PREFERENTIAL OXIDATION OF CO IN THE PRESENCE OF H₂ OVER Au-Pt AND Pt SUPPORTED ON MORDENITE CATALYSTS

.....

Prang Kiatkumjai

. .

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2007

501935

Thesis Title:	Preferential Oxidation of CO in the Presence of H ₂ over Au-Pt
	and Pt Supported on Mordenite Catalysts
By:	Prang Kiatkumjai
Program:	Petrochemical Technology
Thesis Advisors:	Asst. Prof. Apanee Luengnaruemitchai
	Assoc. Prof. Sujitra Wongkasemjit

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantys Jammet College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Jo XV4

(Asst. Prof. Apanee Luengnaruemitchai)

Wongkasun

(Assoc. Prof. Sujitra Wongkasemjit)

Somchai Osuwan)

Builly

(Assoc. Prof. Thirasak Rirksomboon)

ABSTRACT

47871020063: Petrochemical Technology Program
Prang Kiatkumjai: Preferential Oxidation of CO in the Presence of
H₂ over Au-Pt and Pt Supported on Mordenite Catalysts
Thesis Advisors: Asst. Prof. Apanee Luengnaruemitchai, and Assoc.
Prof. Sujitra Wongkasemjit 70 pp.

Keywords: Preferential CO Oxidation/ Gold/ Platinum/ Zeolite Catalyst

The preferential oxidation of CO (PROX) in H₂-rich gas has long been an interesting technique for the purification of hydrogen gas, especially for use in proton exchange membrane fuel cells (PEMFC), because low levels of CO contaminant can affect the PEMFC electrodes. In this work, bimetallic Au-Pt/mordenite and Pt/mordenite catalysts prepared by the deposition-precipitation method were investigated for the PROX. The effects of Au:Pt ratio, catalyst pretreatment and calcination on the catalytic performance were studied. The CO conversion and selectivity of the prepared catalysts are presented in the temperature range of 50-310°C. Among the bimetallic catalysts tested, a maximum CO conversion of 89.13% was achieved at 230°C with 1% by wt. Au:Pt/mordenite (1:5) pretreated with O₂, while 1% by wt. Pt/mordenite pretreated with H₂ gave 100% CO conversion and 48.14% selectivity at 170°C. In addition, the 1% Pt/mordenite was applied for the PROX unit of the fuel processor system for the production of H₂-rich gas, starting from natural gas. The gas stream product gave the H₂ and CO concentration of 57.09% and 334 ppm, respectively.

บทคัดย่อ

ปราง เกียรติกำจาย : การเลือกเกิดปฏิกิริยาออกซิเดชันของก๊าซการ์บอนมอนอกไซด์ใน บรรยากาศไฮโดรเจนโดยใช้ตัวเร่งปฏิกิริยาควบคู่ทอง-แพลทินัมและแพลทินัมบนตัวรองรับโมดิ ในต์ (Preferential Oxidation of CO in the Presence of H₂ over Au-Pt and Pt Supported on Mordenite Catalysts) อ. ที่ปรึกษา : ผศ.คร. อาภาณี เหลืองนฤมิตชัย และ รศ. คร. สุจิตรา วงศ์เกษมจิตต์ 70 หน้า

การเลือกเกิดปฏิกิริยาออกซิเดชันของการ์บอนมอนอกไซด์ (Preferential oxidation of CO) ในบรรยากาศไฮโครเจน เป็นวิธีการหนึ่งที่น่าสนใจในการทำก๊าซไฮโครเจนให้บริสุทธิ์ โคยเฉพาะสำหรับการประยุกต์ใช้ในเซลล์เชื้อเพลิงแบบเยื่อแลกเปลี่ยนโปรตอน (Proton Exchange Membrane Fuel Cell: PEMFC) เนื่องจากปริมาณก๊าซคาร์บอนมอนอกไซค์เพียง เล็กน้อยจะส่งผลกระทบต่อการทำงานของตัวเร่งปฏิกิริยาแพลทินัมในเซลล์เชื้อเพลิงแบบเยื่อ แลกเปลี่ยนโปรตอน ในงานวิจัยนี้มีการศึกษาตัวเร่งปฏิกิริยาสำหรับการเลือกเกิคปฏิกิริยา ออกซิเคชันของการ์บอนมอนอกไซด์ในบรรยากาศไฮโครเจน โดยตัวเร่งปฏิกิริยาที่ศึกษาคือตัวเร่ง ปฏิกิริยาโลหะทองและแพลทินัมบนตัวรองรับโมคิในต์ ซึ่งเตรียมโคยวิธีการ Depositionprecipitation มีการศึกษาผลของอัตราส่วนโดยน้ำหนักระหว่างโลหะทองต่อแพลทินัม การพรี-ทรีทเมนต์ และการแคลซิเนชันของตัวเร่งปฏิกิริยา โคยแสคงผลของการเปลี่ยนแปลงของก๊าซ คาร์บอนมอนอกไซด์ (CO conversion) และความเลือกจำเพาะ (Selectivity) ของตัวเร่ง ปฏิกิริยาในช่วงอุณหภูมิ 50-310 องศาเซลเซียส พบว่าตัวเร่งปฏิกิริยาโลหะควบคู่ทอง-แพลทินัม บนตัวเร่งปฏิกิริยาทองบนตัวรองรับโมคิในค์อัตราส่วนโคยน้ำหนัก 1 ต่อ 5 ในปริมาณโลหะรวม ร้อยละ 1 ที่ทำการพรีทรีทเมนต์ด้วยก๊าซออกซิเจน ให้ก่าการเปลี่ยนแปลงของก๊าซ การ์บอนมอนอกไซด์ 89.13% ที่อุณหภูมิ 230 องศาเซลเซียส ในขณะที่ตัวเร่งปฏิกิริยาโลหะ แพลทินัมบนตัวรองรับโมดิในต์ที่ปริมาณโลหะรวมร้อยละ 1 ที่ทำการพรีทรีทเมนต์ตัวเร่งปฏิกิริยา ้ด้วยก็าซไฮโครเจนให้ก่าการเปลี่ยนแปลงของก็าซการ์บอนมอนอกไซค์ 100% และก่าความเลือก ้ จำเพาะ 48.14% ที่อุณหภูมิ 170 องศาเซลเซียส นอกจากนี้ งานวิจัยนี้มีการนำตัวเร่งปฏิกิริยาโลหะ แพลทินัมบนตัวรองรับโมคิไนต์มาใช้ในการจำลองการผลิตเชื้อเพลิงไฮโครเจนจากปฏิกิริยารี ฟอร์มมิงที่ผลิตจากก๊าซธรรมชาติใน Fuel Processor พบว่าในก๊าซผลิตภัณฑ์ให้ความเข้มข้นของ ก๊าซไฮโครเจน 57.09% และก๊าซการ์บอนมอนอกไซด์ 334 ส่วนในล้านส่วน

ACKNOWLEDGEMENTS

This work would have never been possible without the assistance of the following persons and organizations:

First of all, I would like to give a special thank to my thesis advisors, Asst. Prof. Apanee Luengnaruemitchai and Assoc. Prof. Sujitra Wongkasemjit, for all of their special guidance, immensely helpful comments constant encouragement and assistance while I was conducting my research.

Secondly, this thesis work is funded by the Petroleum and Petrochemical College; and the National Excellence Center for Petroleum, Petrochemical, and Advanced Materials, Thailand.

Thirdly, I would like to acknowledge to of Department of Alternative Energy Development and Efficiency (DEDE), Ministry of Energy for supporting this thesis work.

Fourthly, special thanks are extended to all members and staff of the Petroleum and Petrochemical College at Chulalongkorn University for providing all facilities, the valuable instrument and instrument training which needed for this research work.

Fifthly, I would like to give my sincere thank to all PPC friends for their friendly assistance, encouragement and giving me a very great time during doing my research.

The last, I would like to appreciatively thank to my parents for their constant support and encouragement during the course of my studies. Without their forever and unconditionally love as well as support me all time, I would not be able to succeed my master degree.

TABLE OF CONTENTS

			PAGE
	Title F	Page	i
	Abstra	ict (in English)	iii
	Abstra	act (in Thai)	iv
	Ackno	owledgements	v
	Table	of Contents	vi
	List of	f Tables	ix
	List of	f Figures	х
CHA	APTER		
	I	INTRODUCTION	1
	II	THEORETICAL BACKGROUND AND LITERATURE	3
		REVIEW	
		2.1 Fuel Cell	3
		2.2 Hydrogen Production	· 5
		2.2.1 Steam Reforming	6
		2.2.2 Partial Oxidation	6
		2.2.3 Autothermal Reforming	6
		2.2.4 Carbon Dioxide Reforming	7
		2.3 Gas Clean-up	7
		2.3.1 Water Gas Shift Reaction	7
		2.3.2 Preferential Oxidation of CO in Excess of H_2	8
		2.4 Platinum and Gold	9
		2.5 Zeolite	11
		2.6 Literature Reviews	12

17

	3.1 Materials and Equipment	17
	3.1.1 Chemicals	17
	3.1.2 Gases	17
	3.1.3 Equipment	17
	3.2 Catalyst Preparation	18
	3.3 Catalyst Characterization	19
	3.3.1 X-ray Diffraction (XRD)	19
	3.3.2 Surface Area Measurement (BET)	20
	3.3.3 Inductively Coupled Plasma (ICP)	21
	3.3.4 Temperature Programmed Reduction (TPR)	21
	3.3.5 H ₂ Pulse Chemisorption	22
	3.3.6 Transmission Electron Microscopy (TEM)	22
	3.4 Catalyst Activity	23
	3.4.1 Lab-scale Experiment	23
	3.4.1.1 Gas Blending System	23
	3.4.1.2 Catalytic Reactor	23
	3.4.1.3 Analytical Instrument	23
	3.4.2 Bench-scale Experiment	25
	3.5 Catalytic Activity Measurement	28
IV	RESULTS AND DISCUSSION	29
	4.1 Catalyst Characterization	29
	4.1.1 X-ray Diffraction (XRD)	29
	4.1.2 Surface Area (BET) and Pore Size Measurements	36
	4.1.3 Inductively Coupled Plasma (ICP)	36
	4.1.4 Temperature Programmed Reduction (TPR)	38
	4.1.5 H ₂ Pulse Chemisorptions	40
	4.1.6 Transmission Electron Micrograph (TEM)	40
	4.2 Catalyst Activity	43

1.0

	4.2.1 Effect of Metal-loaded Ratio	43
	4.2.2 Effect of Catalyst Pretreatment	46
	4.2.3 Effect of Calcination	52
	4.2.4 Stability Testing	58
	4.2.5 Bench-scale Fuel Processor Testing	59
V	CONCLUSIONS AND RECOMMENDATIONS	64
	5.1 Conclusions	64
	5.2 Recommendations	65
REI	FERENCE	66
APPENDIX		69
CUI	RRICULUM VITITAE	70

LIST OF TABLES

TABLE

2.1	Fuel cell comparisons	4
2.2	Physical Properties of Au and Pt	11
3.1	Notations for the catalysts with varied ratio Au and Pt (1%	
	total metal loading.	18
4.1	Metal crystallite sizes of the prepared catalysts	31
4.2	Specific surface area, pore size and pore volume of	
	mordenite zeolite (MOR), 1%Au/MOR, 1% (1:1)	
	Au:Pt/MOR, 1% (1:5) Au:Pt/MOR and 1%Pt/MOR	37
4.3	The degree of metal dispersion and mean particle diameter	
	of 1% (1:5) Au:Pt/MOR and 1%Pt/MOR catalysts	40
4.4	Comparison of the experimental conditions between lab-	59
	scale and bench-scale experiments for 1%Pt/MOR catalyst	
4.5	The gas composition of lab-scale and bench scale experiment	60

.

PAGE

LIST OF FIGURES

FIGURE

2.1	A fuel cell membrane electrode assembly operation	3
2.2	Some feedstock and process alternatives	5
2.3	Lattice Structure of Mordenite Zelolite showing parallel	
	chanels of ~ 7.0 A° in z axis and the interconnecting pockets	
	of 4.8 A° in y axis	12
3.1	The schematic flow diagram of the lab-scale experimental	
	apparatus	24
3.2	The schematic flow diagram of the bench-scale experimental	
	apparatus	26
3.3	Photograph of the bench-scale experimental apparatus (Fuel	
	Processor)	27
4.1	XRD patterns of 1%Au/MOR catalyst at different	
	pretreatment conditions	32
4.2	XRD patterns of 1% Pt/MOR catalyst at different	
	pretreatment conditions	33
4.3	XRD patterns of 1% (1:1) Au:Pt/MOR catalyst at different	
	pretreatment conditions	34
4.4	XRD patterns of 1% (1:5) Au:Pt/MOR catalyst at different	
	pretreatment conditions	35
4.5	Temperature programmed reduction profiles of the prepared	
	catalysts: (a) mordenite zeolite, (b) fresh 1%Au/MOR, (c)	
	calcined 1%Au/MOR, (d) fresh 1% (1:1) Au:Pt/MOR, (e)	
	calcined 1% (1:1) Au:Pt/MOR, (f) fresh 1% (1:5)	
	Au:Pt/MOR, (g) calcined 1% (1:5) Au:Pt/MOR, (h) fresh	
	1%Pt/MOR and (i) calcined 1%Pt/MOR	39
4.6	TEM micrograph of 1% Pt/mordenite zeolite	41

.

PAGE

FIGURE

4.7	TEM micrograph of 1% (1:5) Au:Pt/mordenite zeolite	42
4.8	The EDX spectrum for individual single particle from 1%	
	(1:5) Au:Pt/ mordenite zeolite	42
4.9	Dependencies of the CO conversion (a) and the CO	
	selectivity (b) of mordenite supported catalysts: (Δ)	
	1%Au/MOR, (▼) 1% (1:1) Au:Pt/MOR, (O) 1% (1:5)	
	Au/Pt/MOR, and (●) 1%Pt/MOR	45
4.10	Dependencies of the CO conversion (a) and the CO	
	selectivity (b) of 1% Au/mordenite zeolite catalyst: (•) Non-	
	pretreatment, (O) H ₂ pretreatment at 400°C for 1 h, ($\mathbf{\nabla}$) O ₂	
	pretreatment at 200°C for 1 h, (Δ) He pretreatment at 110°C	
	for 1 h	48
4.11	Dependencies of the CO conversion (a) and the CO	
	selectivity (b) of 1% (1:1) Au:Pt/mordenite zeolite catalyst:	
	(•) Non-pretreatment, (O) H_2 pretreatment at 400°C for 1 h,	
	($\mathbf{\nabla}$) O ₂ pretreatment at 200°C for 1 h, (Δ) He pretreatment at	
	110°C for 1 h	49
4.12	Dependencies of the CO conversion (a) and the CO	
	selectivity (b) of 1% (1:5) Au:Pt/mordenite zeolite catalyst:	
	(•) Non-pretreatment, (O) H_2 pretreatment at 400°C for 1 h,	
	($\mathbf{\nabla}$) O ₂ pretreatment at 200°C for 1 h, (Δ) He pretreatment at	
	110°C for 1 h	50
4.13	Dependencies of the CO conversion (a) and the CO	
	selectivity (b) of 1% Pt/mordenite zeolite catalyst: (•) Non-	
	pretreatment, (O) H ₂ pretreatment at 400°C for 1 h, ($\mathbf{\nabla}$) O ₂	
	pretreatment at 200°C for 1 h, (Δ) He pretreatment at 110°C	
	for 1 h	51

FIGURE

4.14	Dependencies of the CO conversion (a) and the CO selectivity (b)	
	of 1% Au/mordenite zeolite: (\bullet) uncalcined and H ₂	
	pretreatment at 400°C for 1 h, (O) uncalcined and O_2	
	pretreatment at 200°C for 1 h ($\mathbf{\nabla}$) calcined and H ₂	
	pretreatment at 400°C for 1 h, (Δ) calcined and O ₂	
	pretreatment at 200°C for 1 h	54
4.15	Dependencies of the CO conversion (a) and the CO selectivity (b)	
	of 1% (1:1) Au:Pt/mordenite zeolite: (\bullet) uncalcined and H ₂	
	pretreatment at 400°C for 1 h, (O) uncalcined and O_2	
	pretreatment at 200°C for 1 h ($\mathbf{\nabla}$) calcined and H ₂	
	pretreatment at 400°C for 1 h, (Δ) calcined and O ₂	
	pretreatment at 200°C for 1 h	55
4.16	Dependencies of the CO conversion (a) and the CO selectivity (b)	
	of 1% (1:5) Au:Pt/mordenite zeolite: (\bullet) uncalcined and H ₂	
	pretreatment at 400°C for 1 h, (O) uncalcined and O_2	
	pretreatment at 200°C for 1 h (\mathbf{v}) calcined and H ₂	
	pretreatment at 400°C for 1 h, (Δ) calcined and O ₂	
	pretreatment at 200°C for 1 h	56
4.17	Dependencies of the CO conversion (a) and the CO selectivity (b)	
	of 1% Pt/mordenite zeolite: (\bullet) uncalcined and H ₂	
	pretreatment at 400°C for 1 h, (O) uncalcined and O_2	
	pretreatment at 200°C for 1 h (\mathbf{v}) calcined and H ₂	
	pretreatment at 400°C for 1 h, (Δ) calcined and O ₂	57
	pretreatment at 200°C for 1 h	
4.18	Stability testing of 1% Pt/mordenite at 170°C under	
	atmospheric pressure; (\bullet) CO conversion and (O) CO	
	selectivity	58

.

PAGE

FIGURE

4.19	Reformate concentration profiles after PROX unit of fuel	
	processor system over 1% Pt/Mordenite along with time-on-	
	stream	62
4.20	Dependencies of the CO conversion (a) and the CO	
	selectivity (b) of 1% Pt/Mordenite from PROX unit of fuel	
	processor system along with time-on-stream	62
4.21	Reformate concentration profile as a function of reaction	
	zones at 8 h	63