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ABSTRACT

4782004063:  Polymer Science Program
Nattaya Muksing: Modifications of Layered Silicates and Layered
Double Hydroxides for Preparation of Polyolefins Nanocomposites.
Thesis Advisor: Assoc. Prof. Ratanawan Magaraphan, Prof.
Francesco Ciardelli and Asst. Prof. Manit Nithithanakun 206 pp.
Keywords:  Layered silicate/ Layered double hydroxide/ Melt intercalation/
Organoclay/ Polypropylene/ Polyethylene/ Nanocomposite

In this desertion, two types of layered inorganic clays: layered silicate and
layered double hydroxide (LDH) were chosen as nanofillers for the preparation of
polyolefins nanocomposites. Both types of nanocomposites were prepared by melt
intercalation technique using a twin screw extruder. The polyolefins grafted maleic
anhydride (i.e. PP-g-MAH and PE-g-MAH) were used as the compatibilizer. For
polypropylene/layered silicate nanocomposites, the clay was modified with various
cationic surfactants to obtain the organoclay. The nanocomposites prepared from
organoclay that modified by the longer alkyl chain length surfactant, showed a good
property. Two distinct groups of the nanocomposites, from a quasi-exfoliated to an
intercalated morphology, were identified. The intercalated/flocculated morphologies
were obtained when the organoclay content beyond 3 wt%. The different degrees of
exfoliation/intercalation revealed the variable increase in thermal stability of the
nanocomposites. The increase in glass transition temperature was related to the
confinement effect between the polymer chains and the clay layers. For low density
polyethylene/layered double hydroxide (LDH) nanocomposites, the LDH-clay was
modified by various anionic surfactants. The result revealed that the size of the
anionic surfactants played a vital role for the difference in morphological and thermal
property. The obtained nanocomposites established partially exfoliated/intercalated
mixed morphology and were preferable when the number of alkyl chain length was
larger ( >12). Incorporation of the organoclay enhanced both thermal and dynamic
mechanical properties (i.e. storage modulus and glass transition temperature).
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