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ABSTRACT

4982005063: Polymer Science Program
Wonchalerm Rungswang: Inducing Unique Polymeric Morphology
Based on Molecular Assembly: Model Cases from Thermoplastic
Elastomer SEBS and/or Supramolecular Benzoxazine.
Thesis Advisors: Assoc. Prof. Suwabun Chirachanchai, Assoc. Prof,
Masaya Kotaki, 114 pages

Keywords: Self-assembly/ Thermoplastic Elastomer/ Microdomains/ SEBS/
Electrospinning/ ~ Thermosetting Nano-sphere/  A/A-Bis(2-
hydroxyalkylbenzyl)alkylamine/ Polydiacetylene

The present work focuses on inducing the polymer morphology via the
molecular self-assembly approaches. In the first part, an existence of ordered-
structure microdomains, nano-phase separation, of thermoplastic elastomers in as-
spun electrospinning fibers is clarified through a study case of SEBS triblock
copolymer wusing two-dimensional small angle X-ray scattering (2D-SAXS)
technigque. The work also shows that when the molecular interaction is formed the
microdomain direction can be controlled as seen in the case of benzoxazine monomer
(BZ) to induce microdomain orientation to be parallel to the fiber axis based on the
- interaction between PS segment of SEBS and BZ monomer . In the second part,
the work shows how the - interaction between PS segment of SEBS and BZ
monomer leads to molecular pocket-like structure to control the polymerization of
BZ and give polyBZ nano-sphere which is a simple approach to prepare
thermosetting nano-sphere. In the final part, the work covers supramolecular
chemistry of BZ dimers, so-called AAfBis(2-hydroxyalkylbenzyl)alkylamine, to
prepare anovel diacetylene (DA) monomer containing BZ dimers based cyclic ether
which will be an effective pathway for solid-state polymerization to obtain

polydiacetylenes.
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