2 Properties of Bacterial Cellulose	19
	2.3.3 Applications of Bacterial Cellulose	20

CHAPTER

III	METHODOLOGY	23
	3.1 Materials	23
	3.2 Measurements	23
	3.2.1 Fourier-transform Infrared	
	Spectroscopy (FTIR)	23
	3.2.2 Thermal Gravimetric Analysis (TGA)	23
	3.2.3 X-ray Diffraction Analysis (XRD)	23
	3.2.4 Scanning Electron Microscope (SEM)	24
	3.2.5 The Photocatalytic Activity	24
	3.3 Methodology	24
	3.3.1 Production of Bacterial Cellulose	24
	3.3.2 Synthesis of TiO_2 into	
	Bacterial Cellulose Pellicle	24
	3.3.3 Study on Photocatalytic Activity	
	under UV Source	25
	3.3.4 Antibacterial Activity Test	25
IV	RESULTS AND DISCUSSION	27
	4.1 Morphology of Pure Bacterial Cellulose and	
	TiO ₂ Impregnated Bacterial Cellulose	28
	4.2 XRD Analysis	33
	4.3 Thermogravimetric Analysis of	
	Pure Bacterial Cellulose and	
	TiO ₂ Impregnated in Bacterial Cellulose	35
	4.4 The Content of the Synthesized TiO_2	
	in Bacterial Cellulose	38
	4.5 Study on Titanium tetraisopropoxide	
	Convert to Titanium dioxide into	
	Bacterial Cellulose by Using FTIR	39

CHAPTER		PAGE	
IV	RESULTS AND DISCUSSION		
	4.6 Photocatalytic Actity of TiO ₂ Impregnated		
	Bacterial Cellulose	42	
	4.7 Antibacterial Activity of TiO ₂ Impregnated		
	Bacterial Cellulose	45	
V	CONCLUSIONS AND RECOMMENDATIONS	46	
	REFERENCES	47	
	APPENDIX	56	
	CURRICULUM VITAE	62	

LIST OF TABLES

TABLE

2.5

2.1	Selected applications of photocatalysis	14
2.2	Bacterial cellulose producers (Jonas and Farah, 1998)	15
2.3	Mechanical properties of bacterial cellulose films	
	prepared in Heat-press conditions	19
4.1	The molar ratios of TTIP to water for	
	preparation TiO ₂ impregnated bacterial cellulose	27

LIST OF FIGURES

FIGURE

2.1	The excitation of an electron from the valence band to the	
	conduction band initiated by light absorption with energy equal to	
	or greater than the band gap of the semiconductor.	4
2.2	Schematic photophysical and photochemical processes over	
	photon activated semiconductor cluster.	6
2.3	Photo-induced formation mechanism of electron-hole pair in	
	a semiconductor TiO_2 particle with the presence of pollutant (P).	8
2.4	The variation in the energy gap between different semiconductors.	9
2.5	Electrospinning apparatus.	10
2.6	Discoloration of wine stains on TiO_2 -cotton: pretreated by RF for	
	10 min no vacuum (a) before and (b) after suntest irradiation.	11
2.7	Scheme of the self-cleaning mechanism of wine pigments on	
	TiO ₂ -cotton.	11
2.8	Mechanism of photodegradation pollution by TiO ₂ .	11
2.9	Comparison of cell viability with difference bacteria at TiO_2	
	concentration (1 mg/ml) and near-UV illumination time 30 min.	13
2.10	The process of E. coli photokilling on TiO_2 film.	13
2.11	Chemical Structure of cellulose.	14
2.12	The pathways to form the biopolymer cellulose from plants or	
	microorganism.	15
2.13	Cellulose is synthesized by acetic acid bacteria.	16
2.14	A scanning electron micrograph of freeze-dried surface	
	of bacterial cellulose with Acetobacter xylinum.	16
2.15	The chemical structure of the β -(1, 4)-glucan chains in cellulose.	17
2.16	The hydrogen bonds within and between cellulose molecules.	17
2.17	A comparison of microfibrillar organization between Acetobacter	
	cellulose (a) and wood pulp (b) (both at 5000x).	18

FIGURE

2.18	Scanning electron-micrographs of fracture edge of bacterial	
	cellulose film.	18
2.19	Stress-strain curves for BC films obtained under different mold	
	compression pressures.	20
2.20	Application of the BASYC - tube in microsurgery as artificial	
	blood.	21
2.21	Bacterial cellulose/TiO ₂ hybrid nanofibers prepared by the surface	
	hydrolysis method with molecular precision.	22
4.1	Hydrolysis reaction of titanium isopropoxide.	27
4.2	SEM images of surface (A, B) and cross sectional (C) morphology	
	of freeze dried pure bacterial cellulose with average fibers	
	diameter of 37 ± 12 nm.	28
4.3	SEM images of surface morphology of TiO ₂ impregnated bacterial	
	cellulose with average fibers diameter of 19 ± 6 nm prepared by	
	using molar ratio of TTIP: H_2O in EtOH = 0.031 (water in excess).	
	SEM images of surface morphology of TiO ₂ impregnated bacterial	29
4.4	cellulose with average fibers diameter of 24 ± 6 nm prepared by	
	using molar ratio of TTIP: H_2O in EtOH = 0.063 (water in excess).	29
4.5	SEM images of surface morphology of TiO ₂ impregnated bacterial	
	cellulose with average fibers diameter of 74 ± 21 nm prepared by	
	using molar ratio of TTIP: H_2O in EtOH = 0.125 (water in excess).	30
4.6	SEM images of surface morphology of TiO ₂ impregnated bacterial	
	cellulose with average fibers diameter of 119 ± 41 nm prepared by	
	using molar ratio of TTIP: H_2O in EtOH = 0.5 (stoichiometric	
	molar ratio).	30
4.7	SEM images of surface morphology of TiO ₂ impregnated bacterial	
	cellulose with average fibers diameter of 281 \pm 76 nm prepared by	
	using molar ratio of TTIP: H_2O in EtOH = 2 (TTIP in excess).	30

4.8	SEM images of surface morphology of TiO ₂ impregnated bacterial	
	cellulose with average individual spherical particles of TiO_2	
	diameter of 2 \pm 1 μ m prepared by using molar ratio of TTIP: H ₂ O	
	in $EtOH = 7.5$ (TTIP in excess).	31
4.9	SEM images of cross-sectional morphology of TiO ₂ impregnated	
	bacterial cellulose prepared at various molar ratios of $TTIP:H_2O$ in	
	EtOH, (A) 0.031, (B) 0.063, (C) 0.125, (D) 0.25, (E) 0.5, (F) 1,	
	(G) 2.	31
4.10	XRD spectra of TiO_2 impregnated bacterial cellulose prepared by	
	using molar ratio of TTIP: H_2O in EtOH equals to 0.5 and heating	
	at 127 degree Celsius in an autoclave for different heating time of	
	3, 5, and 7 hours.	33
4.11	XRD spectra TiO_2 impregnated bacterial cellulose prepared at	
	different molar ratio of TTIP: H_2O in EtOH; 1, 2, and 7:5 by	
	heating at 127 degree Celsius in an autoclave for heating time of 5	
	hours.	34
4.12	XRD spectra of TiO_2 impregnated bacterial cellulose prepared	
	from pure TTIP by heating at 127 degree Celsius in an autoclave	
	for heating time of 7 hours.	34
4.13	Differential thermogravimetric spectrum of pure bacterial cellulose	
	(A), TGA spectrum of pure bacterial cellulose (B).	36
4.14	Differential thermogravimetric spectrum of TiO_2 impregnated	
	bacterial cellulose prepared at different molar ratio of TTIP: H_2O	
	in EtOH; 0.031 (A), 0.063 (B), 0.125 (C), 0.5 (D), and 2 (E).	37
4.15	TGA spectrum of TiO_2 impregnated bacterial cellulose prepared at	
	different molar ratio of TTIP: H ₂ O in EtOH; 0.031 (A), 0.063 (B),	
	0.125 (C), 0.5 (D), and 2 (E).	38
4.16	FTIR spectrum of Titanium tetraisopropoxide.	39
4.17	FTIR spectrum of Titanium dioxide.	40

FIGURE

4.18	FTIR spectrum of pure bacterial cellulose.	41
4.19	FTIR spectrum of TiO_2 impregnated bacterial cellulose prepared at	
	different molar ratio of TTIP: H_2O in EtOH equal to 0.5.	41
4.20	ATR-FTIR spectra of TiO_2 impregnated bacterial cellulose	
	prepared at molar ratio of TTIP: H ₂ O in EtOH equal to 0.5 after	
	washed by sonication in absolute EtOH for for different time of 15	
	min (A), 30 min (B), 45 min (C) and 60 min (D).	42
4.21	Photodegradation of methylene blue under UV light by TiO_2	
	impregnated in bacterial cellulose prepared at molar ratio of TTIP:	
	H ₂ O in EtOH equal to 0, 0.125, 0.5 and 2.	43
4.22	Photodegradation of methylene blue under UV light by TiO_2	
	impregnated in bacterial cellulose prepared at molar ratio of TTIP:	
	H ₂ O in EtOH equal to 0, 0.031, 0.063 and 0.125.	43
4.23	The antibacterial activity of TiO_2 impregnated bacterial cellulose	
	prepared at different molar ratios of TTIP:H2O equal to 0 (A), 0.125	
	(B), 0.5 (C) and 2 (D) against <i>E. coli</i> .	45

PAGE

a bar mark of a de

ABBREVIATIONS

ATR	attenuated Total Reflectance
BC	bacterial cellulose
С	velocity of light
°C	degree Celcious
CB	conduction band
CO ₂	carbon dioxide
e	electron
e^h^+	electron-hole pair
E	energy of a photon
E. Coli	Escherichia coli
Eg	band gap energy
etc.	etcetera
EtOH	ethanol
eV	electron volt
FE-SEM	Field Emission Scanning Electron Microscope
FTIR	fourier-transform infrared spectroscopy
Fe ₂ O ₃	iron oxide
GPa	gigapascal
h	Planck's constant
h ⁺	hole
H^{+}	proton
H ₂ O	water
H_2O_2	hydrogen peroxide
hν	light energy source
ml	milliliter
ЮН	hydroxyl radical
O_2	oxygen
$O_2^{\bullet-}$	superoxides
•ООН	hydroperoxyl radical
OLED	organic light emitting diodes

Р	pollutants
PVP	poly(vinylpyrrolidone)
S. aureus	Staphylococcus aureus
SC	semiconductor photocatalyst
SEM	scanning electron microscope
TISTR	Thailand institute of scientific and technological research
TiO ₂	titanium dioxide
TTIP	titanium tetraisopropoxide
UV	ultraviolet
VB	valence band
VOCs	volatile organic compounds
XRD	X-ray diffraction analysis
ZnO	zinc oxide
λ	wavelength
ν	frequency