REFERENCES

- Albertazzi, S., Ganzerla, R.,Gobbi, C., Lenarda, M., Mandreoli, M., Salatelli, E., Savini, P., Storaro, L., and Vaccari, A. (2003). Hydrogenation of naphthalene on noble-metal-containing mesoporous MCM-41 aluminosilicates. <u>Journal of Molecular Catalysis A: Chemical</u>, 200, 261– 270.
- Álvarez-Rodríquez, J.A., Guerrero-Ruiz, A., Rodríguez-Ramos, I., and Arcoya-Martín, A. (2005). Modifications of the citral hydrogenation selectivities over Ru/KL-zeolite catalysts induced by the metal precursors. <u>Catalysis</u> <u>Today</u>, 107–108, 302–309.
- Álvarez-Rodríquez, J.A., Guerrero-Ruiz, A., Rodríguez-Ramos, I., Arcoya-Martín, A., and Miriam Cerro-Alarcon. (2008). Effect of nickel precursor and the copper addition on the surface properties of Ni/KL-supported catalysts for selective hydrogenation of citral. <u>Applied Catalysis A: General</u>, 348, 241– 250.
- Álvarez-Rodríquez, J.A., Guerrero-Ruiz, A., Rodríguez-Ramos, I., and Arcoya-Martín, A. (2008). Structure changes on RuCu/KL bimetallic catalysts as evidenced by n-hexane reforming. <u>Catalysis Today</u>, 133–135, 793–799.
- Barama, S., Dupeyrat-Batiot, C., Capron, M., Bordes-Richard, E., and Bakhti-Mohammedi, O. (2009). Catalytic properties of Rh, Ni, Pd and Ce supported on Al-pillared montmorillonites in dry reforming of methane. <u>Catalysis Today</u>, 141, 385–392
- Barama, S., Dupeyrat-Batiot, C., Capron, M., Bordes-Richard, E., and Bakhti-Mohammedi, O. (2009). Catalytic properties of Rh, Ni, Pd and Ce supported on Al-pillared montmorillonites in dry reforming of methane. <u>Catalysis Today</u>, 141, 385–392
- Barrer, R.M. and Villiger, H. (1969). Crystal structure of synthetic zeolite L. <u>Crystallography</u>, 128, 352-361.
- Bécue, T., Maldonado-Hodar, F.J., Antunes, A.P., Silva, J.M., Ribeiro, M.F., Massiani, P., and Kermarec, M. (1999). Influence of Cesium in Pt/NaCsβ

on the Physico-Chemical and Catalytic Properties of the Pt Clusters in the Aromatization of n-Hexane. Journal of Catalysis, 181, 244-255.

- Berrueco, C., Esperanza, E., Mastral, F.J., Ceamanos, J., and Garcı'a-Bacaicoa, P. (2005). Pyrolysis of waste tyres in an atmospheric static-bed batch reactor:analysis of the gases obtained. Journal of Analytical and Applied <u>Pyrolysis</u>, 74, 245-253.
- Bessell, S. (1995) Investigation of bifunctional zeolite supported cobalt Fischer-Tropsch catalysts. <u>Applied Catalysis A: General</u>, 126, 235-244.
- Bonetto, L., Cambolr, M.A., Corma, M.A., and Perez-Pariente, J. (1992). Optimization of zeolite-β in cracking catalysts influence of crystallite size. Applied Catalysis A: General, 82, 37-50.
- Chen, F., and Qian, J. (2000). Studies on the thermal degradation of polybutadiene. Fuel Processing Technology, 67, 53–60.
- Chen, F., and Qian, J. (2003). Studies of the thermal degradation of waste rubber. <u>Waste Management</u>, 23, 463–467.
- Chica, A., and Sayas, S. (2009). Effective and stable bioethanol steam reforming catalyst based on Ni and Co supported on all-silica delaminated ITQ-2 zeolite. <u>Catalysis Today</u>, 146, 37–43.
- Choosuton A. (2007). <u>Development of Waste Tire Pyrolysis for the Production of</u> <u>Commercial Fuels: Effect of Noble Metals and Supports</u>. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Thailand.
- Concepción, P., López, C., Martínez, A., and Puntes, V.F. (2004). Characterization and catalytic properties of cobalt supported on delaminated ITQ-6 and ITQ-2 zeolites for the Fischer-Tropsch synthesis reaction. Journal of Catalysis, 228, 321-332.
- Conliffe, A.M. and William, P.T. (1998). Composition of oils derived from the batch pyrolysis of tyres. Journal of Analytical and Applied Pyrolysis, 44, 131-152.
- Corma, A., Martinez, A., and Martinez-Soria, V. (1997). Hydrogenation of Aromatics in diesel fuels on Pt/MCM-41 catalysts. <u>Journal of Catalysis</u>, 169, 480-489.

- Dai, X., Yin, X., Wu, C., Zhang, W. and Chen, Y. (2001). Pyrolysis of waste tires in a circulating fluidized-bed reactor. <u>Energy</u>, 26, 385-399.
- Diez, C., Martinez, O., Calvo, L.F., Cara, J., and Moran, A. (2004). Pyrolysis of tyres. Influence of the final temperature of the process on emission and calorific value of the product recovered. <u>Waste Management</u>, 24, 463-469.
- Dũng, N.A, Wongkasemjit, S., and Jitkarnka, S. (2009). Effects of pyrolysis temperature and Pt-loaded catalysts on polar-aromatic content in tirederived oil. <u>Applied Catalysis B: Environmental</u>, 91, 300–307.
- Dũng, N.A. (2009). Light Oil Production From Waste Tire Pyrolysis Using Noble Metal-Supported Catalysts. Ph.D. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Thailand.

۰.

- Galvagno, S., Casu, S., Carsabianca, T., Calabrese, A., and Cornacchia, G. (2002). Pyrolysis process of the treatment of scrap tyres: Preliminary experimental results. <u>Waste Management</u>, 22, 917-923.
- Garrido Pedrosa, A.M., Souza, M.J.B., Melo, D.M.A., and Araujo, A.S. (2006).
 Cobalt and nickel supported on HY zeolite: Synthesis, characterization and catalytic properties. <u>Materials Research Bulletin</u>, 41, 1105–1111.
- Jacobs, G., Alvarez, W.E., and Resasco, D.E. (2001). Study of preparation parameters of powder and palletized Pt/KL catalysts for *n*-hexane aromatization. Applied Catalysis A: General, 206, 267–282.
- Jacquin, M., Jones, D.J., Rozière, J., Albertazzi, S., Vaccari, A., Lenarda, M., Storaro, L., and Ganzerla, R. (2003). Novel supported Rh, Pt, Ir and Ru mesoporous aluminosilicates as catalysts for the hydrogenation of naphthalene. <u>Applied Catalysis A: General</u>, 251, 131–141.
- Jang, J. W., Yoo, T. S., Oh, J. H., and Iwasaki, I. (1998). Discarded tire recycling practices in the United States, Japan and Korea, <u>Resources, Conservation</u> <u>and Recycling</u>, 22, 1-14.
- Jovanovica, D., Radovic1, R., Mares, L., Stankovic, M., and Markovic, B. (1998). Nickel hydrogenation catalyst for tallow hydrogenation and for the selective hydrogenation of sunflower seed oil and soybean oil. <u>Catalysis Today</u>, 43, 21-28.

- Khemthong, P., Klysubun, W., Prayoonpokarach, S., Roessner, F., and Wittayakun, J. (2010). Comparison between cobalt and cobalt-platinum supported on zeolite NaY: Cobalt reducibility and their catalytic performance for butane hydrogenolysis. Journal of Industrial and Engineering Chemistry, 16, 531– 538.
- Kikuchi, E., Tsurumi, M., and Morita, Y. (1971). Hydrogenolysis and isomerization of n-pentane on group VIII transition metals. <u>Journal of Catalysis</u>, 22, 226-236.
- Kumar, M., Saxena, A.K., Negi, B.S., and Viswanadham, N. (2008). Role of pore size analysis in development of zeolite reforming catalyst. <u>Catalysis Today</u>, 130, 501–508.
- Lakhapatri, S.L., and Abraham, M.A. (2009). Deactivation due to sulfur poisoning and carbon deposition on Rh-Ni/Al₂O₃ catalyst during steam reforming of sulfur-doped n-hexadecane. <u>Appiled Catalysis A: General</u>, 364, 113-121.
- Laresgoiti, M.F., Marco, I., Torres, A., Caballero, B., Cabrero, M.J., and Chomón,
 M.J. (2000). Chromatographic analysis of the gases obtained in tyre pyrolysis. Journal of Analytical and Applied Pyrolysis, 55, 43-54.
- Leung, D.Y.C., Yin, X.L., Zhao, Z.L., B.Y. Xu and Chen, Y. (2002). Pyrolysis of tire powder: influence of operation variables on the composition and yields of gaseous product. <u>Fuel Processing Technology</u>, 79, 141-155.
- Li, L., Gao, J., and Meng, X. (2005). The influencing factors of the catalytic pyrolysis processes and their product distribution. <u>Petroleum Science and Technology</u>, 23, 243-255.
- Mastral, A.M., Murillo, R., Callen, M.S., Garcia, T., and Snape C.E. (2000). Influence of process variables on oils from tire pyrolysis and hydropyrolsis in a swept fixed bed reactor. Energy & Fuels, 14(4), 739-744.
- Marcilla, A., Gómez-Siurana, A., and Valdés, F. (2007). Catalytic pyrolysis of LDPE over H-beta and HZSM-5 zeolites in dynamic conditions Study of the evolution of the process. <u>Journal of Analytical and Applied Pyrolysis</u>, 79, 433–442.

- Marcilla, A., Gómez-Siurana, A., and Berenguer, D. (2006). Study of the influence of the characteristics of different acid solids in the catalytic pyrolysis of different polymers. <u>Applied Catalysis A: General</u>, 301, 222–231.
- Mhodmonthin, A. (2005). <u>Development of Waste Tire Pyrolysis Process for</u> <u>Production of Fuel and Diesel Oils</u>. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Thailand.
- Miguel, G.S., Aguado, J., Serrano, D.P., and Escola, J.M. (2006). Thermal and catalytic conversion of used tyre rubber and its polymeric constituent using Py-GC/MS. <u>Applied Catalysis B: Environmental</u>, 64, 209-219.
- Miyata, T., Li, D., Shiraga, M., Shishido, T., Oumi, Y., Sano, T., and Takehira, K. (2006). Promoting effect of Rh, Pd and Pt noble metals to the Ni/Mg(Al)O catalysts for the DSS-like operation in CH4 steam reforming. <u>Applied</u> Catalysis A: General, 310, 97–104.
- Moldoveanu, S.C. (2005). Analytical pyrolysis of synthetic organic polymers. 25.
- Nurunnabi, M., Fujimoto, K.I., Suzuki, K., Li, B., Kado, S., Kunimori, K., and Tomishige, K. (2006). Promoting effect of noble metals addition on activity and resistance to carbon deposition in oxidative steam reforming of methane over NiO-MgO solid solution. <u>Catalysis Communications</u>, 7, 73-78.
- Paál, Z., Győrffy, N., Wootsch, A., Tóth, L., Bakos, I., Szabó, S., Wild, U., and Schlögl, R. (2007). Preparation, physical characterization and properties of unsupported Pt-Rh catalyst. <u>Journal of Catalysis</u>, 250, 254–263.
- Phopaisarn, M. (2009). _Catalytic pyrolysis of waste tire over KL-based catalysts: double beds of KL and Y zeolites. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Thailand.
- "Polybutadiene." Semantic Science. 20 Apr.2010

<http://semanticscience.wordpress.com/2007/03/>

"Polyisoprene." Science News. 20 Apr. 2010

<http://www.electron.rmutphysics.com/science-

news/index.php?option=com_content&task=view&id=141&Itemid=4>

- Rodriguez, I.M., Laresgoiti, M.F., Cabrero, M.A., Torres, A., Chomón, M.J., and Caballero, B. (2001) Pyrolysis of scrap tyres. <u>Fuel Processing</u> <u>Technology</u>, 72, 9-22.
- Sato, T., Kunimori, K., and Hayashi, S. (1999). Dynamics of benzene, cyclohexane and n-hexane in KL zeolite studied by ²H NMR. <u>Phys. Chem. Chem. Phys.</u> 1(16), 3839-3843.
- Seidelt, S.,Müller-Hagedorn, M. and Bockhorn, H. (2006). Description of tire pyrolysis by thermal degradation behaviour of main components. Journal of Analytical and Applied Pyrolysis. 75,11–18.
- Shen, B., Wu, C., Wang, R., Guo, B., and Liang, C. (2006) Pyrolysis of scrap tyres with zeolite USY. Journal of Hazardous Materials, B137, 1065–1073.
- "Styrene-butadiene." WIKIPEDIA. 20 Apr. 2010 <http://en.wikipedia.org/wiki/Styrene-butadiene>
- Tang, L., Huang, H., (2004). An investigation of sulfur distribution during thermal plasma pyrolysis of used tires. <u>Journal of Analytical and Applied</u> <u>Pyrolysis</u>, 72, 35–40.
- Taillades-Jacquin, M., Jones, D.J., Rozière, J., Moreno-Tost, R., Jiménez-López, A., Albertazzi, S., Vaccari, A., Storaro, L., Lenarda, M., and Trejo-Menayo, J.M. (2008). Novel mesoporous aluminosilicate supported palladiumrhodium catalysts for diesel upgrading: II. Catalytic activity and improvement of industrial diesel feedstocks. <u>Applied Catalysis A: General</u>, 340, 257–264.
- Taillades-Jacquin, M., Jones, D.J., Rozière, J., and Rodríguez-Castellón, E. (2008). Novel mesoporous aluminosilicate supported palladium-rhodium catalysts for diesel upgrading: I. Preparation and characterization. <u>Applied Catalysis</u> <u>A: General</u>, 340, 250–256.
- Teschner, D., Matusek, K., and Paál, Z. (2000). Ring Opening of Methylcyclopentane on Alumina-Supported Rh Catalysts of Different Metal Loadings. <u>Journal</u> <u>of Catalysis</u>, 192, 335-343.
- Teschner, D., Matusek, K., and Paál, Z. (2000). Reactivity of the hydrocarbon C–C bonds as a function of the reaction conditions in the conversion of C_6

alkanes and methylcyclopentane over Rh catalysts. <u>Journal of Molecular</u> <u>Catalysis A: Chemical</u>, 179, 201–212.

- "Tire." Mindfully. 9 Apr. 2010 http://www.mindfully.org
- Ucar, S., Karagoz, S., Ozkan, A.R., and Yanik, J. (2005). Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. <u>Fuel</u>, 84, 1884-1892.
- Vagif, M., Akhmedov, Soliman, H., and Al-Khowaiter. (2000). Hydroconversion of hydrocarbons over Ru-containing supported catalysts prepared by metal vapor method. <u>Applied Catalysis A:General</u>, 197, 201-212.
- "Valcanizzation" MEEF. 24 May. 2010

<http://www.eng-forum.com/articles/tires...res2.htm>

"Valcanization." WIKIPEDIA. 9Apr.2010

<<u>http://en.wikipedia.org/wiki/File:Vulcanization.png.</u>>

- Vitolo, S., Seggiani, M., Frediani, P., Ambrosini, G., and Politi, L. (1999). Catalytic upgrading of pyrolytic oils to fuel over different zeolite. <u>Fuel</u>, 78, 1147-1159.
- Wakui, K., Satoh, K., Sawada, G., Shiozawa, K., Matano, K., Suzuki, K., Hayakawa, T., Yoshimura, Y., Murata, K. and Mizukami, F. (2002). Dehydrogenative cracking of n-butane using double-stage reaction. <u>Applied Catalysis A:</u> <u>General</u>, 230, 195-202.
- Williams, P.T. and Brindle, A.J. (2002). Catalytic pyrolysis of tyres: influence of tyres: influence of catalyst temperature. <u>Fuel</u>, 81, 2425-2434.
- Williams, P.T. and Brindle, A.J. (2003). Aromatic chemicals from the catalytic pyrolysis of scrap tyres. <u>Journal of Analytical and Applied Pyrolysis</u>, 67, 143-164.
- Yin, D., Li, W., Yang, W., Xiang, H., Sun, Y., Zhong, B., and Peng, S. (2001). Mesoporbus HMS molecular sieves supported cobalt catalysts for Fischer-Tropsch synthesis. <u>Microporous and Mesoporous Materials</u>, 47, 15-24.
- Zhao, Z.F., Wu, Z.J., Zhou, L.X., Zhang, M.H., Li, W, and Tao, K.Y. (2008). Synthesis of a nano-nickel catalyst modified by ruthenium for

. . . .

hydrogenation and hydrodechlorination. <u>Catalysis Communications</u>, 9, 2191–2194.

Zhao, M., Florin, N.H., and Harris, A.T. (2009). The influence of supported Ni catalysts on the product gas distribution and H2 yield during cellulose pyrolysis. <u>Applied Catalysis B: Environmental</u>, 92, 185–193.

,

APPENDICES

APPENDIX A Temperature Profiles

Table A1 Pyrolysis conditions: Non-catalytic Pyrolysis

Tire = 30 g, N₂ flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	TI	T2	Time (min)	T1	Т2
2	33.4	31.1	32	367.9	499.2	62	361.2	506.7	92	361.2	496.6
4	53.6	52.8	34	370.2	496.9	64	356.4	502.8	94	359.9	507.8
6	78.4	81.5	36	367.4	499.9	66	352.4	491.8	96	354.5	502.6
8	120.4	125.2	38	366.4	496.5	68	353.4	502.7	98	350.1	500.9
10	145.7	158.0	40	364.2	498.3	70	346.2	500.1	100	353.5	502.7
12	186.0	205.0	42	365.5	495.2	72	355.2	502.3	102	350.5	494.0
14	266.2	302.6	44	357.2	502.7	74	351.4	496.2	104	351.2	502.2
16	277.5	325.5	46	359.1	502.3	76	355.8	508.7	106	353.1	498.8
18	296.5	412.3	48	353.9	506.1	78	352.4	504.2	108	352.4	505.7
20	324.4	429.8	50	352.7	500.1	80	352.0	505.7	110	350.2	495.8
22	331.9	470.8	52	355.6	502.9	82	352.9	497.9	112	349.2	494.8
24	349.1	500.2	54	358.8	497.0	84	351.4	501.5	114	356.1	499.8
26	360.1	501.5	56	359.1	500.9	86	350.3	508.0	116	351.3	499.0
28	363.2	486.0	58	355.9	502.8	88	342.5	496.4	118	350.2	499.2
30	368.4	501.2	60	351.9	501.1	90	361.1	506.3	120	349.4	498.9

Figure A1 Temperature profiles of non-catalytic pyrolysis.

Table A2 Pyrolysis conditions: KL catalyst

Tire = 30 g, KL = 7.5g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2	Time (min)	Tl	T2	Time (min)	Tl	T2	Time (min)	Tl	Т2
2	30.2	33.1	32	358.0	504.6	62	354.7	506.3	92	352.3	507. 8
4	49.4	55.8	34	354.9	497.4	64	357.8	499.1	94	350.0	496.8
6	58.1	67.7	36	363.1	496.2	66	356.6	506.9	96	352.9	506.5
8	88.3	110.9	38	360.9	506.4	68	354.2	496.4	98	356.9	506.0
10	115.2	148.0	40	357.1	500.4	70	350.4	497.1	100	353.9	498.7
12	154.1	199.5	42	355.6	506.0	72	348.6	506.9	102	352.4	503.1
14	194.4	252.9	44	354.6	496.6	74	355.1	499.2	104	347.1	499.7
16	249.1	342.2	46	353.0	507.1	76	356.1	502.1	106	352.6	504.4
18	289.9	411.8	48	351.3	497.3	78	354.5	494.5	108	356.0	500.0
20	322.8	454.9	50	348.5	502.8	80	351.6	507.2	110	353.4	503.2
22	324.6	513.3	52	354.4	495.5	82	349.0	499.5	112	348.9	493.6
24	334.4	503.8	54	353.8	495.9	84	346.9	508.4	114	355.1	507.1
26	336.9	493.5	56	352.4	503.2	86	357.5	498.5	116	354.1	500.1
28	344.1	507.5	58	350.0	500.3	88	357.2	505.6	118	351.6	505.7
30	361.5	499.5	60	347.8	497.7	90	355.4	497.7	120	347.2	498.2

Figure A2 Temperature profiles of waste tire pyrolysis with using KL catalyst.

Table A3 Pyrolysis conditions: 1% Rh/KL catalyst

Tire = 30 g, N₂ flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time	TI	T2	Time (min)	T1	Т2	Time (min)	T1	T2	Time (min)	TI	Т2
2	28.5	30.3	32	366.4	496.9	62	356.3	503.4	92	357.6	498.7
4	59.1	82.4	34	365.8	500.6	64	355.0	494.4	94	356.3	505.7
6	83.8	125.8	36	366.4	499.8	66	353.1	505.3	96	355.0	500.4
. 8	114.8	176.3	38	365.0	498.9	68	352.5	500.5	98	353.2	501.5
10	153.8	253.6	40	364.5	501.2	70	350.8	498.8	100	351.1	493.3
12	194.8	298.2	42	362.6	503.4	72	348.9	493.6	102	349.3	508.2
14	247.1	375.3	44	361.2	499.8	74	354.7	506.1	104	355.1	496.3
· 16	305.8	426.2	46	359.5	505.6	76	356.5	498.1	106	357.3	501.7
* 18	320.8	468.3	48	358.1	494.9	78	356.5	503.1	108	356.7	495.1
20	340.3	507.5	50	356.5	506.2	80	354.4	494.1	011	355.1	507.7
· 22	350.5	497.5	52	354.6	496.8	82	352.4	506.5	112	353.3	497.1
24	358.4	503.8	54	352.9	502.9	84	351.3	499.5	114	351.1	500.5
. 26	364.7	505.1	56	350.9	493.5	86	349.1	499.7	116	349.1	493.9
28	366.2	499.5	58	348.9	508.1	88	353.9	503.4	118	347.1	502.5
30	367.1	507.1	60	354.9	498.9	90	358.2	502.4	120	355.7	504.3

Figure A3 Temperature profiles of waste tire pyrolysis with using 1%Rh/KL catalyst.

Table A4 Pyrolysis conditions: 1% Ni/KL catalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	Т2	Time (min)	T1	T2	Time (min)	Т1	Т2	Time (min)	Τ1	Т2
2	27.8	27.6	32	360.5	497.1	62	345.5	499.5	92	356.8	504.9
4	37.6	41.3	34	356.9	503.6	64	349.9	504.6	94	350.9	503.4
6	57.4	69.3	36	356.4	501.9	66	355.8	499.7	96	347.8	501.4
8	83.3	106.5	38	354.8	503.2	68	365.6	502.1	98	357.6	494.7
10	114.5	149.8	40 ·	352.3	492.8	70	362.5	506.5	100	355.2	505.6
12	155.7	205.7	42	350.8	505.9	72	370.6	497.5	102	351.4	497.4
14	204.9	272.7	44	351.1	499.9	74	368.1	504.5	104	351.7	501.2
16	251.7	332.1	46	353.5	503.6	76	366.6	497.3	106	352.1	499.6
18	290.7	408.1	48 1	347.5	493.3	78	365.7	504.4	108	353.6	493.1
20	307.1	442.8	50	345.7	502.9	80	364.5	504.6	110	346.4	501.3
22	312.5	493.5	52 ·	350.3	502.7	82	356.5	498.3	112	350.7	502.1
24	332.4	504.2	54	356.4	504.9	84	363.7	505.1	114	357.7	501.8
26	340.5	502.1	56	356.1	500.1	86	365.6	497.4	116	353.7	493.5
28	355.1	499.7	58	355.8	494.4	88	368.4	500.3	118	349.2	505.8
30	365.7	497.8	60	344.4	503.4	90	362.6	494.4	120	357.2	497.3

Figure A4 Temperature profiles of waste tire pyrolysis with using 1% Ni/KL catalyst.

Table A5 Pyrolysis conditions: 5% Ni/KL catalyst

Tire = 30 g, N₂ flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	T2	Time (min)	T 1	T2	Time (min)	T1	T2	Time (min)	T1	T2
2	27.6	28.0	32	345.4	506.6	62	.354	499.6	92	347.9	498
4	36.1	43.8	34	350.1	496.1	64	355.8	500.9	94	348.5	499.8
6	51.5	68.0	36	354.3	498.5	66	355.4	500.3	96	348.8	501.8
8	110.8	160.3	38	355.1	499.2	68	354.2	501.2	98	349.0	500.2
10	149.1	198.2	40	355.9	499.1	70	356.0	501.0	100	349.6	499.7
12	157.8	227.8	42	358.7	500.1	72	355.6	500.3	102	350.2	500.6
14	215.7	302.1	44	359.3	500.1	74	356.6	500.9	104	349.0	497.5
16	253.2	348.6	46	359.0	500.2	76	356.9	499.7	106	349.8	501.8
18	291.3	395.7	48	358.4	500.4	78	354.2	499.1	108	350.4	497.5
20	320.1	428.3	50	356.7	500.4	80	355.4	500.1	110	349.3	501.8
22	300.1	504.7	52	354.1	500.1	82	353.9	499.4	112	350.2	499.4
24	322.1	500.2	54	353.7	500.2	84	356.7	499.7	114	349.6	500.1
26	337.3	504.7	56	352.3	499.3	86	358.2	498.3	116	349.4	498.9
28	340.1	500.2	58	351.2	500.2	88	357.4	498.7	118	348.4	499.5
30	344.1	496.9	60	350.9	500.3	90	357.3	499.1	120	349.4	501.4

Figure A5 Temperature profiles of waste tire pyrolysis with using 5% Ni/KL catalyst

 Table A6
 Pyrolysis conditions: 10% Ni/KL catalyst

Tire = 30 g, N₂ flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	T1	Т2	Time (min)	TI	T2
2	28.1	28.2	32	381.6	505.9	62	356.5	494.1	92	350.1	498.7
4	40.8	47.5	34	383.9	501.2	64	355.1	506.4	94	344.5	505.8
6	57.9	70.6	36	382.6	502.6	66	346.2	497.5	96	353.9	494.7
8	84.6	106.9	38	379.8	493.9	68	356.6	503.6	98	358.6	505.2
10	102.5	157.8	40	373.4	505.4	70	355.9	494.9	100	347.8	503.5
12	163.7	212.8	42	366.0	499.1	72	351.5	503.6	102	347.6	506.5
14	202.2	265.6	44	357.4	503.1	74	352.7	499.4	104	358.4	497.1
16	250.7	332.6	46	354.9	495.1	76	353.2	505.6	106	352.2	501.2
18	281.9	400.3	48	347.4	504.0	78	347.7	495.1	108	346.9	498.9
20	321.0	440.9	50	356.2	498.1	80	348.4	501.6	110	355.7	500.4
22	357.8	499.8	52	354.5	505.6	82	358.5	506.1	112	358.1	495.8
24	370.7	515.8	54	346.9	497.1	84	354.7	501.3	114	353.6	507.4
26	376.5	509.1	56	352.5	506.8	86	350.1	501.6	116	352.1	496.9
28	380.2	501.5	58	355.9	497.3	88	354.4	494.5	118	356.1	506.5
30	381.9	503.6	60	346.8	502.2	90	354.1	502.1	120	351.3	500.9

Figure A6 Temperature profiles of waste tire pyrolysis with using 10% Ni/KL catalyst.

Table A7 Pyrolysis conditions: 15% Ni/KL catalyst

Tire = 30 g, N₂ flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	T2	Time (min)	Т1	T2	Time (min)	Tl	Т2	Time (min)	Tl	Т2
2	36.9	43.2	32	365.6	500.5	62	352.1	504.6	92	350.2	502.9
4	54.2	68.7	34	365.7	499.0	64	356.5	503.1	94	346.7	496.8
6	81.4	107.7	36	363.7	502.3	66	355.1	496.9	96	357.0	508.7
8	110.9	148.9	38	361.8	503.6	68	350.7	504.8	98	357.3	503.0
10	150.8	202.2	40	356.9	498.9	70	348.9	497.7	100	353.7	506.4
12	210.2	284.1	42	353.6	503.3	72	355.8	503.5	102	351.1	504.4
14	246.1	334.5	44	349.5	498.1	74	352.9	496.2	104	348.7	499.5
16	279.2	398.4	46	352.4	504.1	76	348.3	507.3	106	356.1	495.3
18	299.6	439.4	48	354.4	497.9	78	349.1	503.2	108	352.2	505.1
20	293.9	484.1	50	351.8	504.7	80	358.1	501.8	110	349.2	499.7
22	308.9	504.2	52	350.4	500.6	82	355.3	505.2	112	345.5	506.1
24	325.5	500.8	54	348.3	498.6	84	351.4	494.5	114	354.0	499.2
26	358.4	503.2	56	353.9	494.7	86	349.2	507.3	116	357.2	496.3
28	362.3	497.1	58	350.9	506.1	88	355.2	499.1	118	354.7	498.3
30	364.9	506.8	60	346.7	500.1	90	351.9	506.6	120	350.2	499.7

Figure A7 Temperature profiles of waste tire pyrolysis with using 15% Ni/KL catalyst.

Table A8 Pyrolysis conditions: 20% Ni/KL catalyst

Tire = 30 g, N₂ flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	Τ1	T2	Time (min)	T 1	Т2	Time (min)	T 1	T2	Time (min)	T 1	Т2
2	40	41.3	32	367.2	504.9	62	350.1	495.4	92	347.8	494
4	59.1	72.1	34	372.4	500.3	64	356.7	507.1	94	356.0	506.5
6	87.4	111.3	36	373.1	500.5	66	354.6	498.3	96	357.4	499.3
8	123.6	131.3	38	373.8	498.1	68	352.1	503.2	98	354.6	505.2
10	166.7	217.4	40	375.3	503.5	70	349.7	494.7	100	357.9	495.6
12	219.5	271.3	42	372.3	499.2	72	355.1	501.2	102	351.6	499.5
14	266.2	346.1	44	370.5	502.1	74	355.4	494.1	104	349.3	506.3
16	292.3	408.1	46	368.5	504.7	76	353.6	504.3	106	356.0	502.4
18	290.0	462.4	48	366.2	499.3	78	351.5	496.1	108	354.1	494.3
20	282.7	506.5	50	363.7	499.5	80	349.6	504.8	110	351.4	508.8
22	295.5	495.1	52	361.5	503.1	82	355.0	501.9	112	348.5	494.3
24	326.7	500.3	54	359.4	504.5	84	356.8	500.9	114	355.8	508.0
26	358.6	508.1	56	357.1	496.1	86	355.0	505.7	116	357.5	499.1
28	368.7	499.4	58	354.8	504.2	88	352.1	498.1	118	355.9	502.4
30	361.7	503.8	60	352.4	502.1	90	350.5	503.7	120	353.5	499.3

Figure A8 Temperature profiles of waste tire pyrolysis with using 20% Ni/KL catalyst.

Table A9 Pyrolysis conditions: 1% Co/KL catalyst

Tire = 30 g, N₂ flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	T1	T2
2	28.1	27.2	32	370.5	506.1	62	350.7	499.6	92	355.2	496.5
4	43.2	49.3	34	363.7	503.1	64	346.3	504.8	94	352.1	504.3
6	54.9	64.8	36	361.0	504.7	66	350.4	496.6	96	349.3	492.9
8	88.4	110.6	38	359.7	495.5	68	357.8	504.7	98	353.5	506.1
10	123.5	155.0	40	358.9	500.1	70	356.3	492.9	100	354.0	498.9
12	163.4	204.9	42	355.1	495.7	72	353.1	505.9	102	352.1	503.6
14	197.3	249.2	44	352.0	507.1	74	348.8	496.9	104	348.2	498.9
16	244.6	307.0	46	348.6	494.5	76	355.8	503.4	106	356.4	505.4
18	283.1	382.7	48	356.2	496.2	78	355.7	493.4	108	355.7	500.7
20	308.4	427.9	50	353.6	499.1	80	352.0	506.1	110	354.5	507.5
22	303.5	473.1	52	351.2	503.8	82	349.6	503.0	112	350.9	496.3
24	304.6	502.8	54	349.5	495.8	84	345.6	498.5	114	354.9	506.3
26	345.4	497.1	56	355.7	500.6	86	344.9	503.7	116	356.2	501.9
28	360.3	504.5	58	354.8	496.8	88	358.6	503.1	118	354.6	503.0
30	365.1	495.0	60	352.4	500.4	90	356.8	505.0	120	348.8	493.2

Figure A9 Temperature profiles of waste tire pyrolysis with using 1% Co/KL catalyst.

Table A10 Pyrolysis conditions: 5% Co/KL catalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2	Time (min)	T 1	T2	Time (min)	TI	Т2	Time (min)	TI	Т2
2	30.4	29.4	32	364.8	497.9	62	354.9	506.9	92	351.3	499.8
4	43.5	47.8	34	361.9	502.0	64	356.0	496.6	94	348.8	504.1
6	54.6	65.6	36	360.9	502.5	66	352.7	504.4	96	356.4	491.9
8	91.3	113.4	38	358.4	497.5	68	349.5	505.1	98	353.1	503.5
10	117.3	148.9	40	354.4	494.5	70	356.1	501.8	100	349.5	498.6
12	151.9	193.5	42	352.7	497.0	72	356.3	494.9	102	349.5	504.1
14	194.5	253.0	44	350.1	504.2	74	352.4	503.1	104	357.6	498.1
16	236.0	304.2	46	350.4	500.4	76	349.8	498.9	106	354.8	505.2
18	279.9	387.7	48	356.9	502.4	78	352.5	501.7	. 108	349.7	497.2
20	303.1	439.6	50	352.3	504.4	80	356.2	493.7	110	349.4	505.1
22	297.0	472.7	52	348.6	498.3	82	353.0	505.8	112	355.8	502.1
24	324.4	511.0	54	352.3	504.1	84	349.1	498.9	114	353.2	505.9
26	335.2	513.8	56	355.9	496.1	86	352.2	500.7	116	349.1	497.5
28	357.7	506.8	58	352.7	500.4	88	358.5	501.8	118	348.9	504.5
30	363.4	504.7	60	348.1	501.6	90	355.4	500.9	120	356.0	500.8

Figure A10 Temperature profiles of waste tire pyrolysis with using 5% Co/KL catalyst.

Table A11 Pyrolysis conditions: 10% Co/KL catalyst

Tire = 30 g, N₂ flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	T2	Time (min)	T 1	T2	Time (min)	Т1	T2	Time (min)	T1	Т2
2	31.8	35.3	32	370.4	505.2	62	356.7	506.5	92	357.2	506.2
4	45.8	53.8	34	373.4	503.6	64	355.1	501.1	94	355.2	498.0
6	60.4	73.5	36	372.6	497.2	66	351.9	499.1	96	351.3	503.6
8	94.9	124.3	38	372.4	503.7	68	349.0	505.7	98	349.8	498.1
10	164.2	208.1	40	370.8	500.6	70	354.5	501.3	100	353.7	505.9
12	174.8	253.8	42	368.7	501.9	72	357.1	507.8	102	357.3	498.1
14	236.0	304.2	44	366.5	501.2	74	355.2	501.3	104	354.9	506.8
16	279.9	387.8	46	363.9	496.9	76	352.1	504.1	106	350.9	497. 8
18	303.1	439.6	48	362.2	505.5	78	349.0	496.7	108	348.1	504.8
20	304.3	484.9	50	358.7	497.0	80	352.3	506.1	110	355.5	497.4
22	307.1	506.6	52	356.4	504.4	82	356.2	496.8	112	355.6	506.2
24	327.8	504.7	54	354.4	497.2	84	355.7	505.3	114	353.3	499.2
26	347.3	501.8	56	351.3	504.0	86	352.4	499.5	116	351.6	498.4
28	359.6	511.0	58	350.2	493.0	88	349.1	504.7	118	348.8	504.9
30	367.7	501.5	60	356.2	499.7	90	354.3	498.4	120	356.1	506.8

Figure A11 Temperature profiles of waste tire pyrolysis with using 10% Co/KL catalyst.

Table A12 Pyrolysis conditions: 15% Co/KL catalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T 1	T2	Time (min)	T1	T2	Time (min)	T 1	T2	Time (min)	TI	T2
2	49.1	37.8	32	371.4	504.8	62	362.2	498.7	92	357.1	500.2
4	62.4	57.8	34	371.7	504.5	64	360.3	504.9	94	355.1	494.2
6	80.9	84.9	36	371.6	498.1	66	358.0	497.6	96	353.1	506.7
8	110.7	125.9	38	367.5	.501.9	68	360.9	506.1	98	349.5	504.1
10	186.7	215.4	40	365.3	497.7	70	360.2	497.1	100	355.1	498.9
12	222.1	280.7	42	361.4	487.5	72	357.2	500.4	102	357.5	505.6
14	251.2	301.2	44	352.6	486.6	74	354.1	499.3	104	353.9	494.0
16	271.7	340.1	46	356.2	500.5	76	351.0	506.9	106	351.0	507.9
18	303.2	416.1	48	356.7	509.2	78	348.7	500.5	108	349.7	506.0
20	322.9	451.4	50	359.4	501.4	80	357.7	505.0	110	350.9	498.2
22	324.4	503.7	52	362.6	504.0	82	357.2	501.0	112	358.9	507.4
24	335.1	504.1	54	362.5	506.4	84	354.2	498.4	114	357.2	500.4
26	342.1	505.6	56	365.3	500.1	86	351.3	507.9	116	352.8	498.3
28	358.2	506.1	58	364.9	499.9	88	348.5	499.8	118	350.3	507.9
30	361.9	502.8	60	362.7	501.5	90	358.2	507.3	120	348.6	502.5

Figure A12 Temperature profiles of waste tire pyrolysis with using 15% Co/KL catalyst.

Table A13 Pyrolysis conditions: 20% Co/KL catalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	Т2	Time (min)	TI	Т2	Time (min)	TI	Т2	Time (min)	T 1	Т2
2	29.9	34.4	32	364.9	495.9	62	350.2	503.2	92	347.4	504.6
4	41.5	51.4	34	367.9	498.5	64	350.0	499.1	94	348.7	500.6
6	64.7	86.2	36	369.3	500.1	66	356.5	499.3-	96	349.5	499.3
8	91.4	125.7	38	369.4	499.4	68	356.6	499.9	98	349.5	502.3
10	126.8	176.5	40	368.5	500.8	70	355.1	500.6	100	349.8	499.8
12	171.7	235.1	42	367.9	500.8	72	353.1	500.4	102	349.9	502.1
14	220.9	331.9	44	366.4	499.8	74	350.5	497.6	104	349.9	494.9
16	277.6	381.3	46	364.5	500.1	76	349.3	500.3	106	349.9	503.1
18	318.2	423.4	48	363.6	499.6	78	355.8	500.1	108	349.3	500.3
20	309.5	464.7	50	361.7	497.7	80	356.2	498.ľ	110	350.2	498.4
22	336.9	508.0	52	359.7	498.7	82	354.7	499.7	112	350.3	500.2
24	341.2	497.6	54	358.1	500.2	84	352.9	499.1	114	350.2	500.1
26	346.8	503.9	56	356.1	500.3	86	351.0	500.2	116	349.0	494.3
28	355.1	507.1	58	354.4	501.7	88	349.4	499.2	118	350.0	497.8
30	360.0	500.3	60	352.7	496.9	90	347.6	499.8	120	350.4	498.0

Figure A13 Temperature profiles of waste tire pyrolysis with using 20% Co/KL catalyst.

Table A14 Pyrolysis conditions: 0.05Rh0.95Nicatalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = $500 \text{ }^{\circ}\text{C}$

Time (min)	T 1	T2	Time (min)	T1	Т2	Time (min)	T1	T2	Time (min)	T1	T2
2	29.4	30.3	32	380.1	499.2	62	351.2	504.6	92	347.8	499.6
4	40.7	49.4	34	380.9	503.6	64	349.2	495.3	94	349.2	500.6
6	60.6	81.6	36	379.7	500.2	66	353.9	504.9	96	349.3	499.9
8	89.6	123.7	38	377.7	505.2	68	355.1	505.2	98	349.5	499.3
10	125.4	175.3	40	375.7	495.4	70	356.2	496.5	100	349.8	501.2
12	164.7	230.8	42	373.5	504.7	72	354.4	501.6	102	349.9	500.3
14	205.5	292.6	44	371.6	499.5	74	352.1	495.7	104	350.1	499.5
16	251.7	368.9	46	369.3	503.2	76	350.5	504.5	106	349.5	501.9
18	297.5	412.5	48	366.2	495.6	78	352.5	499.5	108	350.1	499.3
20	298.4	458.2	50	363.9	506.2	80	356.3	503.5	110	349.8	500.6
22	330.5	495.2	52	361.2	497.9	82	355.5	494.3	112	350.2	499.3
24	347.2	506.1	54	358.5	504.2	84	353.4	495.1	114	349.8	500.6
26	356.3	499.4	56	357.5	496.7	86	350.7	499.5	116	350.1	499.3
28	365.1	504.9	58	356.2	496.5	88	348.7	497.7	118	350.2	499.1
30	370.6	501.2	60	357.3	503.1	90	347.4	500.4	120	350.0	499.5

Figure A14 Temperature profiles of waste tire pyrolysis with using 0.05Rh0.95Ni catalyst.

Table A15 Pyrolysis conditions: 0.25Rh0.75Nicatalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = $500 \text{ }^{\circ}\text{C}$

Time (min)	T1	T2	Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	T 1	Т2
2	26.8	29.7	32	350.5	499.7	62	355.4	498.4	92	352.1	493.5
4	30.6	51.8	34	353.3	501.3	64	352.9	503.1	94	350.1	505.5
6	59.5	87.7	36	359.1	505.6	66	350.9	503.2	96	350.7	501.7
8	113.5	177.3	38	362.2	497.4	68	349.5	500.3	98	356.8	500.3
10	151.3	227.8	40	362.6	497.6	70	355.1	498.2	100	355.4	505.7
12	193.8	289.4	42	361.3	504.8	72	357.6	501.2	102	353.5	496.4
14	241.6	352.4	44	359.6	497.6	74	353.5	507.4	104	351.7	502.5
16	292.6	412.4	46	356.9	500.2	76	353.6	497.5	106	349.4	493.5
18	306.6	444.7	48	355.2	495.1	78	351.7	507.1	108	347.6	507.2
20	305.4	494.8	50	354.5	505.8	80	349.6	498.7	110	347.3	499.9
22	329.2	503.3	52	351.9	506.9	82	351.1	503.6	112	348.1	498.2
24	332.4	504.5	54	349.6	497.4	84	356.3	492.8	114	349.1	507.5
26	337.3	498.9	56	352.2	503.9	86	355.3	506.5	116	350.3	497.7
28	343.9	490.6	58	358.2	498.5	88	353.5	496.6	118	350.2	502.6
30	345.4	506.5	60	357.7	501.9	90	353.8	503.1	120	349.7	493.9

Figure A15 Temperature profiles of waste tire pyrolysis with using 0.25Rh0.75Ni catalyst.

Table A16 Pyrolysis conditions: 0.50Rh0.50Nicatalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	Т2	Time (min)	ΤI	Т2	Time (min)	T 1	Т2	Time (min)	T1	Т2
2	36.8	43.6	32	334.5	504.7	62	353.1	499.9	92	347.8	499.2
4	38.3	46.9	34	346.4	499.4	64	355.2	499.6	94	347.6	499.6
6	66.5	92.2	36	349.9	501.2	66	355.4	498.7	96	350.1	500.2
8	83.7	116.9	38	352.2	506.9	68	354.7	499.6	98	352.3	499.7
10	116.1	167.8	40	357.9	498.3	70	354.1	499.7	100	351.7	499.8
12	163.7	233.6	42	359.1	505.3	72	352.9	501.2	102	353.1	500.2
14	190.7	297.1	44	360.1	496.8	74	350.3	499.6	104	350.2	499.8
16	278.7	391.6	46	358.7	505.4	76	349.4	500.1	106	349.7	499.9
18	291.4	409.3	48	357.6	497.4	78	354.7	499.9	108	349.9	500.1
20	307.3	441.5	50	356.6	498.1	80	355.9	500.2	110	349.8	499.2
22	300.3	497.1	52	354.6	504.5	82	355.3	501.1	112	349.7	500.6
24	317.8	503.3	54	355.4	497.7	84	352.1	500.1	114	349.7	497.1
26	323.5	505.9	56	352.7	504.9	86	351.7	500.9	116	349.6	498.7
28	328.3	494.3	58	351.6	496.7	88	350.9	500.5	118	349.7	499.8
30	334.5	498.9	60	350.7	497.1	90	349.1	499.9	120	349.9	498.9

Figure A16 Temperature profiles of waste tire pyrolysis with using 0.50Rh0.50Ni catalyst.

 Table A17 Pyrolysis conditions: 0.75Rh0.25Nicatalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Catalytic Temperature (T1) = 350 °C

Time (min)	T 1	Т2	Time (min)	T1	Т2	Time (min)	T1	Т2	Time (min)	T1	Т2
2	25.4	30.3	32	350.1	502.1	62	354.6	499.1	92	349.7	499.1
4	46.1	56.2	34	341.6	501.1	64	352.1	500.1	94	349.5	498.7
6	55.9	70.4	36	346.4	504.6	66	351.1	500.1	96	347.1	499.6
8	92.5	120.5	38	356.6	497.3	68	349.7	499.9	98	346.9	499.9
10	123.2	168.9	40	360.1	497.3	70	356.9	500.7	100	348.9	499.8
12	154.1	198.7	42	369.2	500.3	72	357.1	500.3	102	347.9	499.9
14	186.5	241.4	44	373.5	500.1	74	355.3	499.8	104	349.1	501.8
16	239.4	307.4	46	373.9	499.2	76	352.7	499.6	106	346.2	498.7
18	282.5	370.4	48	372.4	499.7	78	350.2	499.6	108	350.1	501.4
20	301.1	390.4	50	370.5	499.9	80	353.4	498.4	110	349.8	501.5
22	312.2	467.3	52	367.6	500.1	82	354.6	499.1	112	349.8	502.2
24	330.1	504.9	54	363.2	500.7	84	355.4	500.4	114	353.4	499.8
26	335.1	498.2	56	362.1	500.3	86	354.4	500.1	116	351.9	499.4
28	337.1	501.1	58	359.3	500.2	88	357.8	499.9	118	351.4	499.3
30	353.2	489.9	60	357.3	499.9	90	357.3	498.6	120	350.2	500.3

Figure A17 Temperature profiles of waste tire pyrolysis with using 0.75Rh0.25Ni catalyst.

Table A18 Pyrolysis conditions: 0.05Rh0.95Cocatalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

	Time (min)	T1	T2	Time (min)	Tl	T2	Time (min)	T1	Т2	Time (min)	TI	Т2
	2	29.3	29.7	32	365.4	504.1	62	358.6	503.4	92	350.4	499.8
	4	40.5	48.3	34	366.4	505.4	64	358.1	503.2	94	349.5	500.6
•	6	70.9	94.1	36	367.8	503.0	66	354.3	502.3	96	350.2	499.7
	8	84.1	113.2	38	368.5	503.6	68	355.4	501.0	98	350.1	499.8
1	10	115.6	257.9	40	368.9	501.5	70	353.2	501.6	100	348.3	499.6
	12	154.2	270.1	42	365.7	499.6	72	353.9	501.7	102	349.4	499.9
•	14	199.9	290.6	44	368.9	499.2	74	355.6	501.4	104	349.5	499.3
•	16	250.2	339.2	46	367.6	499.5	76	356.6	500.1	106	348.2	500.1
•	18	292.6	395.8	48	366.9	500.4	78	355.4	500.7	108	347.9	500.1
Č.	20	312.4	424.2	50	364.7	500.3	80	355.7	502.3	110	348.3	499.9
£	22	298.4	483.1	52	363.8	499.9	82	354.8	501.5	112	348.2	499.5
*	24	325.4	507.4	54	361.0	500.5	84	354.8	500.4	114	348.9	499.4
	26	349.8	502.9	56	360.5	500.2	86	355.9	500.2	116	349.2	499.6
	28	351.2	500.1	58	358.9	499.6	88	353.9	499.9	118	349.8	499.7
	30	354.9	505.3	60	359.3	502.3	90	352.9	500.3	120	349.1	499.5

Figure A18 Temperature profiles of waste tire pyrolysis with using 0.05Rh0.95Co catalyst.

Table A19 Pyrolysis conditions: 0.25Rh0.75Cocatalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	T2	Time (min)	T 1	Т2	Time (min)	T 1	T2	Time (min)	Т1	Т2
2	30.6	34.8	32	356.5	507.0	62	355.4	500.3	92	350.9	500.3
4	43.6	57.1	34	360.1	501.8	64	355.1	499.3	94	349.9	499.6
6	61.7	87.1	. 36	359.9	504.6	66	354.2	498.7	96	348.2	499.9
8	101.1	149.2	38	363.6	499.5	68	351.3	498.9	98	348.6	499.6
10	195.6	257.5	40	363.1	501.7	70	353.7	499.1	100	350.4	501.3
12	254.1	362.8	42	363.7	495.4	72	355.4	499.6	102	350.5	500.3
14	278.9	390.9	44	365.6	500.2	74	353.2	500.4	104	349.9	500.4
16	280.8	400.9	46	361.7	502.6	76	354.2	500.5	106	349.3	500.1
18	300.3	441.9	48	360.7	500.2	78	350.8	501.6	108	351.3	500.2
20	317.3	445.9	50	359.3	496.4	80	350.1	500.4	110	350.5	499.9
22	314.9	490.1	· 52	355.2	499.4	82	349.9	502.3	112	349.4	498.3
24	341.2	521.9	54	354.2	500.6	84	348.4	500.1	114	350.2	501.7
26	349.9	499.9	.56	350.2	501.3	86	348.2	503.4	116	350.7	501.2
28	350.3	525.4	58	349.1	497.9	88	348.1	501.0	118	350.2	501.3
30	359.9	517.7	60	354.8	500.1	90	348.2	502.4	120	350.3	500.5

Figure A19 Temperature profiles of waste tire pyrolysis with using 0.25Rh0.75Co catalyst.

Table A20 Pyrolysis conditions: 0.50Rh0.50Cocatalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	Т2	Time (min)	T 1	T2	Time (min)	T1	T2	Time (min)	T1	Т2
2	29.3	31.1	32	338.5	496.5	62	356.0	499.6	92	349.5	499.4
4	38.5	46.2	34	339.9	501.1	64	353.5	500.1	94	349.2	501.7
6	50.7	65.2	36	345.9	507.4	66	351.6	498.4	96	348.5	499.8
8	104.3	148.9	38	347.4	496.8	68	.349.7	499.6	98	349.1	502.2
10	121.4	176.3	40	349.1	501.5	70	352.8	498.8	100	349.1	500.3
12	173.4	248.3	42	357.4	500.2	72	358.2	503.2	102	349.4	498.0
14	204.2	286.8	44	357.0	501.1	74	. 355.8	500.4	104	349.6	500.3
16	264.1	358.4	46	357.2	494.4	76	354.3	502.7	106	350.1	500.0
18	292.6	408.1	48	355.8	500.4	78	352.4	499.3	108	349.6	498.5
20	312.5	451.9	50	354.9	501.2	80	349.5	503.1	110	349.2	500.9
22	299.5	495.4	52	352.3	497.2	82	347.9	496.2	112	350.2	501.4
24	304.1	509.1	54	356.1	499.9	84	346.5	498.1	114	349.8	499.4
26	317.7	496.8	56	349.3	500.6	86	346.3	500.4	116	350.3	499.8
28	322.8	504.3	58	355.8	499.9	88	346.5	499.3	118	350.3	500.5
30	330.7	489.5	60	357.8	500.4	90 .	349.3	499.9	120	349.7	501.8

Figure A20 Temperature profiles of waste tire pyrolysis with using 0.5Rh0.5Co catalyst.

Table A21 Pyrolysis conditions: 0.75Rh0.25Cocatalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	Т2	Time (min)	T1	Т2	Time (min)	T1	T2	Time (min)	T1	Т2
2	31.6	34.1	32	356.7	495.5	62	349.3	500.3	92	349.2	499.8
4	41.8	50.0	34	363.5	495.7	64	359.2	500.7	94	350.4	500.4
6	57.9	74.1	36	366.4	500.2	66	359.7	500.3	96	350.4	500.2
8	72.9	95.5	38	367.1	500.6	68	358.5	500.2	98	349.5	499.9
10	121.9	161.4	40	367.8	499.4	70	356.6	499.9	100	348.7	498.9
12	221.3	286.5	42	366.5	499.9	72	354.3	500.3	102	350.2	499.8
14	271.1	309.8	44	358.9	500.4	74	350.1	498.9	104	349:4	500.2
16	299.2	387.5	46	359.8	499.1	76	349.9	499.6	106	349.9	500.3
18	310.6	411.1	48	359.8	498.5	78	352.3	499.7	108	349.3	499.8
20	321.9	427.5	50	350.4	498.9	80	358.2	500.1	110	349.5	498.5
22	303.1	467.6	52	354.4	500.2	82	355.4	500.5	112	350.1	501.1
24	309.8	511.1	54	355.5	500.4	84	357.2	499.8	114	351.2	500.9
26	312.1	509.1	56	356.6	500.9	86	355.6	499.1	116	349.5	499.6
28	339.9	500.2	58	349.9	499.3	88	354.3	499.9	118	349.8	500.8
30	348.6	496.9	60	349.4	499.5	90	351.6	500.0	120	349.8	498.8

Figure A21 Temperature profiles of waste tire pyrolysis with using 0.75Rh0.25Co catalyst.

APPENDIX B Yields of Pyrolysis Products

Sample	%Metal	Yield (%)				
Sample	loading	Gas	Liquid	Solid		
Non-catalyst	-	13.20	42.81	44.00		
KL	0	19.25	36.98	43.78		
Rh/KL	1	24.10	32.57	43.33		
	1	20.13	35.97	43.90		
Ni/KL	5	20.00	35.63	44.37		
	10	20.63	36.19	43.15		
	15	23.25	33.38	43.37		
	20	22.17	34.27	43.57		
	1	25.12	29.58	45.03		
Co/KL	5	20.34	36.00	43.63		
	10	20.40	35.83	43.77		
	15	15.60	41.10	43.30		
	20	19.47	37.83	42.67		

 Table B1
 Yield of product obtained from using monometallic catalysts

 Table B2
 Yield of product obtained from using bimetallic catalysts

Sample	%Metal	loading	Yield (%)				
Sumple	Ni or Co	Rh	Gas	Liquid	Solid		
	0.95	0.05	18.53	37.97	43.50		
RhNi/KL	0.75	0.25	22.30	34.00	43.70		
	0.50	0.50	27.27	29.33	43.40		
	0.25	0.75	18.03	38.70	43.27		
	0.95	0.05	20.17	36.67	43.17		
RhCo/KL	0.75	0.25	24.83	31.93	43.23		
	0.50	0.50	22.57	34.43	43.00		
,	0.25	0.75	18.20	38.37	43.27		

APPENDIX C Gas Yield (%)

Sample	Non-	VI	10/ Dh/KI	
Component	Catalyst	KL		
Methane	3.042	3.855	5.160	
Ethylene	1.332	1.822	2.006	
Ethane	2.404	3.379	4.675	
Propylene	1.519	2.248	2.565	
Propane	1.132	1.736	2.570	
C4	2.585	4.158	4.874	
C5	1.148	2.043	2.164	
C6	0.035	0.008	0.048	
C7	0.001	0.001	0.005	
C8	0.001	0.001	0.032	
Total	13.20	19.25	24.10	

 Table C1
 Yield of gas composition obtained from pyrolysis with 1%Rh/KL

1

Sample	Non-	VI	10/ N;/L/I	59/ N;///I	100/ N;/KI	15% N;/KI	20% N;/KI	
Component	Catalyst	NL	1 70 NI/KL	570111/NL		13 /01\UKL		
Methane	3.042	3.855	4.630	4.630 4.413		4.902	4.739	
Ethylene	1.332	1.822	1.909	1.801	1.821	2.068	1.979	
Ethane	2.404	3.379	3.670	3.398	3.588	4.154	4.015	
Propylene	1.519	2.248	2.306	2.176	2.214	2.529	2.356	
Propane	1.132	1.736	1.839	1.775	1.915	2.198	2.073	
C4	2.585	4.158	4.068	4.104	4.432	4.870	4.528	
C5	1.148	2.043	1.634	2.258	2.243	2.457	2.408	
C6	0.035	0.008	0.039	0.045	0.045	0.048	0.040	
C7	0.001	0.001	0.007	0.004	0.006	0.006	0.005	
C8	0.001	0.001	0.030	0.027	0.016	0.019	0.027	
Total	13.20	19.25	20.13	20.00	20.63	23.25	22.17	

Table C2 Yield of gas composition obtained from pyrolysis with varied %Ni/KL

Figure C2 Distribution of gas composition obtained from pyrolysis with various Ni loading catalysts.

Sample	Non-	VI	19/ Co/KI	5% Co/KI	10% Co/KI	15% Co/KI	20% Co/KI	
Component	Catalyst	K L	1 /0CU/KL	570C0/KL	10 /0C 0/ KL	1370CU/KL	2070C0/ICL	
Methane	3.042	3.855	5.672	4.739	4.499	3.239	4.100	
Ethylene	1.332	1.822	2.211	1.738	1.795	1.330	1.713	
Ethane	2.404	3.379	4.567	3.801	3.793	2.879	3.471	
Propylene	1.519	2.248	2.736	2.185	2.198	1.652	2.055	
Propane	1.132	1.736	2.302	1.924	1.948	1.551	1.797	
C4	2.585	4.158	4.950	4.185	4.105	3.343	4.030	
C5	1.148	2.043	2.596	1.697	1.993	1.560	2.241	
C6	0.035	0.008	0.050	0.041	0.036	0.031	0.037	
C7	0.001	0.001	0.006	0.005	0.004	0.004	0.004	
C 8	0.001	0.001	0.031	0.027	0.029	0.010	0.021	
Total	13.20	19.25	25.12	20.34	20.40	15.60	19.47	

Table C3 Yield of gas composition obtained from pyrolysis with varied %Co/KL

Figure C3 Distribution of gas composition obtained from pyrolysis with various Co loading catalysts.

\$

Sample	$\alpha_{Ni} = Ni/(Rh+Ni)$								
Component	α=0	α=0 α=0.25 α=0.50 α=0.75		α=0.95	α=1				
Methane	5.160	3.927	6.010	4.808	3.998	3.634			
Ethylene	2.006	1.551	2.372	1.991	1.709	1.498			
Ethane	4.675	3.396	5.250	4.181	3.384	2.880			
Propylene	2.565	1.952	2.943	2.433	2.000	1.810			
Propane	2.570	1.806	2.747	2.202	1.745	1.443			
C4	4.874	3.843	5.588	4.682	3.836	3.193			
C5 .	2.164	1.495	2.306	1.958	1.796	1.282			
C6	0.048	0.034	0.038	0.033	0.037	0.030			
C7	0.005	0.004	0.002	0.002	0.004	0.005			
C8	0.032	0.022	0.013	0.010	0.022	0.024			
Total	24.10	18.03	27.27	22.30	18.53	15.80			

Table C4 Yield of gas composition obtained from pyrolysis with variedcomposition of bimetallic catalysts (RhNi/KL)

Figure C4 Distribution of gas composition obtained from pyrolysis with varied composition of bimetallic catalysts (RhNi/KL).

Sample	a _{Co} =Co/(Rh+Co)								
Component	α=0	α=0.25	α=0.50	α=0.75	α=0.95	α=1			
Methane	5.160	3.951	4.970	5.062	4.376	5.672			
Ethylene	2.006	1.605	1.959	2.483	1.796	2.211			
Ethane	4.675	3.523	4.310	4.540	3.786	4.567			
Propylene	2.565	2.000	2.427	2.863	2.176	2.736			
Propane	2.570	1.882	2.280	2.354	2.000	2.302			
C4	4.874	3.707	4.706	5.235	4.191	4.950			
C5	2.164	1.475	1.876	2.235	1.800	2.596			
C6	0.048	0.027	0.030	0.033	0.029	0.050			
C7	0.005	0.002	0.002	0.004	0.002	0.006			
C8	0.032	0.029	0.009	0.023	0.012	0.031			
Total	24.10	18.20	22.57	24.83	20.17	25.12			

Table C5 Yield of gas composition obtained from pyrolysis with varied

 composition of bimetallic catalysts (RhCo/KL)

Figure C5 Distribution of gas composition obtained from pyrolysis with varied composition of bimetallic catalysts (RhCo/KL).

APPENDIX D Chemical Compositions of Maltenes

Chemicals	Non- catalyst	KL	1%Rh/KL	
Saturated HCs	51.51	54.40	55.29	
Mono-aromatics	8.25	12.88	30.21	
Di-aromatics	17.10	14.52	6.34	
Poly-aromatics	17.10	13.91	4.83	
Polar-aromatics	6.04	4.29	3.32	

Table D1 Effect of 1%Rh/KL

Table D2 Effect of varied Ni loading

Poly-aromatics	17.10	13.91	4.83		<u>.</u>			
Polar-aromatics	6.04	4.29	3.32					
				1				
Table D2 Effect of v	aried Ni loa	ading			1			
	Non-		%Ni					
Cnemicals	catalyst	KL	1	5	10	15	20	
Saturated HCs	51.51	54.40	52.91	49.37	50.97	43.84	46.65	
Mono-aromatics	8.25	12.88	19.31	24.05	25.97	24.93	29.57	
Di-aromatics	17.10	14.52	13.23	12.03	6.82	13.42	10.67	
Poly-aromatics	17.10	13.91	10.58	10.76	12.99	13.70	9.45	
Polar-aromatics	6.04	4.29	3.97	3.80	. 3.25	4.11	3.66	

Table D3 Effect of varied Co loading

į.

Chamiaala	Non- catalyst	KL	%C0					
Chemicals			1	5	10	15	20	
Saturated HCs	51.51	54.40	47.20	47.73	43.45	45.51	50.73	
Mono-aromatics	8.25	12.88	22.12	32.95	34.82	31.09	31.75	
Di-aromatics	17.10	14.52	10.91	9.09	9.90	9.29	6.93	
Poly-aromatics	17.10	13.91	14.75	5.97	7.67	9.94	6.93	
Polar-aromatics	6.04	4.29	5.01	4.26	4.15	4.17	3.65	
Table D4 Effect of RhNi/KL

Chamicala	$\alpha_{Ni} = Ni/(Rh+Ni)$							
Chemicais	0	0.25	0.5	0.75	0.95	1		
Saturated HCs	55.29	60.06	58.42	53.89	52.86	52.91		
Mono-aromatics	30.21	24.78	21.99	31.15	30.98	19.31		
Di-aromatics	6.34	7.58	8.93	4.36	4.71	13.23		
Poly-aromatics	4.83	2.92	5.84	4.05	4.04	10.58		
Polar-aromatics	3.32	4.66	4.81	6.54	7.41	3.97		

Table D5 Effect of RhCo/KL

\$

Chamicala	$\alpha_{Co} = Co/(Rh + Co)$							
Chemicals	0	0.25	0.5	0.75	0.95	1		
Saturated HCs	55.29	60.00	53.24	61.23	73.72	47.20		
Mono-aromatics	30.21	21.14	29.71	23.08	15.71	22.12		
Di-aromatics	6.34	7.43	7.65	4.92	3.02	10.91		
Poly-aromatics	4.83	7.71	5.00	5.54	3.63	14.75		
Polar-aromatics	3.32	3.71	4.41	5.23	3.93	5.01		

.

÷

APPENDIX E Petroleum Fractions of Derived Oils

Fractions	Non- catalyst	KL	1%Rh/KL
Naphtha	29.00	42.00	37.50
Kerosene	26.00	28.00	30.50
Gas oil	35.00	26.00	28.00
Long residues	10.00	4.00	4.00

 Table E1
 Effect of 1%Rh/KL

Table E2 Effect of varied Ni/KL

Encotions	Non-				%Ni		
F ractions	catalyst	ĸL	1	5	10	15	20
Naphtha	29.00	42.00	33.00	34.00	34.00	35.00	36.00
Kerosene	26.00	28.00	27.00	30.00	29.00	28.00	29.50
Gas oil	35.00	26.00	36.00	32.00	33.00	31.00	30.50
Long residues	10.00	4.00	4.00	4.00	4.00	6.00	4.00

Table E3 Effect of varied Co/KL

Encotions	Non-	VI			%Co		
Fractions	catalyst		1	5	10	15	20
Naphtha	29.00	42.00	37.50	39.50	36.50	28.00	30.00
Kerosene	26.00	28.00	27.50	29.50	27.50	24.00	27.00
Gas oil	35.00	26.00	28.00	26.00	30.00	37.50	37.50
Long residues	10.00	4.00	7.00	5.00	6.00	10.50	5.50

Table E4 Effect of RhNi/KL

Exactions	Non-	VI			$\alpha_{\rm Ni} = \rm Ni/$	(Rh+Ni)		
Fractions	catalyst	NL	1	0.95	0.75	0.50	0.25	0
Naphtha	29.00	42.00	36.00	31.00	34.00	36.00	29.50	37.00
Kerosene	<i>i</i> 26.00	28.00	29.00	26.00	27.00	30.00	28.50	31.00
Gas oil	35.00	26.00	30.00	38.00	34.00	30.50	30.00	28.00
Long residues	10.00	4.00	5.00	5.00	5.00	3.50	12.00	4.00

Fractions	Non-	Son- $\alpha_{Co} = 0$					/(Rh+Co)		
Fractions	catalyst	yst KL 1		0.95	0.75	0.50	0.25	0	
Naphtha	29.00	42.00	37.50	29.00	26.00	28.00	29.00	35.00	
Kerosene	26.00	28.00	27.50	27.00	32.00	29.00	33.00	28.00	
Gas oil	35.00	26.00	28.00	34.50	35.00	38.00	34.00	31.00	
Long residues	10.00	4.00	7.00	9.50	7.00	5.00	4.00	6.00	

 Table E5
 Effect of RhCo/KL

ŧ

APPENDIX F Asphaltene

Catalysts	Loading(%)	Asphaltene (g/g oil)	
Non- catalyst	ri-	0.00222000	
KL	0	0.00067821	
Rh	1	0.00028287	
	1	0.00010000	
	5	0.00025545	
Ni	10	0.00025333	
	15	0.00026002	
	20	0.00025600	
	1	0.00030000	
	5	0.00030333	
Co	10	0.00033002	
	15	0.00038178	
	20	0.00037400	

 Table F1
 Effect of monometallic catalysts

Table F2 Effect of bimetallic catalysts

Catalysts	α _{Ni} =Ni/(Rh+Ni)	Asphaltene (g/g oil)
	0	0.00028287
	0.25	0.00043303
DENI	0.50	0.00013600
KIINVKL	0.75	0.00016503
	0.95	0.00006574
	1	0.00010000
Catalysts	$\alpha_{Co} = Co/(Rh+Co)$	Asphaltene (g/g oil)
	0	0.00028287
	0.25	0.00032033
	0.50	0.00026748
RhCo/KL	0.75	0.00033267
	' 0.95	0.00038171
	1	0.00010222

APPENDIX G Sulfur And Coke Deposition On Spent Catalyst

Catalyst	Metal	Sulfur (%wt)	Coke
KL	()	0.69	0.20
Rh/KL	1	0.79	0.27
	1	0.66	0.20
	5	1.32	0.21
Ni/KL	10	1.09	0.18
	15	1.17	0.21
	20	1.33	0.18
	1	0.48	0.20
	5	0.89	0.19
Co/KL	10	1.02	0.20
	15	1.26	0.15
	20	1.31	0.17

Table G1	Effect	of mono	ometallic	catalyst	iS
----------	--------	---------	-----------	----------	----

Table G2 Effect of bimetallic catalysts

Catalysts	a _{Ni} =Ni/(Rh+Ni)	Sulfur (%wt)	Coke (g/g cat)
	0	0.79	0.27
	0.25	0.71	0.22
DINGO	0.50	0.66	0.21
KhNI/KL	0.75	0.71	0.22
	0.95	0.70	0.20
	1	0.66	0.18
Catalysta	$a = C_0/(\mathbf{D}\mathbf{h} + \mathbf{C}_0)$	Sulfur	Coke
Catalysis	$\alpha_{C_0} = C_0/(K_0 + C_0)$	(%wt)	(g/g cat)
	0	0.79	0.27
	0.25	0.61	0.22
	0.50	0.66	0.23
RhCo/KL	, 0.75	0.71	0.25
	0.95	1.27	0.23
	1	0.48	0.20

APPENDIX H Sulfur in Derived Oil

Catalyst	Metal loading(%)	Sulfur in oil (%wt)
Non-catalyst	-	1.40
KL	0	0.91
Rh/KL	1	0.35
		1.04
	5	0.48
Ni/KL	10	0.40
	15	0.74
	20	0.49
	. 1	1.12
	5	1.00
Co/KL	10	0.99
-	15	0.79
	20	0.42
·	. ·	1

 Table H1
 Effect of monometallic catalysts

Table H2 Effect of bimetallic catalysts

Catalysts	α _{Ni} =Rh/(Rh+Ni)	Sulfur in oil (%wt)
	0	0.52
	0.05	0.64
DENGUZI	0.25	0.72
KUNI/KL	0.50	0.80
	0.75	0.63
	1	0.35
Catalysts		
Catalysts	$\alpha_{Co} = Co/(Rh+Co)$	Sulfur in oil
Catalysts	α _{Co} =Co/(Rh+Co)	Sulfur in oil (%wt)
Catalysts	$\alpha_{\rm Co} = {\rm Co}/({\rm Rh} + {\rm Co})$	Sulfur in oil (%wt) 0.35
Catalysts	α _{Co} =Co/(Rh+Co) 0 0.25	Sulfur in oil (%wt) 0.35 1.24
Catalysts	α _{Co} =Co/(Rh+Co) 0 0.25 0.50	Sulfur in oil (%wt) 0.35 1.24 1.10
Catalysts RhCo/KL	α _{Co} =Co/(Rh+Co) 0.25 0.50 0.75	Sulfur in oil (%wt) 0.35 1.24 1.10 1.14
Catalysts RhCo/KL	α _{Co} =Co/(Rh+Co) 0 0.25 0.50 0.75 0.95	Sulfur in oil (%wt) 0.35 1.24 1.10 1.14 1.25

APPENDIX I True Boiling Point Distillation (°C)

	Boiling Point							
% OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics		
0	50.4	168.7	76.7	22.7	71.0	22.7		
5	147.6	192.7	271.6	79.8	72.9	185.6		
10	150.2	206.2	283.9	148.0	73.2	203.7		
15	168.2	213.1	290.3	327.1	73.6	210.1		
20	180.5	220.1	295.1	336.2	74.0	218.5		
25	191.6	226.3	301.5	343.9	74.4	228.1		
30	203.3	231.9	305.0	350.3	75.2	238.5		
35	212.4	238.7	309.8	355.9	77.5	246.1		
40	221.1	245.8	315.0	361.6	218.5	255.1		
45	229.4	253.7	318.7	367.4	260.1	266.3		
50	239.2	261	323.8	373.3	290.3	277.3		
55	250.8	269.1	329.1	379.6	316.2	289.3		
60	262.9	275.7	334.0	386.5	338.4	301.8		
65	274.5	284.1	341.2	· 394.2	354.6	315.2		
70	287.6	293.8	349.6	402.8	370.4	330.4		
75	302.2	306.3	359.6	412.4	384.6	347.4		
80	320.6	323.2	370.5	424.8	390.5	366.7		
85	342.2	345.8	382.9	440.0	407.1	388.3		
90	371.4	376.0	400.4	459.7	429.1	418.3		
95	405.9	410.5	426.4	488.8	464.7	462.3		
100	485.5	484.1	510.7	554.4	538.0	544.1		

Table I1. Non-catalytic

Figure I1. True boiling point distillation (°C) of Non-catalytic.

Table I2. KL

	Boiling Point								
% OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics			
0	22.7	39.8	37.3	27.1	33.7	29.4			
5	116.9	79.4	239.1	42.8	72.3	38.3			
10	148.7	148.6	258.0	302.7	73.5	44.0			
15	150.5	163.4	269.9	312.8	73.9	243.9			
20	161.4	179.1	275.6	319.0	74.3	258.8			
25	169.6	188.7	279.9	323.9	74.7	270.3			
30	178.1	195.0	286.2	328.8	75.0	278.5			
35	187.3	204.6	291.9	333.5	75.4	287.0			
40	195.2	210.1	297.3	338.2	75.8	296.2			
45	205.0	216.6	303.5	342.8	76.2	305.4			
50	212.8	222.5	309.1	347.4	76.6	. 314.4			
55	220.5	228.0	315.4	352.4	76.9	. 324.2			
60	228	235.5	321.5	357.7	77.3	334.3			
65	237.7	243.1	327.6	363.2	77.7	.344.9			
70	249.6	252.8	333.7	368.8	79.6	356.5			
75	262.9	263.0	340.6	374.4	252.8	368.1			
80	278.1	275.1	349.8	380.8	286.0	379.0			
85	296.1	283.3	362.0	388.1	327.3	-389.8			
90	321.6	306.9	375.4	397.0	360.8	400.8			
95	359.1	337.6	393.8	409.7	386.3	423.2			
100	426.5	397.4	466.0	451.7	432.1	585.1			

Figure I2. True boiling point distillation (°C) of KL.

	Boiling Point							
% OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics		
0	113.1	149.3	74.0	61.2	22.7	22.7		
5	148.3	181.1	152.5	255.4	272.1	32.0		
10	149.8	191.4	171.1	273.7	301.3	171.4		
15	157.5	201.9	186.7	283.2	315.6	199.1		
20	169.0	207.8	194.5	290.9	326.2	204.5		
25	176.9	213.0	205.6	298.0	335.3	213.2		
30	187.6	218.0	213.2	304.9	343.8	225.0		
35	196.6	223.1	219.9	311.9	352.0	239.4		
40	205.6	228.8	226.0	319.5	360.1	252.0		
45	213.7	233.9	232.3	327.3	368.1	267.8		
50	220.7	240.0	239.3	335.3	375.7	284.6		
55	226.8	246.0	247.4	343.5	383.4	300.9		
60	235.3	253.0	256.0	352.3	391.3	317.6		
65	244.1	259.5	264.9	362.1	399.7	335.6		
70	255.2	267.4	273.8	372.8	408.7	354.3		
75	266.8	274.3	282.2	384.0	418.4	373.3		
80	278.3	284.0	294.4	397.1	429.5	390.8		
85	293.6	297.4	314.8	412.4	442.9	409.6		
90	318.3	318.8	346.2	431.2	460.3	431.6		
95	361.9	358.3	398.6	458.9	487.1	465.5		
100	447.3	439.1	487.0	525.9	543.8	549.5		

Table I3 1% Rh/KL

Figure I3 True boiling point distillation (°C) of 1% Rh/KL.

	Boiling Point							
% OFF	Maltene	Saturated Hydrocarbon	Mono-	Di-	Poly-	Polar-		
0	110.1	77.9	Aromatics	129.7	72.7	Alomatics		
0	110.1	//.0	24.4	120.7	75.2	22.7		
	148.7	100.0	155.7	2/8.1	/5.3	29.2		
10	150.8	173.3	193.4	288.7	202.4	41.9		
15	164.8	187.3	210.7	292.3	214.1	212.2		
20	171.8	196.3	221.2	296.2	222.8	234.9		
25	184.7	206.2	231.1	300.2	231.3	244.1		
30	194.6	213.8	239.4	304.0	240.1	254.5		
35	205.9	220.8	249.3	307.9	248.0	267.1		
40	215.0.	226.8	256.6	311.7	256.8	278.2		
45	223.3	234.1	265.0	315.8	267.1	286.8		
50	231.4	241.1	271.7	320.9	278.7	296.8		
55	239.7	249.5	276.5	326.9	291.1	308.0		
60	249.8	257.7	282.4	333.9	304.1	320.0		
65	259.6	266.3	288.2	342.3	318.5	333.0		
70	270.3	274.4	293.6	352.5	335.2	346.9		
75	279.3	282.6	300.7	364.9	352.9	363.0		
80	289.6	291.8	308.5	379.5	372.8	381.2		
85	301.5	302.9	320.7	397.7	394.8	402.1		
90	319.2	319.4	338.9	422.3	422.5	428.2		
95	353.1	350.3	378.8	460.8	463.3	470.6		
100	459.0	453.5	520.5	547.7	551.9	557.5		

Table I4 1% Ni/KL

Figure I4 True boiling point distillation (°C) of 1% Ni/KL.

T٤	ıb	le	I5	5%	Ni/	ΊKL

	Boiling Point							
% OFF	Maltana	Saturated	Mono-	Di-	Poly-	Polar-		
	Iviaitene	Hydrocarbon	Aromatics	Aromatics	Aromatics	Aromatics		
0	25.2	76.3	80.7	38.1	75.0	70.7		
5	120.5	169.0	187.4	260.3	257.6	194.6		
10	148.8	182.2	202.1	270.9	279.9	207.3		
15	153.3	191.1	212.8	274.1	290.6	213.7		
20	169.0	199.7	219.9	277.7	296.8	221.2		
25	179.0	206.4	227.7	282.6	303.7	229.4		
30	190.0	213.0	233.7	287.7	309.4	238.4		
35	201.1	219.4	239.4	291.7	314.4	247.5		
40	209.2	224.1	247.1	295.3	320.3	256.8		
45	217.3	230.0	252.9	300.0	326.8	267.0		
50	225.2	236.7	259.1	304.2	334.4	277.6		
55	233.4	243.2	265.6	308.5	343.3	289.6		
60	242.7	251.6	272.0	315.0	352.5	301.8		
65	252.8	259.0	. 277.9	321.1	362.4	315.7		
70	262.7	268.0	284.7	329.3	373.3	332.3		
75	273.3	275.4	292.7	337.3	384.9	351.0		
80	284.0	285.2	302.5	349.8	398.2	371.9		
85	297.4	297.5	317.8	367.2	413.6	394.1		
90	318.0	314.7	341.0	388.2	433.4	419.2		
95	359.7	350.9	382.9	418.4	464.0	454.9		
100	481.0	454.9	488.2	489 7	527.8	5353		

Figure I5 True boiling point distillation (°C) of 5% Ni/KL.

	Boiling Point								
% OFF	Maltana	Saturated	Mono-	Di-	Poly-	Polar-			
	Maitene	Hydrocarbon	Aromatics	Aromatics	Aromatics	Aromatics			
0	26.2	41.5	76.0	22.9	44.0	23.1			
5	121.3	166.0	175.6	34.5	122.8	206.5			
10	148.9	177.2	196.5	180.5	149.9	227.1			
15	155.3	188.7	211.3	198.5	171.9	239.2			
20	168.0	198.5	221.7	213.6	189.5	249.9			
25	179.2	207.6	230.9	231.0	203.4	259.1			
30	191.1	215.4	239.7	257.9	215.8	268.3			
35	202.3	222.5	250.2	302.6	229.6	277.6			
40	209.9	229.0	259.7	327.2	244.1	287.5			
45	218.2	236.5	269.8	343.4	260.1	296.5			
50	226.1	243.9	277.5	-355.7	279.6	306.0			
55	233.9	252.7	286.7	366.8	301.1	316.3			
60	242.1	260.9	296.0	376.5	315.4	327.7			
65	253.1	270.1	306.7	386.0	. 333.3	340.0			
70	261.1	278.8	318.4	395.8	342.7	352.8			
75	273.5	288.5	330.2	405.4	357.9	366.4			
80	284.5	300.9	343.8	414.7	374.9	380.3			
85	297.1	316.6	362.3	427.2	390.0	395.8			
90	318.2	339.2	382.2	441.4	408.2	414.7			
95	359.1	376.1	409.3	463.5	435.0	440.9			
100	482.0	437.2	462.6	542.6	498.8	496.8			

Table I6 10% Ni/KL

Figure I6 True boiling point distillation (°C) of 10% Ni/KL.

	Boiling Point							
% OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics		
0	45.5	23.3	23.3	23.1	22.7	121.9		
5	148.5	36.6	40.7	32.6	25.6	193.9		
10	150.2	155.4	168.8	75.0	30.3	204.0		
15	161.9	177.5	193.1	270.6	36.4	212.2		
20	170.3	190.1	207.4	287.1	43.4	221.6		
25	181.3	200.6	216.8	297.0	76.8	232.3		
30	190.4	208.9	226.4	305.7	263.4	242.1		
35	200.4	216.6	234.2	313.8	305.0	251.3		
40	209.4	223.7	242.9	320.9	325.8	263.1		
45	217.8	230.4	251.8	328.8	339.2	275.3		
50	225.5	238.4	261.5	335.3	351.0	287.8		
55	234.3	247.1	271.8	344.2	361.8	300.3		
60	243.6	257.4	280.9	354.2	373.2	314.2		
65	255.3	268.5	292.2	365.1	384.3	330.0		
70	268.1	279.7	305.0	376.1	396.0	347.1		
75	281.5	293.8	320.9	387.6	408.4	364.9		
80	298.0	312.0	338.1	400.6	420.7	383.3		
85	· 319.3	336.7	362.4	413.2	438.3	401.5		
90	346.7	374.6	389.6	430.7	465.9	423.7		
95	384.0	420.3	428.1	464.8	511.9	458.0		
100	443.7	553.5	553.0	563.3	574.0	546.0		

Table I7 15% Ni/KL

Figure I7 True boiling point distillation (°C) of 15% Ni/KL.

	Boiling Point							
% OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics		
0	45.5	23.3	46.6	38.5	23.5	115.2		
5	148.5	39.6	174.7	259.1	33.5	193.8		
10	150.2	149.3	193.9	270.9	75.0	197.5		
15	161.9	166.9	206.5	276.0	251.2	205.2		
20	170.3	177.4	213.8	281.6	279.9	218.2		
25	181.3	188.8	219.9	288.6	294.9	236.0		
30	190.4	198.7	226.4	293.4	305.9	246.2		
35	200.4	207.0	230.8	298.8	312.8	264.3		
40	209.4	214.5	. 235.4	303.5	320.2	279.1		
45	217.8	221.5	242.6	308.2	328.2	291.6		
50	225.5	227.2	247.4	314.6	336.7	303.9		
55	234.3	235.1	254.0	319.6	344.4	315.4		
60	243.6	243.0	260.7	326.1	352.9	328.5		
65	255.3	253.1	267.6	332.0	361.9	343.0		
70	268.1	263.0	274.8	339.0	371.8	358.2		
75	281.5	274.3	282.8	348.9	382.4	374.3		
80	298.0	287.4	292.6	361.3	394.8	388.8		
85	319.3	304.7	· 305.8	375.6	410.1	404.9		
90	346.7	332.9	325.4	392.9	430.9	423.1		
95	384.0	389.1	356.9	417.1	474.7	451.5		
100	443.7	541.8	425.8	471.4	567.3	525.5		

Table I8 20% Ni/KL

Figure 18 True boiling point distillation (°C) of 20% Ni/KL.

Table I91% Co/KL

	Boiling Point							
% OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics		
0	83.2	23.7	22.7	24.2	37.5	22.0		
5	126.7	75.0	26.3	40.7	201.0	27.1		
10	148.5	178.3	32.4	72.1	- 216.5	33.7		
15	151.2	190.8	40.9	347.5	230.4	35.8		
20	163.5	199.5	75.3	364.2	243.8	37.7		
25	171.2	206.6	243.0	371.9	253.6	39.6		
30	183.0	213.6	293.3	377.7	267.4	41.7		
35	191.2	219.6	306.7	382.9	282.3	43.2		
40	199.8	224.7	317.0	387.7	297.6	44.5		
45	209.1	231.5	325.4	392.2	311.8	48.3		
50	216.3	238.3	333.4	396.8	. 321.2	71.3		
55	225.6	246.9	341.4	401.2	335.4	71.9		
60	232.4	256.5	350.7	405.6	· 344.4	104.5		
65	241.1	267.4	361.0	409.9	356.1	126.8		
70	249.0	277.6	371.8	414.5	372.8	133.2		
75	265.1	289.8	383.2	420.0	385.7	139.0		
80	279.4	305.3	397.5	426.5	389.6	145.6		
85	298.2	326.8	414.1	434.0	· 403.7	282.9		
90	324.3	358.8	439.2	443.3	420.7	334.0		
95	369.0	404.9	490.5	456.7	447.0	363.8		
100	441.1	543.0	571.6	487.6	506.9	593.5		

Figure 19 True boiling point distillation (°C) of 1% Co/KL.

	Boiling Point							
% OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics		
0	83.7	23.5	23.5	23.3	22.9	154.9		
5	126.8	39.6	39.2	73.1	33.7	185.4		
10	149.0	85.5	150.7	165.7	78.9	195.4		
15	151.0	154.5	171.1	178.1	208.4	196.8		
20	165.2	170.1	186.3	192.6	232.8	199.2		
25	170.7	180.8	196.2	206.6	250.8	204.5		
30	182.0	188.9	207.1	221.5	273.2	211.9		
35	191.3	197.6	215.1	239.5	295.0	219.2		
40	200.4	205.9	222.3	260.5	310.6	230.6		
45	208.8	212.7	230.0	275.8	322.0	239.3		
50	216.6	220.3	236.6	288.7	333.7	247.9		
55	224.3	226.4	245.4	299.7	344.6	262.6		
60	232.6	234.7	254.2	310.5	354.8	277.5		
65	241.2	243.8	264.5	321.7	365.3	292.1		
70	252.6	255.6	276.1	333.1	375.4	309.3		
75	265.0	268.8	288.6	347.4	385.7	328.4		
80	279.1	283.4	305.1	365.4	397.2	350.4		
85	297.3	303.8	328.6	384.8	410.8	374.0		
90	324.4	337.1	363.5	407.5	429.6	400.8		
95	368.6	400.1	414.0	439.3	467.7	435.3		
100	440.8	544.8	552.6	548.1	561.0	533.6		

Table I10 5% Co/KL

Figure I10 True boiling point distillation (°C) of 5% Co/KL.

	Boiling Point								
% OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics			
0	75.7	33.9	32.0	24.6	23.1	22.5			
5	146.9	150.3	179.0	251.4	37.9	27.1			
10	149.3	168.7	196.7	272.6	256.9	34.7			
15	152.9	177.5	209.6	280.7	298.0	168.7			
20	168.3	187.4	215.8	290.3	316.1	208.7			
25	174.0	195.3	224.1	297.1	326.9	220.5			
30	187.4	204.2	230.6	304.0	336.1	232.9			
35	197.2	209.5	235.9	310.4	344.9	244.4			
40	207.3	216.6	244.1	317.2	352.8	254.2			
45	215.7	222.8	250.2	323.8	360.2	266.3			
50	223.7	228.2	257.4	330.8	367.9	279.4			
55	232.1	236.1	265.6	336.8	375.1	292.4			
60	240.9	243.5	273.8	345.1	382.4	306.2			
65	252.3	253.6	281.3	354.6	389.7	321.8			
70	264.1	263.4	290.8	365.3	397.5	339.5			
75	276.9	273.7	301.8	376.7	405.8	358.6			
80	291.6	286.0	316.8	389.1	414.5	378.9			
85	311.0	301.4	334.6	403.5	425.1	400.8			
90	338.2	326.1	360.9	418.8	439.4	426.0			
95	378.9	371.7	396.2	441.9	461.8	463.7			
100	447.9	451.9	469.8	500.2	510.2	558.6			

Table I11 10% Co/KL

Figure I11 True boiling point distillation (°C) of 10% Co/KL.

	Boiling Point								
% OFF	Maltene	Saturated	Mono-	Di-	Poly-	Polar-			
	Mattene	Hydrocarbon	Aromatics	Aromatics	Aromatics	Aromatics			
0	44.5	150.5	76.7	128.9	84.7	22.5			
5	148.5	175.8	197.7	281.2	127.3	24.4			
10	150.7	191.8	215.2	293.3	159.6	27.3			
15	166.7	203.2	226.5	301.4	251.4	31.3			
20	177.6	210.3	235.3	309.0	319.7	36.4			
25	192.5	218.4	245.9	316.2	361.4	42.6			
30	205.5	224.9	253.5	323.8	381.3	238.1			
35	215.7	232.1	261.4	331.7	394.2	260.8			
40	225.0	239.2	269.1	339.2	405.0	277.4			
45	234.8	247.1	275.2	347.5	414.5	293.0			
50	245.4	255.9	281.9	356.9	423.6	307.5			
55	256.7	264.2	289.5	367.1	432.4	323.2			
60	268.3	272.9	297.5	377.5	441.4	340.6			
65	278.4	280.9	307.8	388.2	450.7	358.9			
70	289.9	290.3	320.7	399.7	460.7	377.3			
75	303.3	301.7	334.6	411.0	471.8	395.5			
80	321.4	317.4	353.8	423.4	484.6	415.0			
85	343.5	338.7	375.9	437.4	499.8	434.6			
90	373.4	372.1	401.6	454.5	522.0	457.6			
95	406.8	412.2	432.5	480.9	546.9	493.1			
100	466.4	486.1	498.2	558.0	581.0	565.7			

Table I12 15% Co/KL

Figure I12 True boiling point distillation (°C) of 15% Co/KL.

	Boiling Point								
% OFF		Saturated	Mono-	Di-	Poly-	Polar-			
	Maitene	Hydrocarbon	Aromatics	Aromatics	Aromatics	Aromatics			
0	43.6	83.0	25.0	22.7	22.5	22.9			
5	148.8	168.8	182.5	276.2	271.8	37.1			
10	151.8	182.7	209.9	283.9	305.6	182.7			
15	165.7	192.7	220.7	291.3	322.1	199.2			
20	173.9	203.5	229.8	296.5	333.7	205.1			
25	187.8	209.7	236.6	301.6	343.3	215.4			
30	199.2	217.6	245.8	306.8	352.0	229.0			
35	209.7	224.1	251.9	312.2	360.5	241.5			
40	219.0	230.8	258.9	318.0	368.8	253.8			
45	227.2	238.1	265.5	324.4	376.4	269.7			
50	236.2	245.4	272.4	331.4	384.1	285.1			
55	245.4	254.4	277.2	338.7	391.7	300.3			
60	255.8	262.3	283.7	346.7	399.6	315.8			
65	266.1	271.4	290.2	. 356.0	407.8	332.5			
70	276.5	279.2	297.4	366.8	416.4	350.2			
75	286.8	288.7	307.1	378.4	426.0	368.8			
80	299.3	300.6	320.5	391.7	437.0	386.7			
85	314.8	317.1	337.3	407.8	449.4	404.8			
90	337.7	343.2	365.4	428.0	464.3	426.5			
95	374.3	389.9	404.5	458.5	484.6	460.0			
100	443.6	489.8	526.4	528.5	524.9	545.0			

Table I13 20% Co/KL

Figure I13 True boiling point distillation (°C) of 20% Co/KL.

	Boiling Point								
% OFF	34-14	Saturated	Mono-	Di-	Poly-	Polar-			
	Iviaitene	Hydrocarbon	Aromatics	Aromatics	Aromatics	Aromatics			
0	79.7	81.8	24.6	141.5	22.5	22.5			
5	148.5	168.8	170.2	271.6	264.2	29			
10	150.4	182.2	194.3	289.5	293.3	41.9			
15	165.2	192.3	209.5	297.7	313.0	198.4			
20	172.5	202.5	219.1	305.8	329.4	209.2			
25	187.1	209.1	228.0	312.2	343.7	221.2			
30	198.4	216.0	235.9	319.2	355.8	235.8			
35	208.9	222.9	245.8	326.3	366.6	249.0			
40	217.8	228.6	254.0	333.4	375.9	263.4			
45	225.9	235.6	261.9	341.2	384.2	279.2			
50	234.9	242.7	270.2	349.7	391.9	294.2			
55	244.1	250.9	275.8	358.0	399.6	309.9			
60	254.5	258.4	282.5	366.8	407.5	325.7			
65	264.4	266.7	289.3	375.8	415.5	- 342.6			
70	274.4	274.3	296.7	385.3	423.9	360.0			
75	284.5	283.1	305.9	395.9	433.1	377.7			
80	296.2	293.1	319.0	407.5	443.6	394.1			
85	311.6	305.7	335.4	420.8	456.0	412.1			
90	335.6	326.9	362.6	438.3	471.6	433.5			
95	376.4	370.0	402.2	463.7	494.9	467.2			
100	457.4	463.5	509.1	527.6	538.8	552.4			

Table I14 0.05Rh 0.95Ni /KL

Figure I14 True boiling point distillation (°C) of 0.05Rh0.95Ni /KL.

	Boiling Point								
% OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics			
0	107.9	76.7	24.8	125.3	90.5	22.7			
5	145.0	153.1	151.6	257.6	296.3	26.9			
10	149.3	170.8	180.4	280.7	320.0	34.7			
15	153.6	184.6	196.2	291.4	334.5	162.2			
20	168.8	193.0	209.7	298.2	345.3	204.3			
25	178.5	203.4	218.8	305.4	354.7	212.0			
30	190.8	209.6	227.5	312.7	363.2	221.7			
35	202.7	216.6	235.2	319.9	371.1	233.1			
40	211.8	223.4	244.5	327.7	378.4	244.5			
45	220.6	229.6	252.3	335.7	385.5	254.6			
50	228.4	236.5	259.8	344.3	392.4	267.0			
55	237.2	243.8	267.1	353.7	399.7	280.6			
60	247.1	252.1	273.9	363.6	407.0	294.7			
65	256.9	259.6	280.0	373.7	414.7	310.9			
70	267.2	268.3	287.9	384.3	422.9	330.6			
75	276.8	275.8	296.8	395.8	431.9	353.0			
80	287.9	285.5	309.5	408.2	442.2	376.7			
85	302.3	· 298.0	328.6	422.1	454.7	400.0			
90	327.1	316.6	357.2	440.6	470.8	424.9			
95	371.8	359.7	401.8	469.1	495.7	460.2			
100	459.6	462.2	533.0	546.6	545.9	546.2			

Table I15 0.25Rh0.75Ni /KL

Figure I15 True boiling point distillation (°C) of 0.25Rh0.75Ni /KL.

	Boiling Point								
% OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics			
0	110.4	77.5	23.7	74.9	75.2	74.6			
5	147.9	150.2	110.1	291.7	205.4	184.0			
10	149.4	166.6	194.6	313.7	262.5	197.9			
15	153.7	173.0	209.8	324.2	280.3	200.6			
20	168.5	186.2	218.9	332.2	294.8	204.1			
25	175.1	193.8	227.2	339.1	306.7	209.5			
30	187.7	203.8	234.8	345.8	318.0	216.2			
35	197.5	209.8	242.7	352.4	329.3	224.3			
40	207.2	216.6	250.9	359.2	340.3	234.3			
45	215.3	223.4	258.3	366.1	350.8	243.5			
50	222.9	229.1	266.5	373.1	361.1	252.5			
55	230.2	236.1	273.9	380.4	371.7	264.3			
60	238.1	243.5	280.5	388.2	382.2	276.7			
65	247.6	252.3	288.7	396.8	393.2	291.1			
70	257.6	260.6	297.2	406.3	404.6	307.0			
75	268.9	270.7	307.6	416.5	417.4	326.2			
80	279.7	279.8	320.9	427.9	431.7	348.8			
85	293.9	292.2	336.8	• 441.9	449.1	375.1			
90	314.0	310.0	362.3	459.7	471.4	405.1			
95	349.8	344.4	405.2	486.4	504.0	446.8			
100	436.6	477.7	540.4	552.6	570.6	543.0			

Table I16 0.50Rh0.50Ni /KL

Figure I16 True boiling point distillation (°C) of 0.50Ni 0.50Rh/KL.

	Boiling Point								
% OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics			
0	111.9	76.3	21.2	24.4	22.7	76.8			
5	149	149.4	156.7	174.6	25.0	193.6			
10	152.6	165.3	186.6	193.8	29.2	202.4			
15	168.1	171.8	202.7	205.0	34.5	207.8			
20	177.2	185.3	214.2	212.6	41.7	215.2			
25	190.1	193.2	223.6	221.3	262.4	223.7			
30	201.6	203.0	231.9	229.6	295.3	233.8			
35	210.9	211.0	239.9	241.3	314.8	243.0			
40	219.5	218.7	249.1	259.0	328.0	251.9			
45	227.1	225.1	256.7	284.2	339.1	263.1			
50	235.8	233.0	265.1	303.0	349.8	. 274.8			
55	245.0	240.7	272.6	314.4	360.1	287.0			
60	254.8	250.0	278.2	325.9	370.6	288.6			
65	264.2	258.9	285.5	336.6	380.9	: 314.1			
70	273.9	269.1	292.6	348.9	391.2	330.7			
75	283.2	278.0	301.1	360.3	402.8	349.4			
80	294.1	288.7	311.8	372.6	416.0	370.3			
85	307.7	302.0	326.5	386.0	431.7	· 393.1			
90	328.5	323.4	348.6	402.9	452.7	420.3			
95	367.9	367.5	391.3	425.4	486.5	459.4			
100	456.2	468.0	531.0	486.8	562.3	548.6			

Table I17 0.75Rh0.25Ni /KL

Figure I17 True boiling point distillation (°C) of 0.75Rh0.25Ni /KL.

	Boiling Point								
% OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics			
0	23.7	73.9	24.6	81.0	22.7	22.9			
5	113.6	148.9	173.5	216.5	206.1	39.0			
10	150.3	166.2	198.2	242.7	227.8	181.6			
15	165.7	176.9	212.6	261.8	241.4	196.6			
20	174.0	189.9	222.1	278.1	250.3	199.0			
25	188.5	200.7	230.6	292.7	260.0	203.7			
30	199.9	209.1	238.0	307.2	269.7	212.3			
35	210.1	216.6	247.1	321.2	279.1	220.1			
40	219.1	223.9	255.1	333.5	288.2	230.5			
45	227.1	230.9	262.6	345.0	297.6	239.4			
50	236.0	237.8	270.7	354.7	307.9	247.5			
55	245.6	246.1	276.9	363.8	319.9	259.3			
60	255.9	254.4	284.8	372.2	333.3	272.0			
65	266.5	262.4	292.8	380.6	347.8	285.3			
70	277.1	271.6	302.6	389.6	363.5	300.9			
75	289.2	279.9	315.4	399.9	381.0	320.8			
80	304.9	290.7	331.4	411.2	397.6	345.7			
85	328.9	304.7	352.3	425.1	415.0	373.8			
90	366.8	328.6	379.6	443.5	434.7	403.2			
95	422.5	372.4	418.2	471.9	460.8	439.3			
100	558.6	474.2	532.1	547.4	509.0	533.6			

Table I18 0.05Rh 0.95Co /KL

Figure I18 True boiling point distillation (°C) of 0.05Rh0.95Co /KL.

	Boiling Point								
% OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics			
0	113.9	74.8	25.8	56.9	22.5	22.9			
5	152.5	149.9	171.1	276.7	25.6	35.4			
10	167.4	168.2	195.1	286.2	30.9	180.7			
15	176.1	176.0.	211.6	294.0	38.1	196.6			
20	188.1	187.6	221.2	300.5	75.7	198.6			
25	197.1	194.9	229.8	307.1	273.2	201.7			
30	206.5	204.5	236.7	313.7	303.7	207.8			
35	214.2	210.1	246.1	320.7	322.1	216.1			
40	221.4	216.4	252.6	328.0	335.5	227.1			
45	228.0	223.0	259.8	335.5	347.2	237.7			
50	235.7	228.1	266.0	342.9	357.5	246.0			
55	243.6	235.1	273.2	351.1	367.4	258.7			
60	253.0	242.2	278.3	360.3	376.8	273.1			
65	262.4	250.8	285.8	370.3	386.3	288.7			
70	273.0	259.4	293.8	380.8	396.2	306.7			
75	283.7	269.7	305.2	392.4	407.2	327.8			
80	297.4	279.5	320.6	405.5	419.5	352.5			
85	316.3	293.1	338.4	420.3	434.5	379.0			
90	345.5	314.0	366.4	439.8	454.3	406.9			
95	392.1	356.5	403.0	469.7	486.5	443.2			
100	501.0.	459.2	515.2	544.6	561.3	538.4			

Table I19 0.75Co 0.25Rh/KL

Figure I19 True boiling point distillation (°C) of 0.25Rh0.75Co /KL.

	Boiling Point								
% OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics			
0	113.2	76.3	26.9	132.5	22.7	23.7			
5	149.9	150.9	153.7	222.9	25.8	172.0			
10	158.1	169.1	181.1	253.5	31.1	193.6			
15	170.9	179.4	195.5	276.5	38.3	195.2			
20	182.4	189.5	210.3	285.5	74.9	196.3			
25	193.4	199.2	218.7	292.6	270.5	198.9			
30	204.2	207.5	227.8	298.0	300.4	207.2			
35	213.0	215.1	234.6	303.1	314.3	214.0			
40	221.4	222.0	244.5	308.7	324.8	227.0			
45	228.9	228.0	251.4	314.8	334.9	236.7			
50	237.2	235.8	258.5	321.7	345.6	241.9			
55	246.1	243.2	265.7	329.6	356.1	254.8			
60	255.6	252.1	272.9	338.4	367.0	268.6			
65	264.8	260.2	277.6	348.5	377.9	282.1			
70	274.7	269.5	284.6	360.1	389.3	297.8			
75	283.7	277.4	291.6	373.7	401.8	317.2			
80	294 9	287.3	300.3	389.1	415.8	340.7			
85	309.2	300.0	313.3	407.9	432.2	367.9			
90	332.2	317.8	334.2	431.0	453.4	396.5			
95	376.6	356.2	376.9	465.6	486.8	432.8			
100	488.1	468.8	503.5	546.9	565.9	527.5			

Table I20 0.50Rh0.50Co /KL

Figure I20 True boiling point distillation (°C) of 0.50Rh0.50Co /KL.

	Boiling Point								
% OFF	Malaana	Saturated	Mono-	Di-	Poly-	Polar-			
	Maitene	Hydrocarbon	Aromatics	Aromatics	Aromatics	Aromatics			
0	42.6	72.2	150.5	139.8	22.7	23.1			
5	149.5	114.6	185.9	215.9	27.3	40.9			
10	154.8	151.4	203.8	246.1	35.6	190.6			
15	169.5	169.0	215.0	274.7	74.4	197.7			
20	180.0	178.0	224.8	288.2	226.0	201.5			
25	191.7	188.7	233.3	294.1	265.0	210.1			
30	202.7	198.5	242.5	299.4	296.6	218.1			
35	211.6	207.2	251.2	305.0	316.6	229.7			
40	220.1	215.0	258.8	309.4	329.9	239.2			
45	227.6	222.3	266.6	313.7	341.5	247.8			
50	236.1	228.9	273.6	319.0	351.7	260.9			
55	245.1	236.8	279.2	324.8	361.2	273.8			
60	244.9	245.6	286.2	331.6	370.9	286.1			
65	264.5	255.2	292.8	339.0	. 380.1	300.1			
70	274.6	264.7	300.0	348.5	389.8	315.9			
75	284.5	274.2	307.9	359.6	400.8	334.6			
80	296.0	285.1	318.6	373.1	413.3	355.8			
85	310.3	298.4	331.6	389.3	428.2	379.8			
90	331.0	316.9	350.6	410.7	448.2	405.3			
95	366.6	352.2	384.9	443.5	480.1	439.9			
100	449.8	452.2	468.2	522.5	556.3	535.7			

Table I21 0.75Rh0.25Co /KL

Figure I21 True boiling point distillation (°C) of 0.75Rh0.25Co /KL.

APPENDIX J Carbon Number Distribution of Maltenes

No. Carbon	Non-Catalst	KL	1% RhKL
4	0.000	0.000	0.013
5	0.001	0.000	0.212
6	0.057	0.042	0.705
7	0.596	0.762	1.939
8	2.432	3.825	4.309
9	5.459	8.769	7.638
. 10	8.375	12.556	10.848
]]	10.093	13.607	12.648
12	10.442	12.530	12.576
13	9.811	10.506	11.123
_14	8.679	8.359	9.086
15	7.400	6.470	7.062
16	6.174	4.946	5.336
17	5.090	3.768	3.978
18	4.175	2.878	2.953
- 19	3.420	2.210	2.196
20	2.808	1.710	1.643
21	2.313	1.334	1.239
	1.915	1.050	0.942
23	1.594	0.834	0.724
- 24	1.335	0.668	0.561
25	1.124	0.540	0.439
26	0.952	0.440	0.346
27	0.810	0.361	0.276
28	0.693	0.298	0.221
29	0.596	0.248	0.178
30	0.514	0.207	0.145
31	0.445	0.174	0.118
32	0.387	0.147	0.097
33	0.337	0.124	0.080
34	0.294	0.105	0.066
35	0.257	0.090	0.055
36	0.225	0.076	0.046
37	0.197	0.065	0.038
	0.172	0.056	0.032
39	0.150	0.047	0.027
40	0.131	0.040	0.022
41	0.008	0.034	0.019
42	0.098	0.029	0.015
45	0.003	0.024	0.013
44	0.070	0.020	0.000
46	0.030	0.017	0.008
40	0.047	0.013	0.007
<u> </u>	0.030	0.010	0.003
40	0.023	0.007	0.003
50	0.003	0.001	0.002

 Table J1
 Influences of 1%Rh/KL

No. Carbon	1%NiKL	5%NiKL	10%NiKL	15%NiKL	20%NiKL
4	0.000	0.153	0.033	0.000	0.053
5	0.000	0.388	0.412	0.000	0.637
6	0.044	0.906	0.932	0.032	1.380
7	0.675	1.920	1.929	0.558	2.710
8	3.207	3.642	3.605	2.852	4.760
9	7.394	6.083	5.989	6.886	7.356
10	10.952	8.817	8.708	10.521	9.886
11	12.405	11.024	10.977	12.177	11.534
12	11.956	11.963	12.025	11.923	11.806
13	10.467	11.478	11.625	10.562	10.827
14	8.662	9:994	10.162	8.820	9.130
15	6.945	8.115	8.253	7.124	7.263
16	5.480	6,294	6.382	5.654	5.567
17	4.295	4.750	4.792	4.453	4.179
18	3.364	3.536	3.544	3.502	3.108
19	2.644	2.620	2.608	2.762	2.307
20	2.089	1.944	1.921	2.189	1.718
21	1.662	1.450	1.422	1.746	1.287
22	1.332	1.089	1.060	1.403	0.972
23	1.075	0.825	0.798	1.135	0.741
24	0.875	0.631	0.605	0.926	0.569
25	0.718	0.486	0.464	0.760	0.442
26	0.593	0.378	0.359	0.629	0.346
27	0.493	0.297	0.280	0.524	0.273
28	0.412	0.235	0.220	0.439	0.217
29	0.347	0.187	0.174	0.370	0.174
30	0.293	0.150	0.139	0.313	0.140
31	0.249	0.121	0.111	0.266	0.113
32	0.212	0.098	0.090	0.227	0.092
33	0.181	0.080	0.073	0.194	0.076
34	0.156	0.065	0.059	0.167	0.062
35	0.134	0.053	0.048	0.144	0.051
36	0.115	0.044	0.039	0.124	0.042
37	0.099	0.036	0.032	0.106	0.035
38	0.085	0.030	0.027	0.092	0.029
39	0.073	0.025	0.022	0.079	0.024
40	0.063	0.020	0.018	0.068	0.020
41	0.054	0.017	0.015	0.058	0.017
42	0.046	0.014	0.012	0.050	0.014
43	0.039	0.011	0.010	0.042	0.011
44	0.032	0.009	0.008	0.035	0.009
45	0.027	0.007	0.006	0.029	0.007
46	0.021	0.006	0.005	0.023	0.006
47	,0.016	0.004	0.004	0.018	0.004
48	0.011	0.003	0.003	0.012	0.003
49	0.006	0.002	0.001	0.007	0.002
50	0.001	0.000	0.000	0.001	0.000

 Table J2
 Influences of varied Ni loading on KL catalysts

No. Carbon	1%CoKL	5%CoKL	10%CoKL	15%CoKL	20%CoKL
4	0.011	0.000	0.000	0.000	0.004
5	0.199	0.018	0.001	0.014	0.086
6	0.680	0.199	0.054	0.156	0.346
7	1.842	1.179	0.740	0.839	1.100
8	3.927	3.913	3.301	2.554	2.715
9	6.653	8.081	7.382	5.119	5.225
10	9.183	11.677	10.794	7.624	8.011
11	10.692	13.137	12.185	9.249	10.123
12	10.912	12.527	11.763	9.763	10.978
13	10.116	10.763	10.339	9.392	10.625
14	8.775	8.686	8.600	8.503	9.491
15	7.287	6.767	6.933	7.403	8.035
16	5.891	5.177	5.500	6.290	6.574
17	4.691	3.934	4.333	5.270	5.272
18	3.710	2.988	3.411	4.383	4.184
19	2.929	2.280	2.693	. 3.635	3.307
20	2.318	1.750	2.137	3.016	2.615
21	1.842	1.355	1.707	2.508	2.075
22	1.472	1.058	1.373	2.094	1.655
23	1.184	0.833	1.113	1.756	1.327
24	0.959	0.662	0.909	1.480	1.072
25	0.782	0.531	0.748	1.254	0.871
26	0.642	0.429	0.620	1.068	0.713
27	0.530	0.349	0.517	0.914	0.587
28	0.441	0.286	0.433	0.786	0.486
29	0.368	0.236	0.366	0.678	0.405
30	0.310	0.196	0.310	0.588	0.339
31	0.261	0.163	0.264	0.511	0.285
32	0.221	0.137	0.225	0.446	0.241
33	0.188	0.115	0.193	0.390	0.204
34	0.160	0.097	0.166	0.341	0.173
35	0.137	0.082	0.143	0.299	0.147
36	0.117	0.069	0.123	0.263	0.126
37	0.100	0.059	0.106	0.230	0.107
38	0.086	0.050	0.092	0.202	0.091
39	0.073	0.042	0.079	0.177	0.078
40	0.063	0.036	0.068	0.154	0.066
41	0.053	0.030	0.058	0.134	0.056
42	0.045	0.026	0.050	0.116	0.048
43	0.038	0.021	0.042	0.099	0.040
44	0.032	0.018	0.035	0.084	0.033
45	0.026	0.014	0.029	0.070	0.027
40	0.021	0.011	0.023	0.056	0.022
4/	,0.016	0.009	0.012	0.043	0.016
48	0.004	0.000	0.012	0.030	0.004
49 50	0.000	0.003	0.007	0.017	0.000
.,11		0.001	11 11 11 1	V VV 1	17 1701

 Table J3
 Influences of varied Co loading on KL catalysts

No. Carbon	0.05Rh0.95Ni	0.25 Rh0.75Ni	0.5Rh0.5Ni	0.75Rh0.25Ni
4	0.019	0.241	0.116	0.140
5	0.263	2.183	1.206	1.343
6	0.694	3.105	2.118	2.090
7	1.606	4.264	3.490	3.122
8	3.219	5.628	5.349	4.457
9	5.516	7.099	7.530	6.044
10	8.052	8.486	9.607	7.719
11	10.077	9.521	11.003	9.189
12	11.003	9.943	11.294	10.104
13	10.743	9.625	10.480	10.209
14	9.634	8.656	8.941	9.499
15	8.132	7.296	7.162	8.214
16	6.593	5.842	5.496	6.697
17	5.215	4.507	4.109	5.230
18	4.069	3.396	3.032	3.970
19	3.157	2.526	2.227	2.966
20	2.448	1.870	1.639	2.200
21	1.903	1.385	1.213	1.630
22	1.488	1.030	0.904	1.212
23	1.170	0.771	0.680	0.906
24	0.927	0.581	0.516	0.682
25	0.739	0.442	0.395	0.518
26	0.594	0.339	0.305	0.396
27	0.481	0.262	0.238	0.306
28	0.391	0.204	0.187	0.238
29	0.321	0.160	0.148	0.186
30	0.264	0.127	0.118	0.147
31	0.219	0.101	0.095	0.116
32	0.182	0.081	0.076	0.093
33	0.152	0.065	0.062	0.074
34	0.127	0.052	0.050	0.060
35	0.107	0.042	0.041	0.048
36	0.090	0.034	0.034	0.039
37	0.075	0.028	0.028	0.032
38	0.064	0.023	0.023	0.026
39	0.054	0.019	0.019	0.021
40	0.045	0.015	0.015	0.017
41	0.038	0.012	0.013	0.014
42	0.032	0.010	0.010	0.011
43	0.026	800.0	0.008	0.009
44	0.022	0.007	0.007	0.007
45	0.014	0.005	0.005	0.006
40	0.014	0.004	0.004	0.003
47	0.010	0.003	0.003	0.003
40	0.007	0.002	0.002	0.002
50	0.004	0.001	0.001	0.001
		1 1/1/0/0	11 11 11 11	

 Table J4
 Influences of bimetallic catalysts (RhNi/KL)

No. Carbon	0.05Rh0.95Co	0.25 Rh0.75Co	0.5Rh0.5Co	0.75Rh0.25Co
4	0.010	0.000	0.066	0.002
5	0.165	0.001	0.708	0.047
6	0.512	0.021	1.304	0.214
7	1.344	0.213	2.264	0.777
8	2.946	1.198	3.680	2.184
9	5.336	3.885	5.548	4.716
10	8.012	7.977	7.663	7.910
11	10.130	11.554	9.588	10.611
12	11.069	13.066	10.791	11.873
13	10.782	12.524	10.936	11.587
14	9.652	10.807	10.083	10.271
15	8.148	8.750	8.602	8.540
16	6.621	6.831	6.926	6.825
17	5.258	5.234	5.361	5.331
18	4.125	3.979	4.052	4.117
19	3.219	3.023	3.024	3.167
20	2.513	2.305	2.248	2.440
21	1.967	1.768	1.673	1.887
22	1.548	1.367	1.250	1.469
23	1.226	1.065	0.941	1.152
24	0.977	0.837	0.714	0.910
25	0.785	0.664	0.546	0.724
26	0.635	0.530	0.421	0.581
27	0.517	0.427	0.327	0.469
28	0.423	0.346	0.256	0.382
29	0.349	0.283	0.202	0.312
30	0.289	0.232	0.161	0.257
31	0.240	0.191	0.128	0.213
32	0.201	0.159	0.103	0.177
33	0.169	0.132	0.083	0.147
34	0.142	0.110	0.067	0.123
35	0.120	0.092	0.055	0.103
36	0.101	0.077	0.045	0.087
37	0.086	0.065	0.037	0.073
38	0.072	0.055	0.030	0.062
39	0.061	0.046	0.025	0.052
40	0.052	0.039	0.020	0.044
41	0.044	0.033	0.017	0.037
42	0.037	0.027	0.014	0.031
43	0.031	0.023	0.011	0.026
44	0.025	0.019	0.009	0.021
45	0.021	0.015	0.007	0.017
46	0.016	0.012	0.006	0.013
47	, 0.012	0.009	0.004	0.010
48	0.009	0.006	0.003	0.007
49	0.005	0.003	0.002	0.004
50	0.001	0.001	0.000	0.001

 Table J5
 Influences of bimetallic catalysts (RhCo/KL)

APPENDIX K Carbon Number Distribution of Mono-aromatics

No. Carbon	Non-Catalst	KL	1% RhKL
2	0.018	0.000	0.000
3	0.037	0.000	0.000
4	0.072	0.000	0.000
5	0.134	0.000	0.003
6	0.238	0.000	0.027
7	0.402	0.000	0.167
8	0.647	0.000	0.776
9	0.992	0.003	2.589
10	1.448	0.021	6.116
11	2.014	0.131	10.410
12	2.670	0.617	13.404
13	3.373	2.112	13.933
14	4.067	5.190	12.466
15	4.691	9.279	10.123
16	5.191	12.587	7.756
17	5.530	13.732	5.756
18	5.696	12.800	4.210
19	5.696	10.733	3.067
20	5.555	8.420	2.240
21	5.305	6.353	1.646
22	4.980	4.694	1.220
23	4.611	3.437	0.913
24	4.223	2.512	0.690
25	3.835	1.840	0.526
26	3.460	1.355	0.405
27	3.106	1.004	0.315
28	2.778	0.750	0.247
29	2.478	0.564	0.195
30	2.205	0.427	0.155
31	1.959	0.325	0.124
32	1.737	0.249	0.100
33	1.539	0.192	0.081
34	1.361	0.149	0.065
35	1.202	0.116	0.053
36	1.060	0.091	0.043
37	0.932	0.071	0.036
38	0.818	0.056	0.029
	0.716	0.044	0.024
40	0.624	0.035	0.020
41	0.542	0.028	0.016
42	0.467	0.022	0.013
43	0.399	0.017	0.011
44	0.336	0.014	0.009
45	0.278	0.011	0.007
40	0.223	0.008	0.005
4/	0.1/1	0.006	0.004
48	0.120	0.004	0.003
49	0.068	0.002	0.002
50	0.014	0.000	0.000

 Table K1
 Influences of 1%Rh/KL

No. Carbon	1%NiKL	5%NiKL	10%NiKL	15%NiKL	20%NiKL
2	0.020	0.000	0.000	0.000	0.000
3	0.043	0.000	0.000	0.000	0.000
4	0.091	0.000	0.000	0.000	0.000
5	0.182	0.000	0.000	0.000	0.000
6	0.345	0.002	0.005	0.001	0.000
7	0.625	0.016	0.048	0.034	0.002
8	1.087	0.101	0.295	0.367	0.034
9	1.814	0.504	1.122	1.702	0.361
10	2.909	1.898	2.851	4.364	2.110
11	4.481	5.159	5.251	7.459	6.793
12	6.591	9.984	7.560	9.716	12.963
13	9.144	14.087	9.088	10.587	16.538
14	11.703	15.342	9.608	10.277	16.015
15	13.391	13.840	9.293	9.267	13.071
16	13.290	11.033 -	8.464	7.978	9.679
17	11.297	8.170	7.408	6.678	6.814
18	8.356	5.815	6.321	5.501	4.692
19	5.580	4.066	5.311	4.495	3.212
20	3.505	2.830	4.425	3.662	2.206
21	2.138	1.976	3.672	2.985	1.528
22	1.295	1.391	3.046	2.441	1.070
23	0.787	0.988	2.530	2.004	0.759
24	0.484	0.710	2.108	1.653	0.545
25	0.302	0.516	1.762	1.371	0.396
26	0.191	0.379	1.479	1.143	0.291
27	0.123	0.281	1.247	0.958	0.216
28	0.080	0.210	1.056	0.808	0.162
29	0.053	0.159	0.898	0.684	0.123
30	0.035	0.121	0.766	0.581	0.094
31	0.024	0.093	0.656	0.496	0.072
32	0.016	0.072	0.564	0.425	0.056
33	0.011	0.056	0.485	0.365	0.043
34	0.008	0.044	0.418	0.314	0.034
35	0.005	0.034	0.361	0.271	0.027
36	0.004	0.027	0.313	0.234	0.021
37	0.003	0.021	0.270	0.202	0.017
38	0.002	0.017	0.234	0.174	0.013
39	0.001	0.014	0.202	0.150	0.011
40	0.001	0.011	0.174	0.129	0.008
41	0.001	0.009	0.149	0.111	0.007
42	0.001	0.007	0.127	0.095	0.005
43	0.000	0.005	0.108	0.080	0.004
44	0.000	0.004	0.090	0.067	0.003
45	.000 v0.0v	0.003	0.074	0.055	0.003
46	0.000	0.003	0.059	0.044	0.002
47	0.000	0.002	0.045	0.034	0.002
48	0.000	0.001	0.032	0.023	0.001
49	0.000	0.001	0.018	0.013	0.001
50	0.000	0.000	0.004	0.003	0.000

Table K2 Influences of varied Ni loading on KL catalysts

No. Carbon	1%CoKL	5%CoKL	10%CoKL	15%CoKL	20%CoKL
2	0.000	0.000	0.000	0.000	0.000
3	0.000	0.000	0.000	0.000	0.000
4	0.000	0.001	0.000	0.000	0.000
5	0.000	0.009	0.000	0.000	0.001
6	0.000	0.066	0.000	0.000	0.005
7	0.000	0.364	0.000	0.000	0.026
8	0.001	1.404	0.006	0.001	0.116
9	0.005	3.781	0.256	0.065	0.442
10	0.021	7.296	2.141	0.734	1.398
11	0.085	10.605	6.647	3.031	3.556
12	0.291	12.350	11.366	6.645	7.092
13	0.842	12.247	13.646	9.816	11.018
14	2.035	10.886	13.317	11.347	13.581
15	4.064	9.019	11.527	11.272	13.822
16	6.701	7.159	9.321	10.199	12.197
17	9.223	5.548	7.263	8.720	9.773
18	10.840	4.251	5.556	7.209	7.376
19	11.197	3.246	4.221	5.848	5.384
20	10.477	2.482	3.206	4.700	3.868
21	9.125	1.907	2.444	3.764	2.765
22	7.565	1.475	1.875	3.017	1.981
23	6.072	1.150	1.449	2.424	1.427
24	4.777	0.903	1.129	1.957	1.037
25	3.715	0.715	0.887	1.588	0.760
26	2.874	0.571	0.702	1.296	0.562
27	2.219	0.459	0.561	1.063	0.420
28	1.715	0.372	0.450	0.877	0.316
29	1.329	0.303	0.364	0.727	0.240
30	1.033	0.248	0.297	0.606	0.184
31	0.806	0.205	0.243	0.507	0.142
32	0.631	0.169	0.200	0.426	0.110
33	0.496	0.141	0.165	0.359	0.086
34	0.392	0.117	0.137	0.303	0.067
35	0.310	0.098	0.113	0.257	0.053
36	0.247	0.082	0.095	0.218	0.042
37	0.196	0.069	0.079	0.185	0.033
38	0.157	0.058	0.066	0.157	0.027
39	0.125	0.049	0.055	0.133	0.021
40	0.101	0.041	0.046	0.113	0.017
41	0.081	0.034	0.038	0.095	0.014
42	0.065	0.029	0.032	0.080	0.011
43	0.051	0.024	0.026	0.067	0.009
44	0.041	0.019	0.022	0.056	0.007
45	, 0.032	0.016	0.017	0.045	0.005
46	0.025	0.012	0.014	0.036	0.004
47	0.018	0.009	0.010	0.027	0.003
48	0.012	0.006	0.007	0.019	0.002
49	0.007	0.004	0.004	0.011	0.001
50	0.001	0.001	0.001	0.002	0.000

Table K3 Influences of varied Co loading on KL catalysts

No. Carbon	0.05Rh0.95Ni	0.25 Rh0.75Ni	0.5Rh0.5Ni	0.75Rh0.25Ni
2	0.001	0.000	0.000	0.007
3	0.004	0.000	0.000	0.018
4	0.014	0.000	0.000	0.047
5	0.041	0.000	0.000	0.112
6	0.115	0.000	0.002	0.253
7	0.295	0.002	0.021	0.537
8	0.697	0.006	0.137	1.074
9	1.508	0.020	0.646	2.012
10	2.958	0.060	2.158	3.513
11	. 5.172	0.169	5.105	5.644
12	7.925	0.444	8.821	8.206
13	10.511	1.083	11.729	10.616
14	12.045	2.433	12.760	12.080
15	12.069	4.954	12.036	12.092
16	10.818	8.855	10.320	10.795
17	+8.918	13.318	8.332	8.799
18	6.941	16.227	6.491	6.722
19	5.213	15.853	4.961	4.928
20	3.839	12.770	3.760	3.532
21	2.803	8.944	2.846	2.506
22	2.045	5.752	2.160	1.775
23	1.496	3.541	1.648	1.262
24	1.101	2.144	1.266	0.904
25	0.817	1.297	0.979	0.653
26	0.611	0.790	0.763	0.476
27	0.461	0.486	0.600	0.350
28	0.350	0.303	0.475	0.260
29	0.268	0.191	0.378	0.194
30	0.207	0.122	0.303	0.147
31	0.161	0.079	0.244	0.111
32	0.126	0.052	0.198	0.085
33	0.099	0.034	0.161	0.066
34	0.078	0.023	0.131	0.051
35	0.062	0.015	0.108	0.040
36	0.049	0.010	0.089	0.031
37	0.039	0.007	0.073	0.024
38	0.031	0.005	0.060	0.019
39	0.025	0.003	0.050	0.015
40	0.020	0.002	0.041	0.012
41	0.016	0.002	0.034	0.009
42	0.013	0.001	0.028	0.007
43	0.010	0.001	0.023	0.006
44	0.008	0.001	0.018	0.005
45	, 0.007	0.000	0.015	0.004
46	0.005	0.000	0.012	0.003
47	0.004	0.000	0.009	0.002
48	0.003	0.000	0.006	0.001
49	0.001	0.000	0.003	0.001
50	0.000	0.000	0.001	0.000

 Table K4
 Influences of bimetallic catalysts (RhNi/KL)
catalysts (RhCo/KL)					
0.25 Rh0.75Co	0.5Rh0.5Co	0.75Rh0.25Co			
0.000	0.018	0.014			
0.000	0.043	0.034			
0.001	0.096	0.076			
0.004	0.203	0.161			
0.018	0.405	0.324			
0.077	0.770	0.621			
0.287	1.394	1.131			
0.909	2.405	1.958			
2.387	3.942	3.216			
5.072	6.085	4.972			
8.604	8.713	7.154			
11.715	11 316	9.431			

Table K5 Influences of bimetallic cataly

No. Carbon	0.05Rh0.95Co	0.25 Rh0.75Co	0.5Rh0.5Co	0.75Rh0.25Co
2	0.000	0.000	0.018	0.014
3	0.000	0.000	0.043	0.034
4	0.000	0.001	0.096	0.076
5	0.000	0.004	0.203	0.161
6	0.002	0.018	0.405	0.324
7	0.022	0.077	0.770	0.621
8	0.153	0.287	1.394	1.131
9	0.717	0.909	2.405	1.958
10	2.305	2.387	3.942	3.216
11	5.194	5.072	6.085	4.972
12	8.604	8.604	8.713	7.154
13	11.144	11.715	11.316	9.431
14	12.018	13.143.	13.001	11.207
15	11.396	12.635	12.991	11.876
16	9.917	10.860	11.303	11.222
17	8.172	8.661	8.746	9.577
18	6.516	6.597	6.219	7.542
19	5.102	4.898	4.198	5.614
20	3.961	3.594	2.760	4.036
21	3.069	2.630	1.798	2.848
22	2.382	1.929	1.174	1.996
23	1.856	1.423	0.772	1.399
24	1.455	1.058	0.514	0.986
25	1.148	0.793	0.346	0.700
26	0.912	0.599	0.236	0.501
27	0.729	0.457	0.163	0.362
28	0.587	0.351	0.114	0.264
29	0.475	0.272	0.080	0.194
30	0.387	0.212	0.057	0.144
31	0.316	0.167	0.041	0.108
32	0.260	0.132	0.030	0.081
33	0.215	0.105	0.022	0.061
34	0.178	0.083	0.016	0.047
35	0.148	0.067	0.012	0.036
36	0.123	0.054	0.009	0.028
37	0.102	0.043	0.007	0.021
38	0.085	0.035	0.005	0.017
39	0.071	0.028	0.004	0.013
40	0.060	0.023	0.003	0.010
41	0.050	0.019	0.002	0.008
42	0.041	0.015	0.002	0.006
43	0.034	0.012	0.001	0.005
44	0.028	0.010	0.001	0.004
45	, 0.022	0.008	0.001	0.003
46	0.018	0.006	0.001	0.002
47	0.013	0.004	0.000	0.002
48	0.009	0.003	0.000	0.001
49	0.005	0.002	0.000	0.001
50	0.001	0.000	0.000	0.000

CURRICULUM VITAE

Name: Ms. Waleerat Pinket

Date of Birth: August 20, 1986

Nationality: Thai

University Education:

2005-2009 Bachelor Degree of Engineering (Chemical Engineering), Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand

Work Experience:

2008	Position:	Student Internship	
	Company name:	Siam Cement Group	

Presentations:

5

 Pinket, W. and Jitkarnka, S. (2011, April 26) Catalytic Pyrolysis of Waste Tire over Co Supported on KL Zeolite. <u>Poster presented at the 2nd Research</u> <u>Symposium on Petroleum, Petrochemicals, and Advanced Materials and the 17th</u> <u>PPC Symposium on Petroleum, Petrochemicals, and Polymers, Queen Sirikit</u> National Convention Centre, Bangkok, Thailand.

