CATALYTIC PYROLYSIS OF WASTE TIRE OVER Rh, Ni AND Co SUPPORTED ON KL ZEOLITE AND THEIR BIMETALLIC CATALYSTS

Waleerat Pinket

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2011

I28375038

Thesis Title:	Catalytic Pyrolysis of Waste Tire over Rh, Ni and Co	
	Supported on KL Zeolite and Their Bimetallic Catalysts	
By:	Waleerat Pinket	
Program:	Petrochemical Technology	
Thesis Advisor:	Assoc. Prof. Sirirat Jitkarnka	

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof.¹Pomthong Malakul)

Thesis Committee:

um

(Assoc. Prof. Sirirat Jitkarnka)

....... 1. Aug

(Asst. Prof. Apanee Luengnaruemitchai)

whe there

(Dr. Natthakorn Kraikul)

ABSTRACT

5271044063: Petrochemical Technology Program
 Waleerat Pinket: Catalytic Pyrolysis of Waste Tire over Rh, Ni And
 Co Supported on KL Zeolite And Their Bimetallic Catalysts
 Thesis Advisor : Assoc. Prof. Sirirat Jitkarnka 129 pp.
 Keywords: Tire/ Pyrolysis/ Rhodium/ Cobalt/ Nickel/ KL /Bimetallic Catalyst

Taking advantages of bifunctional catalysts, the catalytic pyrolysis of waste tire has been investigated aiming to improve the quality and quantity of products. The combination of basic property in KL zeolite with the ring-opening and hydrogenation properties of rhodium was investigated for its influence. Furthermore, two non-noble metals, Ni and Co, supported on KL zeolite and the effect of bimetallic NiRh and CoRh catalysts with varying the metal ratio were investigated in this process as alternative choices in the view of cost reduction and metal availability. The amount of Rh was fixed at 1%wt whereas the amount of Ni and Co were varied from 1 to 20%wt. It was clear from the results that the presence of KL containing Rh resulted in an increase in the gas yield at the expense of liquid yield with a high concentration of mono-aromatics. Meanwhile, 1% Co loading produced the highest gas yield among all monometallic catalysts. Moreover, the addition of greater amount of Co content from 5% to 20% provided a significantly higher amount of mono-aromatics in the liquid fraction, and gave a comparable concentration of single-ring aromatics with that obtained from 1%Rh/KL. For the case of Ni catalysts, increasing Ni loading resulted in an increment of gas yield with a significant high amount of mono-aromatics content, and using 20%Ni/KL can also be comparable with using 1%Rh/KL. Furthermore, the combination of Rh and Co as bimetallic catalysts caused a significantly increasing concentration of saturated hydrocarbons in the liquid fraction. Especially, the small amount of 0.05%Rh modified with 0.95%Co exhibited the maximum concentration of saturated hydrocarbons. Meanwhile, the highest content of single-ring aromatics was found in the use of 0.25% Rh modified with 0.75% Ni among all bimetallic catalysts.

บทคัดย่อ

วลีรัตน์ ปิ่นเกตุ : กระบวนการไพโรไลซิสยางรถยนต์หมดสภาพด้วยตัวเร่งปฏิกิริยา โรเดียม นิกเกิล และโคบอลต์ที่บรรจุบนซีโอไลท์ชนิดเคแอล และผลของการใช้โรเดียมร่วมกับ นิกเกิลและโรเดียมร่วมกับโคบอลต์ (Catalytic pyrolysis of waste tire over Rh, Ni and Co supported on KL zeolite and their bimetallic catalysts) อ. ที่ปรึกษา : รศ. ดร. ศิริรัตน์ จิตการค้า 129 หน้า

เนื่องจากตัวเร่งปฏิกิริยามีบทบาทสำคัญต่อการเกิดปฏิกิริยาที่หลากหลาย จึงถูกนำมาใช้ ศึกษาในกระบวนการไพโรไลซิสของยาง โดยมีจุดมุ่งหมายเพื่อพัฒนาผลิตภัณฑ์ที่ได้ทั้งเชิง ้คุณภาพและปริมาณ งานวิจัยนี้เป็นการศึกษาผลของการทำงานร่วมกันระหว่างความเป็นเบสของซี ้โอไลท์ชนิคเคแอลกับความสามารถในการเกิดไฮโครจิเนชันและปฏิกิริยาเปิควงของโลหะโรเคียม นอกจากนี้นิกเกิลและ โคบอลต์ รวมถึงตัวเร่งปฏิกิริยาผสมระหว่าง โรเคียมกับนิกเกิล และ โรเคียม ้กับโคบอลต์ ได้ถูกนำมาศึกษาเพื่อนำไปใช้เป็นตัวเร่งปฏิกิริยาทดแทนตัวโลหะโรเดียมเนื่องจาก ราคาถูกและหาได้ง่ายกว่า โดยกำหนดการบรรจุปริมาณของตัวโลหะโรเดียมไว้คงที่ที่ร้อยละ 1 ้โดยน้ำหนัก ในขณะที่ปริมาณของนิกเกิลและโคบอลต์ที่ศึกษานั้นมีตั้งแต่ร้อยละ1, 5, 10, 15 และ 20โดยน้ำหนัก จากผลการศึกษาพบว่าโลหะโรเดียมบนซีโอไลท์ชนิคเคแอลให้ปริมาณผลิตภัณฑ์ที่ เป็นก๊าซสูงขึ้นเมื่อเปรียบเทียบกับการไพโรไลซิสของยางโคยปราศจากตัวเร่ง นอกจากนี้ตัวเร่ง ชนิดนี้ยังส่งผลให้เกิดสารประกอบอะโรมาติกส์วงเดี่ยวซึ่งเป็นผลิตภัณฑ์ที่มีค่าในปริมาณที่สูง ใน ขณะเดียวกันการใช้โคบอลต์ในปริมาณร้อยละ 1 โดยน้ำหนัก สามารถผลิตก๊าซในปริมาณที่สูงสุด ในบรรคาตัวเร่งปฏิกิริยาทั้งหมคที่มีโลหะอย่างเดียวบรรจุอยู่บนซีโอไลท์ชนิดเคแอล นอกจากนี้ เมื่อเพิ่มปริมาณของโคบอลต์จากร้อยละ 5 ถึง 20 โดยน้ำหนัก ส่งผลให้เกิดผลิตภัณฑ์ที่เป็นอะโร มาติกส์วงเดี่ยวในปริมาณที่สูงขึ้นอย่างเห็นได้ชัดในปริมาณที่ใกล้เคียงกับการใช้โลหะโรเดียม ในขณะที่การเพิ่มปริมาณของตัวเร่งชนิดโลหะนิกเกิลบนซีโอไลท์ชนิดเคแอลนั้น ส่งผลให้เกิดการ ผลิตผลิตภัณฑ์ก๊าซมากขึ้น พร้อมกับการเพิ่มขึ้นของสารประกอบโรมาติกส์วงเคี่ยวในน้ำมันเมื่อ ใช้ปริมาณนิกเกิลร้อยละ 20 โดยน้ำหนัก ในปริมาณที่สูงเทียบเท่ากับการใช้โลหะโรเคียม นอกจากนี้การผสมกันของโลหะโรเคียมในปริมาณร้อยละ 0.05 โคยน้ำหนัก กับโคบอลต์ใน 0.95 โดยน้ำหนักบนซีโอไลท์ชนิดเกแอลนั้น สามารถผลิตสารประกอบ ปริมาณร้อยละ ไฮโครการ์บอนอิ่มในน้ำมันได้สูงที่สุด ในขณะที่ตัวเร่งผสมของโรเดียมในปริมาณร้อยละ 0.25

โดยน้ำหนักกับนิกเกิลในปริมาณ 0.75 โดยน้ำหนัก สามารถผลิตอะโรมาติกส์วงเดี่ยวในน้ำมันได้ สูงสุดในบรรดาตัวเร่งปฏิกิริยาชนิดโลหะผสม

.

ACKNOWLEDGEMENTS

This work could not be accomplished without the facilities and supports from the following people

First of all, I am deeply grateful to my advisor, Assoc. Prof. Sirirat Jitkarnka, who gave me a great experience and always encouraged me. It was so kind of her to help me everything and provide me a valuable suggestion, beneficial recommendations and intensive attention in my thesis especially her patience for proofread my thesis.

My gratitude is extended to the thesis committees, Asst. Prof. Apanee Luengnaruemitchai and Dr. Natthakorn Kraikul for their important comments.

I would like to thank for the scholarship and funding supported by the Petroleum and Petrochemical College, Chulalongkorn University, Thailand Research Fund, and the Commission on Higher Education, and the National Center of Excellent for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

I would like to take this opportunity to give appreciation to all entire PPC friends and staffs for their support and help.

Finally, I am deeply grateful to my family for their invaluable support and encouragement.

· · · · · · · · ·

ต้นฉบับ หน้าขาดหาย

CHAPTER

 \mathbf{V}

4.1.3 Mono-aromatics from Using Noble and Non-noble	38
Metals	
4.2 Effect of Bimetallic Catalysts	44
4.2.1 Effect of RhNi/KL	44
4.2.2 Effect of RhCo/KL	49
CONCLUSIONS AND RECOMMENDATIONS	54
REFERENCES	56
APPENDICES	64
Appendix A Temperature Profiles	64
Appendix B Yields of Pyrolysis Products	85
Appendix C Gas Yields (%)	86
Appendix D Chemical Compositions of Maltenes	91
Appendix E Petroleum Fractions of Derived Oil	93
Appendix F Asphaltene	95
Appendix G Sulfur and Coke Deposition on Spent Catalysts	96
Appendix H Sulfur in Derived Oil	97
Appendix I True Boiling Point Distillation	98
Appendix J Carbon Number Distribution of Maltenes	118
Appendix K Carbon Number Distribution of Mono-aromatics	124

CURRICULUM VITAE

129

LIST OF TABLES

TABLE PAGE

2.1	The amount of metal loading on the bimetallic catalysts	15
3.1	The compositions and volumes of mobile phase used for	
	separation of maltenes fraction by liquid chromatography	21
4.1	Concentration of light mono-aromatics (%wt)	42
Al	Pyrolysis conditions: non-catalytic pyrolysis	64
A2	Pyrolysis conditions: KL catalyst	65
A3	Pyrolysis conditions: 1% Rh/KL catalyst	66
A4	Pyrolysis conditions: 1% Ni/KL catalyst	67
A5	Pyrolysis conditions: 5% Ni/KL catalyst	68
A6	Pyrolysis conditions: 10% Ni/KL catalyst	69
A7	Pyrolysis Conditions: 15% Ni/KL catalyst	70
A8	Pyrolysis conditions: 20% Ni/KL catalyst	71
A9	Pyrolysis conditions: 1% Co/KL catalyst	72
A10	Pyrolysis conditions: 5% Co/KL catalyst	73
All	Pyrolysis conditions: 10% Co/KL catalyst	74
A12	Pyrolysis conditions: 15% Co/KL catalyst	75
A13	Pyrolysis conditions: 20% Co/KL catalyst	76
A14	Pyrolysis conditions: 0.05Rh0.95Ni catalyst	77
A15	Pyrolysis conditions: 0.25Rh0.75Ni catalyst	78
A16	Pyrolysis conditions: 0.50Rh0.50Ni catalyst	79
A17	Pyrolysis Conditions: 0.75Rh0.25Ni catalyst	80
A18	Pyrolysis conditions: 0.05Rh0.95Co catalyst	81
A19	Pyrolysis conditions: 0.25Rh0.75Co catalyst	82
A20	Pyrolysis conditions: 0.50Rh0.50Co catalyst	83
A21	Pyrolysis conditions: 0.75Rh0.25Co catalyst	84
B1	Yield of product obtained from using monometallic	
	catalysts	85

TABLE

B2	Yield of product obtained from using bimetallic catalysts	85
C1	Yield of gas composition obtained from pyrolysis with	
	1%Rh/KL	86
C2	Yield of gas composition obtained from pyrolysis with	
	varied %Ni/KL	87
C3	Yield of gas composition obtained from pyrolysis with	88
	varied %Co/KL	
C4	Yield of gas composition obtained from pyrolysis with	
	varied composition of bimetallic catalysts (RhNi/KL)	89
C5	Yield of gas composition obtained from pyrolysis with	
	varied composition of bimetallic catalysts (RhCo/KL)	90
D1	Effect of 1%Rh/KL	91
D2	Effect of varied Ni loading	91
D3	Effect of varied Co loading	91
D4	Effect of RhNi/KL	92
D5	Effect of RhCo/KL	92
El	Effect of 1%Rh/KL	93
E2	Effect of varied Ni/KL	93
E3	Effect of varied Co/KL	93
E4	Effect of RhNi/KL	93
E5	Effect of RhCo/KL	94
F1	Effect of monometallic catalysts	95
F2	Effect of bimetallic catalysts	95
Gl	Effect of monometallic catalysts	96
G2	Effect of bimetallic catalysts	96
Hl	Effect of monometallic catalysts	97
H2	Effect of bimetallic catalysts	97
I1	Non-catalytic	98
I2	KL	99

	I3	1% Rh/KL	100
	I4	1% Ni/KL	101
	I5	5% Ni/KL	102
	I6	10% Ni/KL	103
	I7	15% Ni/KL	104
ي و	18	20% Ni/KL	105
1	I9	1% Co/KL	106
۰.	I10	5% Co/KL	107
•	I11	10% Co/KL	108
Ŷ	I12	15% Co/KL	109
• •	I13	20% Co/KL	110
	I14	0.05Rh 0.95Ni /KL	111
	I15	0.25Rh0.75Ni /KL	112
	I16	0.50Rh0.50Ni /KL	113
1	I17	0.75Rh0.25Ni /KL	114
	I18	0.05Rh 0.95Co /KL	115
	I19	0.75Co 0.25Rh/KL	116
	I20	0.50Rh0.50Co /KL	117
	I21	0.75Rh0.25Co /KL	118
	J1	Influences of 1%Rh/KL	119
	J2	Influences of varied Ni loading on KL catalysts	120
	J3	Influences of varied Co loading on KL catalysts	121
	J4	Influences of bimetallic catalysts (RhNi/KL)	122
	J 5	Influences of bimetallic catalysts (RhCo/KL)	123
	K1	Influences of 1%Rh/KL	124
	K2	Influences of varied Ni loading on KL catalysts	125
	K3	Influences of varied Co loading on KL catalysts	126
	K4	Influences of bimetallic catalysts (RhNi/KL)	127
	K5	Influences of bimetallic catalysts (RhCo/KL)	128

LIST OF FIGURES

FIGURE

PAGE

2.1	(a) Tire structure, (b) rubber composition and (c) vulcanition	5
2.2	Structure of KL	10
3.1	An autoclave reactor used in the experiment	18
3.2	Schematic of the pyrolysis process	19
3.3	Block diagram of the product analysis	20
4.1	Product distribution obtained from pyrolysis using 1%Rh/KL	24
4.2	Gas composition obtained from pyrolysis using 1%Rh/KL	25
4.3	Effect of 1%Rh/KL on petroleum fractions	26
4.4	Chemical composition in maltene obtained from using	
	1%Rh/KL	27
4.5	L/G ratio obtained from pyrolysis with using various %Ni	
	loading on KL zeolite	29
4.6	L/G ratio obtained from pyrolysis with using various %Co	
	loading on KL Zeolite	30
4.7	Yield of light olefins obtained from pyrolysis with using	
	various metal loading	31
4.8	Yield of cooking gas obtained from pyrolysis with using	
	various metal loading	32
4.9	Chemical composition in maltene obtained from using	
	varied %Ni loading on KL	34
4.10	Chemical composition in maltene obtained from using	
	varied %Co loading on KL	35
4.11	Effect of varied %Ni/KL on petroleum fractions	36
4.12	Effect of varied %Co/KL on petroleum fractions	37
4.13	(a) Carbon number distribution of mono-aromatics using	
	1%Rh/KL	39

xi

FIGURE

PAGE

	(b) Carbon number distributi	on of mono-aromatics using	
	varied %Ni/KL		40
	(c) Carbon number distribution	on of mono-aromaticsusing	
	varied %Co/KL		41
	(d) Carbon number distribution	n of mono-aromatics using	
	1%Rh, 20%Ni and 5%Co		42
4.14	Gas and liquid yields obtaine	d from pyrolysis using	
	RhNi/KL	*) <u>+</u>	44
4.15	Yields of light olefins obtain	ed from pyrolysis with using	
	RhNi/KL		45
4.16	Yield of cooking gas obtaine	d from pyrolysis with using	
	RhNi/KL	4	45
4.17	Chemical composition in ma	tenes obtained from using	
	RhNi/KL	4.8	46
4.18	Saturated hydrocarbons/total	aromatics ratio from using	
	RhNi/KL		47
4.19	Carbon number distribution o	f mono-aromatics from using	
	RhNi/KL		48
4.20	Naphtha and gas oil fractions	from using RhNi/KL	49
4.21	Gas and liquid yield obtained	from pyrolysis using	
	RhCo/KL		50
4.22	Chemical composition in mal	tenes obtained from using	
	RhCo/KL		51
4.23	Saturated hydrocarbons/total	aromatics ratio from using	
	RhNi/KL		51
4.24	Naphtha and gas oil fraction	from using RhCo/KL	52