
PROPOSED SOLUTION

5.1 Overview of Proposed Solution

Classification of rainfall types [10, 11] is important to the accuracy and reliability of 
data imputation process since the sparse data or zero data value relevant to this data 
imputation is applied only to the data collected during the convective rainfall duration, not 
the data collected during the stratiform rainfall duration. Determination of "missing" or "no 
rain" condition can be revealed according to the classification of rainfall type-convective or 
stratiform rainfall; the zero value obtained in the convective rainfall duration is considered 
"missing", while the zero value derived in the stratiform rainfall duration is called "no rain", 
because the amount of convective rainfall is almost twice as much as that of stratiform 
rainfall. An example of convective or stratiform rainfall type is shown in Figure 5.1. How do 
we know convective or stratiform rainfall type from rain gauge and radar data set? The rain 
rate of a cloud, particularly a convective cloud, is a function of the stage of its life cycle. 
Research [15, 18] into precipitation estimation techniques has revealed some basic 
properties of convective clouds. About convective clouds, there is a high correlation 
between a cloud area (as measured in radar reflectivity) and the total volume of rain per unit 
time (as measured in instantaneous of gauge rain intensity) falling from it.
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A u to m a tic  R a in g a u g e  o f  Omkoi, c h ia n g m a i T h a ila n d  
Gauge ท๐ . 0 7 1 , 081 o f  l - h o u r ly  o f  May 1 6 , 1996

1 M in u te  Time I n t e r v a l

F igure 5.1: A n  example o f a d ifference between convective and s tra tifo rm  ra in  type.

Consider an example of convective rainfall type having high correlation is illustrated in 
Figure 5.2. This is an example of 2-hourly of radar-raingauge pairs of May 16, 1996. The
parameters obtained for gauge no. 071 are Ü = 169, b = 1.62, correlation coefficient =
0.92 and for gauge no. 081 are Cl =167, b =1.61, correlation coefficient = 0.91.
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S c a t t e r e d  P lo t  o f  R adar-G auge P a ir s  b y  f i t t i n g  a  r e g r e s s i o n  
l i n e  o f  Gauge n o . ๐ 7 1 ,0 8 1  o f  2 - h o u r ly  o f  May 1 6 , 1996

F igure 5.2: A n  example o f convective ra in fa ll type having h igh corre la tion .

The missing data in our study occur in both input patterns and targets, and, also, 
form a long missing data string scattering along the collected data sequence. This creates a 
complex situation and a mixture of several solutions to fill-in these data must be introduced. 
A new solution called similarity manifold matching is proposed and used in the first step. 
This step is to cut a piece of time data with some missing values and find the similarity of 
the manifold of these data with the manifold of the data in some other time sequences. If the 
exact match cannot be found then the techniques of expectation maximization (EM) and 
generalized reduced gradient (GRG) algorithms are applied to fill-in the missing data. The 
overview of our solution is the following.
Let X 1 = [x 115 X1 2 5..., xin ]7 be an input pattern composing of features xtj  and d 1 the 
corresponding target of xt at time sequence i  . There are three possible cases of missing
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data. The first case is when the value of d  1 is missing. The second case is when the values 
of some X, J  are missing. The third case is the combination of the first and second cases. 
Suppose X, is the input pattern with some missing values. The definition of similarity 
measure will be given in the next subsection.

Algorithm for Estimating Missing Data

1.

2.

3.

Let x;> — Xi_p •>••••! p , 4  be the feature manifold with the window size of
2p, where p is a positive constant.
Slide Xÿ, through the time data sequence and find X g 'P having maximum 
similarity, ร , .
Apply GRG algorithm to estimate the elements of X i,p  and Xg,p , whose values are 
equal to zero, with the objective of maximizing ร, by using the element from
X,/; and X*1,.

4. Apply EM algorithm once more to Xj>p and x gtp to estimate those elements with 
zero values.

5. Repeat step 2 to 4 u n til all missing X, J and d  1 are estimated.

5.2 Similarity Measure

Let Xÿ, and x k)p , i  ̂k , be two feature manifolds. The similarity, ร,.!1, of these two
manifolds is defined as follows.
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 ̂ JZLrbiZ+'ll) *W jk ^
This measure is better than Euclidean distance measure because it preserves the significance 
of local gradients of both manifolds when they are similar. In the case of Euclidean measure, 
two vectors with opposite gradients or the same gradients give the same Euclidean distance.
The value of is in between 0 andl .

5.3 The Expectation Maximization (EM) Algorithm

Referring to “The EM Algorithm and Extensions” textbook [2], let Y be the 
random vector corresponding to the observed data y  , having probability density function
(p.d.f.) postulated asgfjî p). = (T, ,...,4/j )/ is a vector of unknown parameters with
parameter space Q . Let X  denote the vector containing complete data and z  denote the 
vector containing missing data. Let gc (x; E) denote the p.d.f. of the random vector X

corresponding to the complete-data vector X . Then, the complete data log likelihood 
function that could be formed for E if X  was fully observable is given by

log LC('P) = log gc(x ’ ^ )
Formally, we have two samples spaces X and y and a many-to-one mapping from % to 
/  • Instead of observing the complete-data vector X  in X  , we observe the incomplete-data
vector y = t (x) in Y . It follows that

g(y;'T)= f gc(x;'E)<&,
z(y)
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where z (y )  is the subset o f X  determined by the equation y  — .y (x ) .

The EM algorithm approaches the problem of solving the incomplete-data likelihood 
equation indirectly by proceeding iteratively in term of the complete-data log likelihood
function, log  jLc(vF ) . As it is unobservable, it is replaced by its conditional expectation 

given y  , using the current fit for T .

The EM algorithm
1. Let พ ^  be some initial value forT .
2. On the first iteration, the E-step requires the calculation of

e M  V  (0)) = V )  {logic M l } ' } .
3. The M -step requires the maximization of Q ŷ, VF )̂ with respect to T over

the parameter space Q. That is, we choose such that
e M ” ; ,r <0)) >  e(>F  ; y (o)) for all y e n .

4. This time with *T(̂  replaced by the current fit .
5. The E-step and M-step are repeated, until the difference of

convergence.

The Generalized Reduced Gradient (GRG) Algorithm
The GRG (Generalized Reduced Gradient) method, used in the standard Excel 

Solver since 1990, assumes that the objective function and constraint are smooth nonlinear 
functions of the variables. A smooth nonlinear function has a smooth graph with no sharp. 
The GRG method is quite accurate and quite fast than genetic or evolutionary algorithm and 
yields a locally optimal solution.
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We briefly summarized overall procedures of our research as follows:
1. Euclidean distance with topography is considered for selecting neighboring gauge.
2. Determination of “missing” or “no rain” condition can be modeled by classification 

concept and the selection of targets designed by user which “no rain” is +1 whereas 
“missing” is 0. Then, the accuracy was tested by Backpropagation neural networks with 
a data set of radar-raingauge pairs consist of 60% of training set and 40% of testing set.

3. For our proposed method, Similarity Manifold Matching (SMM), this step cut a piece of 
time data with some missing value and finds the similarity of the manifold of these data 
with the manifold of the data in some other time sequence with objective of maximizing 
similarity measure (SM).

4. Imputing missing data by comparison the proposed missing data estimation (SM) with 
the other techniques; Expectation Maximization (EM) and Neural Network (NN), two 
aspects; robustness and estimation technique, are considered by gradually increasing the 
percentage of missing data, and measuring correlation coefficient between the complete 
data manifold and incomplete data manifold.

5. Designing threshold value by filtering method for filling in missing of gauge data.
6. Filling-in missing data if exact match of some missing data (zero value) of two 

manifolds can be found - fill-in the missing data by the technique of EM, if not, fill-in 
the missing data by SM with generalized reduced gradient (GRG) method.

7. Perform similarity alignment, only 2-dimensional space, to solve collocation and 
synchronization error.

8. Achieve estimation of Ze-R  relation of synchronous Ze and gauge rain intensity (G) 
datasets which illustrated in both scattered plot of radar-gauge pairs by fitting a 
regression line and comparison of accumulated radar-gauge rainfall.
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