

REFERENCES

- Aloui, T., and Halouani, K. (2007). Analytical modeling of polarization in a solid oxide fuel cell using biomass syngas product as fuel. <u>Applied Thermal</u> Engineering, 27, 731-737
- Bird, R.R., Stewart, W.E., and Lightfoot, E.N. (2002). <u>Transport phenomena</u>. NY: John Wiley & Sons Ltd.
- Bove, R., and Ubertini, S. (2005). Modeling solid oxide fuel cell operation: Approach, techniques and results. Journal of Power Sources
- Cordiner, S., Feola, M., Mulone, F., and Romanelli, F. (2007). Analysis of a SOFC energy generation system fuelled with biomass reformate. <u>Applied</u>
 <u>Thermal Engineering</u>, 27, 738-747
- Costamagna, P., Selimovic, A., Borghi, M.B., and Agnew, G. (2004).
 Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC). <u>Chemical Engineering Journal</u>, 102(1), 61-69
- Costa-nunes, O., Gorte, R.J., and Vohs, J.M. (2005). Comparison of the performance of Cu-CeO₂-YSZ and Ni-YSZ composite SOFC anodes with H₂, CO and syngas. Journal of Power Sources, 141, 241-249
- Cunningham, R., Collins, R., and Saunders, G. (2004). Develoment and testing of IP-SOFCs to demonstrate component reliability. <u>Proceeding of sixth of</u> <u>solid oxide fuel cell forum</u>, M. Morgensen (Ed), Lucerne, Switzerland, 309-318
- Davidain, T., Guihaume, N., Iojoiu, E., Provendier, H., and Mirodatos, C. (2006).
 Hydrogen production from cude oil by a sequential catalytic process.
 Applied Cataysis B: Environmental
- Faghri, A., and Guo, Z. (2005). Challenges and opportunities of thermal management issues related to fuel cell technology and modeling.
 <u>International Journal of Heat and Mass Transfer</u>, 48(19-20), 3891-3920
- Foust, A., S., Wenzel., L., A., Clump., C., W., Maus., L., and Andersen., L., B.,(1980) <u>Principles of Unit Operations.</u> UK: John Wiley & Sons Ltd.

- Habermann, B.A., and Young, J.B. (2004). Three-Dimentional of chemically reacting gases flow in the porous support structure of an integrated-planar solid oxide fuel cell. <u>International Journal of Heat and Mass Transfer</u>, 4, 3617-3619
- Hernandez-Pacheco, E., Mann, M.D., Hutton, P.N., Singh, D., and Martin, K.E.
 (2005). A cell-level model for a solid oxide fuel cell operated with syngas from a gasification process. <u>International Journal of Hydrogen Energy</u>, 30, 1211-1233
- Jiang, Y., and Virkar, A.V. (2003). Composition and diluent effect on gas transport and performance of anode-supported solid oxide fuel cell. <u>Journal of the</u> <u>Electrochemical Society</u>, 150(7), A942-A951
- Jung, H.Y., Choi, S.-H., Son, J.-W., Kim, J., Lee. H.-W., Lee, and J.-H. (2005). Fabrication and performance evaluation of 3-cell SOFC stack based on planar 10x10 cm anode-supported cells. <u>Journal of Power Sources</u>
- Larminie, J., and Dicks, A. (2003). <u>Fuel Cell Systems Explained</u>. UK: John Wiley & Sons Ltd.
- Leah, R.T., Brandon, N.P., and Aguiar, P. (2005). Modeling of cells, stacks and systems based around metal-supported planar IT-SOFC cells with CGO electrolytes operating at 500-600°C. Journal of Power Sources, 145(2), 336-352
- Lehnert, W., Meusinger, J., and Thom, J (2000). Modelling of gas transport phenomina in SOFC anodes. Journal of Power Sources, 87(1-2), 57-63
- Leng, Y.J., Chan, S.H., Khor, K.A., and Jiang, S.P. (2004). Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte. <u>International Journal of Hydrogen Energy</u>, 29, 1025-1033
- Lin, Y., Zhan, Z., Liu, J., and Barnett, S.A. (2005). Direct operation of solid oxide fuel cells with methane fuel. <u>Solid State Ionics</u>, 176, 1827-1835
- Marquez, A.I., Ohrn, T.R., Trembly, J.P., Ingram, D.C., and Bayless, D.J. (2007).
 Effect of coal syngas and H₂S on the performance of solid oxide fuel cells
 Part 2. Stack tests. Journal of Power Sources, 164, 659-667
- Minh, N.Q. (2004). Solid oxide fuel cell technology features and applications. Solid State Ionics, 174(1-4), 271-277

- Nagata, S., Momma, A., Kato, T. And Kasuga, Y. (2001). Numerical analysis of output characteristics of tubular SOFC with internal reformer. Journal of <u>Power Sources</u>, 101, 60-71
- Nishiwaki, F., Inagaki, T., Kano, J., Akikusa, J., Murakami, N., and Hosoi, K.
 (2006). Development of disc-type intermediate-temperature solid oxide fuel cell. Journal of Power Sources
- Ramakrishna, P.A., Yang, S., and Sohn, C.H. (2006). Innovative design to improve the power density of a solid oxide fuel cell. <u>Journal of Power Sources</u>, 158, 378-384
- Suwanwarangkul, R., Croiset, E., Entchev, E., Charojrochkul, S., Pritzker, M.D.,
 Fowler, M.W., Douglas, P.L., Chewathanakup, S., and Mahaudom, H.
 (2006). Experimental and modeling study of solid oxide fuel cell operating with syngas fuel. Journal of Power Sources, 161, 308-322
- Trembly, J.P., Marquez, A.I., Ohrn, T.R., and Bayless, D.J. (2006). Effect of coal syngas and H₂S on the performance of solid oxide fuel cell: Single-cell tests. <u>Journal of Power Sources</u>, 158, 263-273
- Todd, B. and Young, J.B., (2002). Thermodynamic and transport properties of gases for use in solid oxide fuel cell modeling. <u>Journal of Power Sources</u>, 110, 186-200
- Weber, A., Sauer, B., Muller, A.C., Herbstritt, D., and Ivers-Tiffee, E. (2002).
 Oxidation of H₂, CO and methane in SOFCs with NI/YSZ-cermet anodes.
 <u>Solid State Ionics</u>, 152-153, 543-550
- Wen, T.-L., Wang, D., Tu, H.Y., Chen, M., Lu, Z., Zhang, Z., Nie, H., and Huang,
 W. (2002). Research on planar SOFC stack. <u>Solid Stare Ionics</u>, 152-153, 399-404
- Xianguo Li (2003). <u>Fuel Cells</u>. Canada: Department of Mechanical Engineering University of Waterloo.
- Yakabe, H., Hisinuma, M., Uratani, M., Matsuzaki, Y., and Yasuda, I. (2000).
 Evaluation and modeling of performance of anode-supported solid oxide fuel cell. <u>Journal of Power Sources</u>, 86(1-2), 423-431

- Yi, Y., Rao, A.D., Brouwer, and J., Samuelsen, G.S. (2005). Fuel flexibility study of an integrated 25 kW SOFC reformer system. <u>Journal of Power Sources</u>, 144, 67-76
- Yoshida, H., Yakabe, H., Ogasawara, K., and Sakurai, T. (2006).
 Delvelopment of envelop-type solid oxide fuel cell stacks. Journal of Power Sources.
- Zhang, B., Tang, X., Li, Y., Xu, Y., and Shen, W. (2006). Hydrogen production from steam reforming of ethanol and glycerol over ceriasuppoerted metal catalysts. International Journal of Hydrogen Energy
- Zhu, W.Z., and Deevi, S.C., (2003). A review on the status of anode materials for solid oxide fuel cells. <u>Materials Science and Engineering</u>, A36 (1-2), 228-239

- C -

APPENDICES

Appendix A Transport Properties of Gas and Multi-component Gaseous Mixture

In the appendix A, transport properties of pure gases and multi-component gaseous mixture are summarized. The main reference that use in this appendix is from Todd and Young., 2002.

Appendix A1 Binary Diffusion Coefficient

The transport properties of gases to determine the binary diffusion coefficient that use in this model are summarized in Table A1. (Reid *et al.*, 1987 and Yakabe *et al.*, 2000)

Gas	Molecular Weight (g/mol)	σ (A°)	З	
H ₂	2.016	2.827	59.7	
H ₂ O	18.015	2.641	809.1	
СО	28.01	3.69	91.7	
CO ₂	44.01	3.941	195.2	
N ₂	28.014	3.798	71.4	
O ₂	31.999	3.467	106.7	

Table A1. Value for molecular weight, σ and ε of gases

Appendix A2 Viscosity of Pure Gas and Multi-components Gaseous Mixture

The empirical expression for determine viscosity of pure gas, μ_{gi} , is given by

$$\mu_{g_i} \left(10^{-7} \, kg \, / \, ms \right) = \sum_{k=0}^{6} b_k \tau^k \,, \tag{A-1}$$

where $\tau^{k} = T(K)/1000$ and the values of b_{k} are summarized in Table A2.

Gas	b ₀	b ₁	<i>b</i> ₂	<i>b</i> ₃	<i>b</i> ₄	<i>b</i> ₅	<i>b</i> ₆
H ₂	15.553	299.78	-244.34	249.41	-167.51	62.966	-9.982
H ₂ O	-6.7541	244.93	419.50	-522.38	348.12	-126.96	19.592
СО	-4.9137	793.65	875.90	883.75	-572.14	208.42	-32.298
CO ₂	-20.434	680.07	-432.49	244.22	-85.929	14.450	-0.4564
N ₂	1.2719	771.45	-809.2	832.47	-555.93	206.15	-32.43
02	-1.6918	889.75	-892.79	905.98	-598.36	221.64	-34.754

Table A2. Value of b_k

For the viscosity of multi-component gaseous mixture, the method of Wilk is recommended and given by (Todd and Young., 2002)

$$\mu_{g} = \sum_{i=1}^{n} \frac{x_{i} \mu_{gi}}{\sum_{j=1}^{n} x_{j} \phi_{ij}},$$
(A-2)

where μ_g is the viscosity of gaseous mixture, x_i is the molar fraction of species *i*th, μ_{gi} is the viscosity of species *i*th and ϕ_{ij} is defined as

$$\phi_{ij} = \frac{\left[1 + \left(\mu_i / \mu_j\right)^{1/2} \left(M_j / M_i\right)^{1/4}\right]^2}{8\left(1 + M_i / M_j\right)^{1/2}}, \qquad (A-3)$$

Where M is the molecular weight.

Appendix A3 Thermal Conductivity of Pure Gas and Multi-component Gaseous Mixture

The empirical expression for determine the thermal conductivity of pure gas, $\lambda_{\rm gr}$, is given by

$$\lambda_{gi}(W/mK) = 0.01 \sum_{k=0}^{6} c_k \tau^k , \qquad (A-4)$$

where the values of c_k are summarized in Table A3 and τ^k is defined as

$$\tau^k = T(K)/1000 \tag{A-5}$$

Gas	<i>c</i> ₀	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃	<i>C</i> ₄	C ₅	C ₆
H ₂	1.5040	62.892	-47.19	47.763	-31.939	11.972	-1.8954
H ₂ O	2.0103	-7.9139	35.922	-41.39	35.993	-18.974	4.1531
СО	-0.2815	13.999	-23.186	36.018	-30.818	13.379	-2.322
CO ₂	2.8888	-27.018	129.65	-233.29	216.83	-101.12	18.698
N ₂	-0.3216	14.81	-25.473	38.837	-32.133	13.493	-2.2741
02	-0.1857	11.118	-7.3734	6.713	-4.1797	1.491	-0.2278

Table A3 Value of c_k

For thermal conductivity of multi-component gaseous mixture, Wassiljewa's expression is recommended and given as

$$\lambda_g = \sum_{i=1}^n \frac{x_i \lambda_{gi}}{\sum_{j=1}^n \lambda_{gj} A_{ij}}, \qquad (A-6)$$

where λ_g is the thermal conductivity of multi-component gaseous mixture, x_i is the molar fraction of species *i*th and A_{ij} is defined as

$$A_{ij} = \frac{\left[1 + \left(A_i / A_j\right)^{1/2} \left(M_j / M_i\right)^{1/4}\right]^2}{8\left(1 + M_i / M_j\right)^{1/2}},$$
 (A-7)

where M is the gas molecular weight.

Appendix A4 Isobaric Heat Capacity

The empirical expression for determine the isobaric heat capacity of pure gas, $C_{_{pi}}$, is given by

$$C_{p_{\ell}}(kJ/Kmol \cdot K) = \sum_{k=0}^{6} a_{k}\tau^{k} , \qquad (A-8)$$

where the value of a_k are summarized and τ^k is defined as

$$\tau^{k} = T(K)/1000 \tag{A-9}$$

Gas	<i>a</i> ₀	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	<i>a</i> ₄	<i>a</i> ₅	a ₆
H ₂	21.157	56.036	-150.55	199.29	-136.15	46.903	-6.4725
H ₂ O	37.373	-41.205	146.01	-217.08	181.54	-79.409	14.015
СО	30.429	-8.1781	5.2062	41.974	-66.346	37.756	-7.6538
CO ₂	4.3669	204.6	-471.33	657.88	-519.9	214.58	-35.992
N ₂	29.027	4.8987	-38.040	105.17	-113.56	55.554	-10.35
O ₂	34.85	-57.975	203.68	-300.37	231.72	-91.821	14.776

Table A4 Value of a_k

For the multi-component gaseous mixture, the isobaric heat capacity is determined as follow

$$C_{p}(T) = \sum_{i=1}^{n} x_{i} C_{pi}(T), \qquad (A-10)$$

where x_i and C_{pi} are the molar fraction and of heat capacity of *i*th component.

In this appendix, the thermodynamic of reactions that considered in this work are presented and summarized.

Appendix B1 Enthalpy of Reactions

The empirical expression for determine enthalpies of electrochemical and chemical reactions that are considered in this work is given as

$$\Delta H_{rxn,T} \left(KJ \cdot Kmol^{-1} \right) = \sum_{k=0}^{5} a_k \tau^k , \qquad (B-1)$$

where τ^{k} is defined as

$$\tau^{k} = T(K)/1000,$$
 (B-2)

where a_k is the constant depending on the reactions and are summarized in Table B1.

Reaction	<i>a</i> ₀	<i>a</i> ₁	a ₂	<i>a</i> ₃	a ₄	a ₅
H ₂ oxidation	-239113	-7.53	-8.6x10 ⁻³	13.33x10 ⁻⁶	-7x10 ⁻⁹	13.5x10 ⁻¹³
CO oxidation	-278797	-24.1	42.77x10-3	-34.69x10 ⁻⁶	14.8x10 ⁻⁹	-25.6x10 ⁻¹³
Water-gas shift	-259849	-16.554	51.3x10 ⁻³	-47.9x10 ⁻⁶	21.8x10 ⁻⁹	-39.1x10 ⁻¹³

Table B1 Value of a_k

Appendix B2 Standard Gibb's Free Energy of Reactions

The empirical expression for determine Gibb's free energy of electrochemical reactions of H_2 and CO is given as

$$\Delta G^{0}_{rxn,T} \left(KJ \cdot Kmol^{-1} \right) = b_0 + b_1 \ln T + b_2 T + b_3 T^2 + b_4 T^3 + b_5 T^4 + b_6 T^5, \qquad (B-3)$$

where b_0 , b_1 ,..., b_6 are summarizes in Table B2.

Table B2 Value of $b_0, b_1, ..., b_6$

Reaction	b_0	b_1	<i>b</i> ₂	<i>b</i> ₃	<i>b</i> ₄	<i>b</i> ₅	<i>b</i> ₆
H ₂ oxidation	-239133	7.53	-10.79	8.567x10 ⁻³	-6.64×10^{-6}	2.34x10 ⁻⁹	-3.4x10 ⁻¹³
CO oxidation	-282394	24.08	-50	-42.8×10^{-3}	17.3x10 ⁻⁶	-4.93x10 ⁻⁹	6.4x10 ⁻¹³

For the Gibb's free energy of water-gas shift reaction, the semi-empirical expression is given as

$$\Delta G^{0}_{wgs,T} = \sum_{k=1}^{5} c_k T^k , \qquad (B-4)$$

where constant c_k are summarized in Table B3.

Table B3 Value of c_k

Reaction	<i>C</i> ₁	<i>c</i> ₂	<i>C</i> ₃	C ₄	C 5
Water-gas shift	252	-0.794	0.887x10 ⁻³	-0.492×10^{-6}	0.104x10 ⁻⁹

CURRICULUM VITAE

Name: Mr. Kulapat Watana

Date of Birth: February 18, 1982

Nationality: Thai

University Education:

2001-2005 Bachelor Degree of applied chemistry, Faculty of Applied Science, King's Mongkut Institute of Technology North Bangkok, Bangkok, Thailand

Presentations:

.

- Watana, K., Wongkasemjit, S., Charojrochkul, S. and Suwanwarangkul, R. (2006, December 7-9) Modeling and validation of planar solid oxide fuel cell operating with synthesis gas at The Petroleum and Petrochemical Symposium, Pattaya, Chonburi, Thailand
- Watana, K., Wongkasemjit, S., Charojrochkul, S. and Suwanwarangkul, R. (2007, June 4-8) Modeling and validation of planar solid oxide fuel cell operating with synthesis gas at Tenth International Symposium of Solid oxide fuel cell, Nara, Japan

