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ABSTRACT

5472041063: Polymer Science Program
Sirinapa Wongwilawan: Dielectric Properties of Toughened
Polybenzoxazine Based Composites in the Microwave Frequency
Region.
Thesis Advisors: Asst. Prof. Hathaikarn Manuspiya, and Prof. Hatsuo
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Polybenzoxazine hased/BST composites were proposed as new dielectric
materials operated at microwave frequency. To alleviate the brittleness of usual
monomeric benzoxazines, the toughness of polybenzoxazine was improved via two
approaches. The first method is by alloying with flexible urethane and another
strategy is by synthesizing high molecular weight benzoxazine precursors. It was
found that for alloying system, at 90/10 vol.% of poly(benzoxazine/urethane), (PBA-
alPU) yielded good dielectric and thermal properties. For the synthesis route, those
properties of methylenedianiline-based (BA-mda) polybenzoxazine were superior to
hexamethylenediamine (BA-hda). Thus at 90/10 vol.% of PBA-a/PU and poly(BA-
mda) were used as matrices for composite fabrication. The dielectric constant of all
the polymer based composites was increased in relation to the amount of BST. The
better filler distribution was obtained in PBA-a/PU than BA-mda matrix when using
3-aminopropyl-trimethoxysilane and polymer based as surface modifiers on BST.
The loss tangent and especially the dielectric constant of prepared composites had a
weak dependence on frequency (300 MFIz to 1 GHz) and temperature (-50 °C to
150 °C), indicating low relaxation behaviors when compared with general polymers.
According to the study, at 90/10 vol.% of PBA-a/PU composed of silane coupling
agent modified BST exhibited the prominent dielectric characteristics at various BST
loadings. This type of composite, at 60 wt.% of BST content provided the highest
dielectric constant (13.9) with low dissipation factor (0.0095), demonstrating high-

performance as a candidate material for microwave frequency applications.
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